
UNIT II 

Relations 

RELATIONS  
Introduction 

                The elements of a set may be related to one another.  For example, in the set of natural 
numbers there is the ‘less than’ relation between the elements.  The elements of one set may also 
be related to the elements another set. 

Binary Relation 

                  A binary relation between two sets A and B is a rule R which decides, for any 
elements, whether a is in relation R to b.  If so, we write a R b.  If a is not in relation R to b, then 
we shall write a /R b. 

We can also consider a R b as the ordered pair (a, b) in which case we can define a binary 
relation from A to B as a subset of A X B.  This subset is denoted by the relation R. 

In general, any set of ordered pairs defines a binary relation. 

For example, the relation of father to his child is F = {(a, b) / a is the father of b} 
In this relation F, the first member is the name of the father and the second is the name of the 
child. 
      The definition of relation permits any set of ordered pairs to define a relation. 

For example, the set S given by 
       S = {(1, 2), (3, a), (b, a) ,(b, Joe)} 
Definition 
       The domain D of a binary relation S is the set of all first elements of the ordered pairs in the 
relation.(i.e) D(S)= {a  /  $ b for which (a, b) Є S} 
       The range R of a binary relation S is the set of all second elements of the ordered  
       pairs in the relation.(i.e) R(S) = {b / $ a for which (a, b) Є  S} 

            For example 
For the relation S = {(1, 2), (3, a), (b, a) ,(b, Joe)}  
       D(S)   = {1, 3, b, b}     and  
       R(S)   = {2, a, a, Joe}  
Let X and Y be any two sets. A subset of the Cartesian product X * Y defines a relation, say C. 
For any such relation C, we have D( C ) Í X and R( C) Í Y, and the relation C is said to from  X 



to Y. If Y = X, then C is said to be a relation form X to X. In such case, c is called a relation in 
X. Thus any relation in X is a subset of X * X . The set X * X is called a universal relation in X, 
while the empty set which is also a subset of X * X is called a void relation in X. 

For example 
            Let L denote the relation “less than or equal to” and D denote the relation 
             “divides” where x D y means “ x divides y”. Both L and D are defined on the 
   set {1, 2, 3, 4} 
L = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (4, 4)} 
D = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 4), (3, 3), (4, 4)} 
 L Ç D = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 4), (3, 3), (4, 4)} 
             = D 

Properties of Binary Relations:  
    
Definition: A binary relation R in a set X is reflexive if, for every x Є X, x R x, 
                   That is (x, x) Є   R, or R is reflexive in X  ó (x) (x Є X ® x R x). 
For example 

 The relation £ is reflexive in the set of real numbers. 

 The set inclusion is reflexive in the family of all subsets of a universal set. 

 The relation equality of set is also reflexive. 

 The relation is parallel in the set lines in a plane. 

 The relation of similarity in the set of triangles in a plane is reflexive. 

      
Definition: A relation R in a set X is symmetric if for every x and y in X, whenever 
 x R y, then y R x.(i.e) R is symmetric in X ó (x) (y) (x Є X ٨ y Є X ٨ x R y ®   y R x} 
For example  

 The relation equality of set is symmetric. 

 The relation of similarity in the set of triangles in a plane is symmetric. 

 The relation of being a sister is not symmetric in the set of all people. 

 However, in the set females it is symmetric.      

   
Definition: A relation R in a set X is transitive if, for every x, y, and z are in X,  
whenever x R y and y R z , then x R z. (i.e)  R is transitive in X ó (x) (y) (z) (x Є X٨ y Є X٨ z Є 



X ٨ x R y٨ y R z® x R z)  
For example  

 The relations   <, £, >, ³  and = are transitive in the set of real numbers 

 The relations   Í, Ì, Ê, É and equality are also transitive in the family of sets. 

 The relation of similarity in the set of triangles in a plane is transitive. 

    
Definition: A relation R in a set X is irreflexive if, for every x Є X , (x, x)ÏX. 

For example 

 The relation   <  is irreflexive  in the set of all real numbers. 

 The relation proper inclusion is irreflexive in the set of all nonempty subsets of a 
universal set.  

 Let X = {1, 2, 3} and S = {(1, 1), (1, 2), (3, 2), (2, 3), (3, 3)} is neither irreflexive nor 
reflexive. 

Definition:A relation R in a set x is anti symmetric if , for every x and y in X, 
                 whenever x R y and y R x, then x = y.  
                 Symbolically,(x) (y) (x Є X ٨  y Є X ٨  x R y ٨ y R x ®  x = y) 

For example  

 The relations  £ , ³  and   = are anti symmetric  

 The relation Í is anti symmetric in set of subsets. 

 The relation “divides” is anti symmetric in set of real numbers. 
 Consider the relation “is a son of” on the male children in a family.Evidently the relation 

is not symmetric, transitive and reflexive. 

 The relation “ is a divisor of “ is reflexive and transitive but not symmetric on the set of 
natural numbers. 

 Consider the set H of all human beings. Let r be a relation “ is married to “                        
R  is symmetric. 

 Let I be the set of integers. R on I is defined as a R b if a – b is an even number.R is an 
reflexive, symmetric and transitive. 

 

 



Equivalence Relation: 

Definition:A relation R in a set A is called an equivalence relation if 

 a R a for every  i.e. R is reflexive 

 a R b => b R a for every a, b Є A i.e. R is symmetric  
 a R b and b R c => a R c for every a, b, c Є A, i.e. R is transitive. 

For example                                                    

 The relation equality of numbers on set of real numbers. 

 The relation being parallel on a set of lines in a plane. 

Problem1: Let us consider the set T of triangles in a plane. Let us define a relation 
                   R in T as R= {(a, b) / (a, b Є T and a is similar to b} 
       We have to show that relation R is an equivalence relation 
Solution   :  

 A triangle  a  is similar to itself.  a R a 

  If the triangle a is similar to the triangle b, then triangle b is similar to the triangle a then 
a R b => b R a 

 If a is similar to b and b is similar to c, then a is similar to c (i.e) a R b and b R c => a R 
c.  

                        Hence R is an equivalence relation. 

Problem 2: Let x = {1, 2, 3, … 7} and  R = {(x, y) / x – y is divisible by 3} 
                   Show that R is an equivalence relation. 

Solution: For any a Є X, a- a is divisible by 3, 
                      Hence a R a,   R is reflexive 
                      For any a, b Є X, if a – b is divisible by 3, then b – a is also divisible by 3, 
R is symmetric. 
For any a, b, c Є, if a R b and b R c, then a – b is divisible by 3 and 
b–c   is    divisible by 3. So that (a – b) + (b – c) is also divisible by 3, 
hence a – c is also divisible by 3. Thus R is transitive. 
Hence R is equivalence. 

Problem3   Let Z be the set of all integers.  Let m be a fixed integer.  Two integers a and            
     b are said to be congruent modulo m if and only if m divides a-b, in which case   we write a º 



b (mod m).  This relation is called the relation of congruence modulo m and we can show that is 
an equivalence relation. 

Solution    :   

 a - a=0 and m divides a – a (i.e)  a R a, (a, a) Є R, R is  reflexive . 

 a R b = m divides a-b 

m divides b - a 
b º a (mod m) 
b R a 
that is R is symmetric.  

 a R b and b R c => a ºb (mod m) and bº  c (mod m) 

o m divides a – b and m divides b-c 

o a – b = km and b – c = lm for some k ,l Є z 

o (a – b) + (b – c) = km + lm 

o a – c = (k +l) m 

o aº c (mod m) 

o a R c 

o R is transitive 

   Hence the congruence relation is an equivalence relation. 

Equivalence Classes: 

Let R be an equivalence relation on a set A.  For any a ЄA, the equivalence class generated by a 
is the set of all elements b Є A such a R b and is denoted [a].  It is also called the R – 
equivalence class and denoted by a Є A. 
i.e.,   [a] = {b Є A / b R a} 

Let Z be the set of integer and R be the relation called “congruence modulo 3” 
defined by  R = {(x, y)/ xÎ Z Ù yÎZ Ù (x-y) is divisible by 3} 
              Then the equivalence classes are  
                   [0] = {… -6, -3, 0, 3, 6,  …} 
                   [1] = {…, -5, -2, 1, 4, 7, …} 
                   [2] = {…, -4, -1, 2, 5, 8, …} 
 Composition of binary relations: 
                                                       
Definition:Let R be a relation from X to Y and S be a relation from Y to Z.  Then the relation R 



o S is                     given by R o S = {(x, z) / xÎX Ù z Î Z Ù y Î Y such that (x, y) Î R Ù (y, z) Î 
S)} is called the composite relation of R and S. 
                    The operation of obtaining R o S is called the composition of relations. 

Example:  Let R = {(1, 2), (3, 4), (2, 2)} and 
                         S = {(4, 2), (2, 5), (3, 1),(1,3)} 
         Then R o S = {(1, 5), (3, 2), (2, 5)} and S o R = {(4, 2), (3, 2), (1, 4)} 
                  It is to be noted that R o S ≠ S o R. 
     Also Ro(S o T) = (R o S) o T = R o S o T  

Note: We write R o R as R2; R o R o R as R3 and so on. 

Definition                                                          
            Let R be a relation from X to Y, a relation R from Y to X is called the converse of R, 
where the ordered pairs of Ř are obtained by interchanging the numbers in each of the ordered 
pairs of R. This means for x Î X and y Î Y, that x R y ó y Ř x.   
Then the relation Ř is given by R = {(x, y) / (y, x) Î R} is called the converse of R 
Example: 
                  Let R = {(1, 2),(3, 4),(2, 2)} 
               Then Ř = {(2, 1),(4, 3),(2, 2)} 

      Note:   If R is an equivalence relation, then Ř is also an equivalence relation. 

Definition   Let X be any finite set and R be a relation in X.  The relation  
           R+ = R U R2 U R3…in X. is called the transitive closure of R in X 

Example: Let R = {(a, b), (b, c), (c, a)}.   
Now R2 = R o R = {(a, c), (b, a), (c, b)} 
        R3 = R2 o R = {(a, a), (b, b), (c, c)} 
        R4 = R3 o R = {(a, b), (b, c), (c, a)} = R 
        R5= R3o R2 = R2 and so on. 

Thus, R+ = R U R2 U R3 U R4 U… 
               = R U R2 U R3. 
               ={(a, b),(b, c),(c, a),(a, c),(b, a),(c ,b),(a, b),(b, b),(c, c)} 

            We see that R+ is a transitive relation containing R.  In fact, it is the smallest     transitive 
relation containing R.  

 



Partial Ordering Relations: 

Definition  
                 A binary relation R in a set P is called partial order relation or partial ordering in P 
iff R is reflexive, anti symmetric, and transitive. 
                   A partial order relation is denoted by the symbol £., If £  is a partial ordering on P, 
then the ordered pair (P, £) is called a partially ordered set or a poset. 

 Let R be the set of real numbers. The relation “less than or equal to  ” or  
o , is a partial ordering on R.    

 Let X be a set and r(X) be its power set. The relation subset, Í on X is partial ordering. 

 Let Sn be the set of divisors of n. The relation D means “divides” on Sn ,is partial 
ordering on Sn .  

In a partially ordered set (P, £) , an element y Î P is said to cover an element  x Î P 
 if x <y and if there does not exist any element z Î P such that x £ z  and z £  y;  
 that is, y covers x Û (x < y Ù (x £ z £ y Þ x = z Ú z = y))                  
               A partial order relation £ on a set P can be represented by means of a diagram known as 
a Hasse diagram or partial order set diagram of (P, £). In such a diagram, each element is 
represented by a small circle or a dot. The circle for x Î P is drawn below the circle for y Î P if x 
< y, and a line is drawn between x and y if y covers x. 

 If x < y but y does not cover x, then x and y are not connected directly by a single line.However, 
they are connected through one or more elements of P. 

Hasse Diagram: 

A Hasse diagram is a digraph for a poset which does not have loops and arcs implied by the 
transitivity.  
Example 10: For the relation {< a, a >, < a, b >, < a, c >, < b, b >, < b, c >, < c, c >} on set {a, 
b,c}, the Hasse diagram has the arcs {< a, b >, < b, c >} as shown below.  



 

 

Ex: Let A be a given finite set and r(A) its power set. Let Í be the subset relation on the elements 
of r(A). Draw Hasse diagram of (r(A), Í) for  A = {a, b, c}  
      
                                                                                              

 

 

 

 

 



Functions 

Introduction 
          A function is a special type of relation.  It may be considered as a relation in which each 
element of the domain belongs to only one ordered pair in the relation.  Thus a function from A 
to B is a subset of A X B having the property that for each a ЄA, there is one and only one b Є B 
such that (a, b) Î G. 

Definition 
     Let A and B be any two sets. A relation f from A to B is called a function   if for every a Є A 
there is a unique b Є B such that (a, b) Є f . 

      Note that the definition of function requires that a relation must satisfy two additional 
conditions in order to qualify as a function. 

     The first condition is that every a Є A must be related to some b Є B, (i.e)  the domain of f 
must be A and not merely subset of A.  The second requirement of uniqueness can be expressed 
as (a, b) Є f ٨ (b, c) Є f => b = c 
Intuitively, a function from a set A to a set B is a rule which assigns to every element of A, a 
unique element of B.  If a ЄA, then the unique element of B assigned to a under f is denoted by f 
(a).The usual notation for a function f from A to B is f: A® B defined by a ® f (a) where a Є A, 
f(a) is called the image of a under f and a is called pre image of f(a). 

 Let X = Y = R and f(x) = x2 + 2. Df = R and Rf Í R. 

 Let X be the set of all statements in logic and let Y = {True, False}. 

      A mapping f: X®Y is a function. 

 A program written in high level language is mapped into a machine language by  a 
compiler. Similarly, the output from a compiler is a function of its input. 

 Let X = Y = R and f(x) = x2 is a function from X ® Y,and g(x2) = x is not a function 
from X ® Y. 

            A mapping f: A ® B is called one-to-one (injective or 1 –1) if distinct elements of A are 
mapped into distinct elements of B. (i.e) f is one-to-one if 
            a1 = a2 => f (a1) =  f(a2) or equivalently f(a1) ¹ f(a2) => a1 ¹ a2 
For example, f: N ® N given by f(x) = x is 1-1 where N is the set of a natural numbers. 
            A mapping f: A® B is called onto (surjective) if for every b Є B there is an  a Є A such 
that f (a) = B. i.e. if every element of B has a pre-image in A.  Otherwise it is called into. 



For example, f: Z®Z given by f(x) = x + 1 is an  onto mapping. 
A mapping is both 1-1 and onto is called bijective 
. 
For example f: R®R given by f(x) = X + 1 is bijective. 

Definition: A mapping f: R® b is called a constant mapping if, for all aÎA, f (a) = b, 
         a   fixed element. 
For example f: Z®Z given by f(x) = 0, for all x ÎZ is a constant mapping. 

Definition 
       A mapping f: A®A is called the identity mapping of A if f (a) = a, 
  for all aÎA.  Usually it is denoted by IA or simply I. 

Composition of functions: 

       If f: A®B and g: B®C are two functions, then the composition of functions f and g, denoted 
by g o f, is the function is given by g o f : A®C and is given by 
            g o f = {(a, c) / a Є A ٨ c Є C ٨ $bÎ B ': f(a)= b ٨ g(b) = c} 
and (g of)(a) = ((f(a)) 

Example 1: Consider the sets A = {1, 2, 3},B={a, b} and C = {x, y}. 
     Let f: A® B be defined by f (1) = a ; f(2) = b and f(3)=b and 
     Let g: B® C be defined by g(a) = x and g(b) = y  
      (i.e) f = {(1, a), (2, b), (3, b)} and g = {(a, x), (b, y)}. 
Then g o f: A®C is defined by 
            (g of) (1) = g (f(1)) = g(a) = x 
            (g o f) (2) = g (f(2)) = g(b) = y 
            (g o f) (3) = g (f(3)) = g(b) = y 
      i.e., g o f = {(1, x), (2, y),(3, y)} 

If f: A® A and g: A®A, where A= {1, 2, 3}, are given by  
          f = {(1, 2), (2, 3), (3, 1)}      and      g = {(1, 3), (2, 2), (3, 1)} 
Then g of = {(1, 2), (2, 1), (3, 3)}, fog= {(1, 1), (2, 3), (3, 2)}    
          f of  = {(1, 3), (2, 1), (3, 2)} and gog= {(1, 1), (2, 2), (3, 3)} 

Example 2:  Let f(x) = x+2, g(x) = x – 2 and h(x) = 3x for x Î R, where R is the set of real 
  numbers. 
                  Then    f o f = {(x, x+4)/xÎ R} 
                              f o g = {(x, x)/ x Î X} 
                              g o f = {(x, x)/ xÎ X} 
                              g o g = {(x, x-4)/x Î X} 



                              h o g = {(x,3x-6)/ x Î X}  
                              h o f = {(x, 3x+6)/ x Î X} 

Inverse functions: 
Let f: A® B be a one-to-one and onto mapping.  Then, its inverse, denoted by f -1 is given by f -
1 = {(b, a) / (a, b) Î f} Clearly f-1: B® A is one-to-one and onto. 

Also we observe that f o f -1   = IB and f -1o f   = IA. 
If  f -1  exists then f is called invertible. 

For example:Let f: R ®R be defined by f(x) = x + 2 
Then f -1: R® R is defined by f -1(x) = x - 2 

 

 

Theorem: Let f: X ®Y and g: Y ® Z be two one to one and onto functions. Then gof is also one 
to one and onto function. 

Proof    
          Let  f:X ® Y  g : Y ® Z be two one to one and onto functions. Let x1, x2 Î X   

 g o f (x1) = g o f(x2), 

 g (f(x1)) = g(f(x2)),  

 g(x1)   = g(x2) since  [f is 1-1] 

x1 = x2  since   [ g is 1-1} 
            so that gof is 1-1. 

      By the definition of composition, gof  : X ®  Z is a function. 
      We have to prove that every element of z Î Z an image element for some x Î X  
       under gof.  
    Since g is onto $ y ÎY   ': g(y) = z     and     f is onto from X to Y,  
                            $ x ÎX   ': f(x) = y.  
        Now, gof (x) = g ( f ( x))  
                              = g(y)    [since f(x) = y] 
                              = z   [since g(y) = z] 
                             which shows that gof is onto. 



Theorem    (g o f) -1 = f -1 o g -1 
            (i.e) the inverse of a composite function can be expressed in terms of the  
      composition of the inverses in the reverse order. 
  
Proof. 
                 f: A ® B is one to one and onto. 
                 g: B  ® C is one to one and onto. 
                 gof: A ® C is also one to one and onto. 
                  Þ (gof) -1: C ® A is one to one and onto. 
                   Let a Î A, then there exists an element b Î b such that f (a) = b Þ a = f-1 (b).  
                   Now b Î B Þ there exists an element c Î C such that g (b) = c Þ b = g -1(c). 
                  Then (gof)(a) = g[f(a)] = g(b) = c Þ a = (gof) -1(c).    …….(1) 
                  (f -1 o g-1) (c) = f -1(g -1 (c)) = f -1(b) = a Þ a = (f -1 o g -1)( c ) ….(2) 
                  Combining (1) and (2), we have 
                          (gof) -1 = f -1 o g -1  

Theorem:  If f: A ® B is an invertible mapping , then 
                  f o f -1 = I B and f-1 o f = IA 
 Proof: f is invertible, then f -1 is defined by f(a) = b ó f-1(b) = a   
                where a Î A and bÎ B . 
                Now we have to prove that f of -1 = IB . 
               Let bÎ B and f -1(b) = a, a Î A  
                  then  fof-1(b) = f(f-1(b)) 
                                        = f(a)  = b   
                  therefore f o f -1 (b) = b " b Î B => f o f -1 = IB 
                 Now f -1 o f(a) = f -1 (f(a)) = f -1 (b) = a  
                  therefore  f -1 o f(a) = a " a Î A => f -1 o f = IA. 
                  Hence the theorem. 

Recursive Functions: 

The term "recursive function" is often used informally to describe any function that is defined 
with recursion. There are several formal counterparts to this informal definition, many of which 
only differ in trivial respects.  

Kleene (1952) defines a "partial recursive function" of nonnegative integers to be any function 
that is defined by a noncontradictory system of equations whose left and right sides are 

composed from (1) function symbols (for example, , , , etc.), (2) variables for nonnegative 
integers (for example, , , , etc.), (3) the constant 0, and (4) the successor function .  

For example,  



   

(1) 

   

(2) 

   

(3) 

   

(4) 

defines to be the function that computes the product of and .  

Note that the equations might not uniquely determine the value of for every possible input, and 
in that sense the definition is "partial." If the system of equations determines the value of f for 
every input, then the definition is said to be "total." When the term "recursive function" is used 
alone, it is usually implicit that "total recursive function" is intended. Note that some authors use 
the term "general recursive function to mean partial recursive function, although others use it to 
mean "total recursive function."  

The set of functions that can be defined recursively in this manner is known to be equivalent to 
the set of functions computed by Turing machines and by the lambda calculus.  

Lattice and its Properties: 

Introduction: 
       A lattice is partially ordered set (L, £) in which every pair of elements a, b ÎL has a greatest 
lower bound and a least upper bound. 
The glb of a subset, {a, b} Í L will be denoted by a * b and the lub by a Å b. 
. 
      Usually, for any pair a, b Î L, GLB {a, b} = a * b, is called the meet or product and LUB{a, 
b} = a Å  b, is called the join or sum of a and b. 

Example1 Consider a non-empty set S and let P(S) be its power set. The relation Í “contained 
in” is a partial ordering on P(S). For any two subsets A, BÎ P(S) 
 GLB {A, B} and LUB {A, B} are evidently A Ç  B and A È B respectively. 

 Example2 Let I+ be the set of positive integers, and D denote the relation of  “division” 
      in I+ such that for any a, b Î I+ , a D b iff a divides b. Then (I+, D) is a lattice in which  
   the join of a and b is given by the least common multiple(LCM) of a and b,  that is,  
   a Å  b =  LCM of a and b, and the meet of a and b, that is , a * b is the greatest common divisor 
(GCD) of a and b.    

      A lattice can be conveniently represented by a diagram. 
 For example, let Sn be the set of all divisors of n, where n is a positive integer. Let D denote the 



relation “division” such that for any a, b Î Sn, a D b iff a divides b. 
  Then (Sn, D) is a lattice with a * b = gcd(a, b) and a Å b = lcm(a, b).  
  Take n=6. Then S6 = {1, 2, 3, 6}. It can be represented by a diagram in Fig(1).  
   Take n=8. Then S8 = {1, 2, 4, 8}                     

Two lattices can have the same diagram. For example if S = {1, 2, 3} then (p(s), Í ) and (S6,D) 
have the same diagram viz. fig(1), but the nodes are differently labeled .     
           We observe that for any partial ordering relation £ on  a set S the  
converse relation ³ is also partial ordering relation on S. If (S, £) is a lattice  
With meet a * b and join a Å b , then (S, ³ ) is the also a lattice with meet  
a Å b and join  a * b  i.e.,  the GLB and LUB get interchanged . Thus we have  
 the principle of duality of lattice as follows. 

     Any statement about lattices involving the operations ^ and V and the relations £ and  ³  
remains true if ^, V,  ³ and  £ are replaced by V,  ^,  £  and  ³ respectively. 
           The operation ^ and V are called duals of each other as are the relations £ and  ³.. 
  Also, the lattice (L, £) and (L, ³) are called the duals of each other. 

Properties of lattices: 
          Let (L, £) be a lattice with the binary operations * and Å  then for any a, b, c Î L, 

       a * a = a                               a Å a  = a                   (Idempotent) 

       a *  b = b * a   ,                   a Å  b    =  b Å  a        (Commutative) 

      (a * b) * c = a * (b * c)   ,   (a  Å ) Å c = a Å (b Å c)   

o (Associative) 

       a * (a Å b) = a     ,               a Å  (a * b ) = a           (absorption)                      

       For any a ÎL, a £ a, a £ LUB {a, b} => a £  a * (a Å  b). On the other hand, 
GLB {a, a Å b} £ a   i.e., (a Å b) Å a, hence a * (a Å b) = a 

 Theorem 1 
Let (L, £) be a lattice with the binary operations * and Å denote the operations of meet and join 
respectively  For any a, b Î L,   
               a £ b  ó a * b = a ó a Å b = b 
Proof  

Suppose that a £ b. we know that a £ a, a £ GLB {a, b}, i.e., a  £ a * b. 
But from the definition of a * b, we get a * b £ a. 
Hence a £ b => a * b = a   …………………………          (1) 
Now we assume that a * b = a; but is possible only if  a £ b, 



that is  a * b = a  => a £ b    …………………………              (2) 
From (1) and (2), we get a £  b  ó a * b = a. 
Suppose a * b = a. 
then b Å (a * b) = b Å a  =  a Å b …………………….              (3) 
but b Å ( a * b) = b     ( by iv)        ……………………..            (4) 
Hence a Å b = b, from (3) => (4) 
Suppose aÅ b = b, i.e., LUB {a, b} =  b, this is possible only if a£ b, thus(3) => (1) 
(1)   => (2) => (3) => (1). Hence these are equivalent. 

Let us assume a * b = a. 
Now (a * b) Å b = a  Å b 
We know that by absorption law , (a * b) Å b = b 
so that a Å b  = b, therefore a * b = a Þ a Å b  = b                  (5) 
similarly, we can prove a Å b  = b Þ   a * b = a                       (6) 
From (5) and (6), we get 
a * b = a Û a Å b  = b 
Hence the theorem. 

Theorem2     For any a, b, c Î L, where (L, £) is a lattice. 
                 b £ c =>  {  a * b £  a * c         and 
                                {   a Å b £  a Å c  

Proof    Suppose b £ c. we have proved that b £ a ó b * c = b…….. (1) 
       Now consider  
         (a * b ) * (a * c)   = (a * a) * (b * c)           (by Idempotent)   
                                    = a * (b * c)                      
                                    =  a * b                             (by (1)) 
   Thus (a * b) * (a * c ) = a * b  which => (a * b ) £ (a * c)  
  Similarly (a Å b) Å ( a Å c) = (a Å a) Å  (b Å  c) 
                                         = a Å  (b Å  c) 
                                         = a Å  c 
which  => (a Å  b ) £ (a Å  c ) 

note:These properties are known as isotonicity. 

 

 

 



Algebraic structures 

Algebraic systems: 

An algebraic system, loosely speaking, is a set, together with some operations on the set. Before 

formally defining what an algebraic system is, let us recall that a n -ary operation (or operator) 

on a set A is a function whose domain is An and whose range is a subset of A . Here, n is a non-

negative integer. When n=0 , the operation is usually called a nullary operation, or a constant, 

since one element of A is singled out to be the (sole) value of this operation. A finitary operation 

on A is just an n -ary operation for some non-negative integer n . 

Definition. An algebraic system is an ordered pair (A O) , where A is a set, called the 

underlying set of the algebraic system, and O is a set, called the operator set, of finitary 

operations on A . 

We usually write A , instead of (A O) , for brevity. 

A prototypical example of an algebraic system is a group, which consists of the underlying set G 

, and a set O consisting of three operators: a constant e called the multiplicative identity, a unary 
operator called the multiplicative inverse, and a binary operator called the multiplication. 

For a more comprehensive listing of examples, please see this entry. 

Remarks. 

 An algebraic system is also called algebra for short. Some authors require that A be non-empty. 

Note that A is automatically non-empty if O contains constants. A finite algebra is an algebra 

whose underlying set is finite.  

 By definition, all operators in an algebraic system are finitary. If we allow O to contain infinitary 

operations, we have an infinitary algebraic system. Other generalizations are possible. For 
example, if the operations are allowed to be multivalued, the algebra is said to be a multialgebra. 
If the operations are not everywhere defined, we get a partial algebra. Finally, if more than one 
underlying set is involved, then the algebra is said to be many-sorted.  

The study of algebraic systems is called the theory of universal algebra. The first important thing 
in studying algebraic system is to compare systems that are of the same ``type''. Two algebras are 
said to have the same type if there is a one-to-one correspondence between their operator sets 

such that an n -ary operator in one algebra is mapped to an n -ary operator in the other algebra. 



Examples: 

Some recurring universes: N=natural numbers; Z=integers; Q=rational numbers; R=real 
numbers; C=complex numbers. 

N is a pointed unary system, and under addition and multiplication, is both the standard 
interpretation of Peano arithmetic and a commutative semiring. 

Boolean algebras are at once semigroups, lattices, and rings. They would even be abelian groups 
if the identity and inverse elements were identical instead of complements. 

Group-like structures 

 Nonzero N under addition (+) is a magma. 
 N under addition is a magma with an identity. 
 Z under subtraction (−) is a quasigroup. 
 Nonzero Q under division (÷) is a quasigroup. 
 Every group is a loop, because a * x = b if and only if x = a−1 * b, and y * a = b if and 

only if y = b * a−1. 
 2x2 matrices(of non-zero determinant) with matrix multiplication form a group. 
 Z under addition (+) is an abelian group. 
 Nonzero Q under multiplication (×) is an abelian group. 
 Every cyclic group G is abelian, because if x, y are in G, then xy = am

a
n = am+n = an+m = 

a
n
a

m = yx. In particular, Z is an abelian group under addition, as is the integers modulo n 
Z/nZ. 

 A monoid is a category with a single object, in which case the composition of morphisms 
and the identity morphism interpret monoid multiplication and identity element, 
respectively. 

 The Boolean algebra 2 is a boundary algebra. 

General Properties: 

Property of Closure 

If we take two real numbers and multiply them together, we get another real number. (The real 
numbers are all the rational numbers and all the irrational numbers.) Because this is always true, 
we say that the real numbers are "closed under the operation of multiplication": there is no way 
to escape the set. When you combine any two elements of the set, the result is also included in 
theset.  
 



Real numbers are also closed under addition and subtraction. They are not closed under the 
square root operation, because the square root of -1 is not a real number. 

Inverse 

The inverse of something is that thing turned inside out or upside down. The inverse of an 
operation undoes the operation: division undoes multiplication.  

A number's additive inverse is another number that you can add to the original number to get the 
additive identity. For example, the additive inverse of 67 is -67, because 67 + -67 = 0, the 
additive identity. 

Similarly, if the product of two numbers is the multiplicative identity, the numbers are 
multiplicative inverses. Since 6 * 1/6 = 1 (the multiplicative identity), the multiplicative inverse 
of 6 is 1/6. 

Zero does not have a multiplicative inverse, since no matter what you multiply it by, the answer 
is always 0, not 1. 

Equality 

The equals sign in an equation is like a scale: both sides, left and right, must be the same in order 
for the scale to stay in balance and the equation to be true. 

The addition property of equality says that if a = b, then a + c = b + c: if you add the same 
number to (or subtract the same number from) both sides of an equation, the equation continues 
to be true. 

The multiplication property of equality says that if a = b, then a * c = b * c: if you multiply (or 
divide) by the same number on both sides of an equation, the equation continues to be true.  

The reflexive property of equality just says that a = a: anything is congruent to itself: the equals 
sign is like a mirror, and the image it "reflects" is the same as the original. 

The symmetric property of equality says that if a = b, then b = a. 

The transitive property of equality says that if a = b and b = c, then a = c. 

 

 



Semi groups and monoids: 

                 In the previous section, we have seen several algebraic system with binary  operations. 
Here we consider an algebraic system consisting of a set and an associative binary operation on 
the set and then the algebraic system which possess an associative property with an identity 
element. These algebraic systems are called semigroups and monoids. 

Semi group  
Let S be a nonempty set and let * be a binary operation on S. The algebraic system (S, *) is 
called a semi-group if * is associative  
    i.e. if a * (b*c) = (a * b) * c for all a, b, c Î  S. 

Example The N of natural numbers is a semi-group under the operation of usual addition of 
numbers. 

Monoids 
            Let M be a nonempty set with a binary operation * defined on it.  Then (M, * ) is called a 
monoid if 

 * is associative 

         (i.e)  a * (b * c) = (a * b) * c for all a, b, c Î  M and 

         there exists an element e in M such that  

          a * e = e * a = a for all a Î  M 
       e is called the identity element in (M,*). 

It is easy to prove that the identity element is unique.  From the definition it follows that (M,*) is 
a semigroup with identity. 

Example1 Let S be a nonempty set and r(S) be its power set. The algebras (r(S),U) and (r(S), Ç ) 
are monoids with the identities f and S respectively.  

Example2 Let N be the set of natural numbers, then (N,+), (N, X) are monoids with the 
identities 0 and 1 respectively. 

Groups Sub Groups: 
Recalling that an algebraic system (S, *) is a semigroup if the binary operation * is associative. If 
there exists an identity element e Î S, then (S,*) is monoid. A further condition is imposed on the 
elements of the monoid, i.e.,  the existence of an inverse for each element of  S then the algebraic 
system is called a group. 



Definition 
Let G be a nonempty set, with a binary operation * defined on it.  Then the algebraic system 
(G,*) is called a group if 

 * is associative i.e. a * (b * c) = (a * b) * c for all a, b, c,Î G. 

 there exists an element e in G such that a * e = e * a = a for all a Î G 

 for each a Î G there is an element denoted by a-1  in G such that  

          a * a-1  = a-1  * a = e, a-1 is called the inverse of a. 

From the definition it follows that (G,*) is a monoid in which each element has an inverse w.r.t. 
* in G. 

          A group (G,*) in which * is commutative is called an abelian group or a commutative 
group.  If * is not commutative then (G,*) is called a non-abelian group or non-commutative 
group. 

          The order of a group (G,*) is the number of elements of G, when G is finite and is denoted 
by o(G) or |G| 

Examples  1. (Z5, +5) is an abelian group of  order 5. 
                  2. G = {1, -1, i, -i} is an abelian group with the binary operation  x is defined    
                       as        1 x 1 = 1, -1 x -1 = 1, i x i = -1 , -i x  -i  = 1, …    

Homomorphism of semigroups and monoids 
Semigroup homomorphism. 

        Let (S, *) and (T, D) be any two semigroups. A mapping g: S ® T such that any two 
elements a, b Î S , g(a * b) = g(a) D g(b) is called a semigroup homomorphism. 

Monoid homomorphism 
            Let (M, *,eM) and (T, D,eT) be any two monoids. A mapping g: M® T such that any two 
elements a, b Î M , 
               g(a * b) = g(a) D g(b)     and 
               g(eM) = eT 
    is called a monoid homomorphism. 

Theorem 1  Let (s, *) , (T, D) and (V, Å) be  semigroups. A mapping g: S ® T and  
                 h: T ® V be semigroup homomorphisms. Then (hog): S ® V is a semigroup 
                 homomorphism from (S,*) to(V,Å ). 



 Proof.  Let a, b Î S. Then    
                  (h o g)(a * b) = h(g(a* b))  
                                        = h(g(a) D g(b)) 
                                        = h(g(a)) Å h(g(b)) 
                                        = (h o g)(a) Å (h o g)(b) 

Theorem 2  Let (s,*) be a given semigroup. There exists a homomorphism g: S ® SS, 
                   where (SS, o) is a semigroup of function from S to S under the operation of  
                   composition. 

 Proof    For any element a Î S, let g(a) = fa where  f aÎ  SS and f a is defined by  
                    f a(b) = a * b       for any a, bÎ S 
                    g(a * b)  = f a*b  
        Now    f a*b(c )  = (a * b) * c = a*(b * c) 
        where                 = f a(f b(c )) = (f a o f b) (c ). 
       Therefore, g(a * b) = f a*b = f a o f b =  g(a) o g(b), this shows that  g: S ® SS is a 
            homomorphism. 

Theorem 3  For any commutative monoid (M, *),the set of idempotent elements of M forms a 
submonoid. 

 Proof.      Let S be the set of idempotent elements of M. 
                Since the identity element e Î M is idempotent, e Î S. 
                Let a, b Î S, so that  a* a = a and b * b = b 
                Now (a * b ) * (a * b) = (a * b) * (b * a)          [( M, *) is a commutative monoid  ]  
                                                  = a * (b * b) *  a 
                                                  = a * b * a 
                                                  = a * a * b 
                                                  = a * b 

Hence a * b Î S and (S, *) is a submonoid.  

Isomorphism: 

In abstract algebra, an isomorphism is a bijective map f such that both f and its inverse f −1 are 
homomorphisms, i.e., structure-preserving mappings. In the more general setting of category 
theory, an isomorphism is a morphism f: X → Y in a category for which there exists an "inverse" 
f −1: Y → X, with the property that both f −1

f = idX and f f −1 = idY. 

Informally, an isomorphism is a kind of mapping between objects, which shows a relationship 
between two properties or operations. If there exists an isomorphism between two structures, we 



call the two structures isomorphic. In a certain sense, isomorphic structures are structurally 
identical, if you choose to ignore finer-grained differences that may arise from how they are 
defined. 

Purpose: 

Isomorphisms are studied in mathematics in order to extend insights from one phenomenon to 
others: if two objects are isomorphic, then any property which is preserved by an isomorphism 
and which is true of one of the objects, is also true of the other. If an isomorphism can be found 
from a relatively unknown part of mathematics into some well studied division of mathematics, 
where many theorems are already proved, and many methods are already available to find 
answers, then the function can be used to map whole problems out of unfamiliar territory over to 
"solid ground" where the problem is easier to understand and work with. 
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