

Unit # 3
Data Representation

Dr. Rajesh Tiwari Professor (CSE – AIML) CMREC, Hyderabad, Telangana

Complements
· Complements are used in digital computers for simplifying the subtraction operation and for logical manipulation.
· There are two types of complements for each base r system: the r's complement and the (r - 1)'s complement.

· When the value of the base r is substituted in the name, the two types are referred to as the 2's and 1's complement for binary numbers and the 10's and 9's complement for decimal numbers.

(r - 1)'s Complement
· Given a number N in base r having n digits, the (r - 1)'s complement of N is defined as (r n - 1) - N.
· For decimal numbers r = 10 and r - 1 = 9, so the 9's complement of N is (10 n - 1) - N.
· 10 n represents a number that consists of a single 1 followed by n 0's.
· 10 n - 1 is a number represented by n 9's.
· Example,
– With n = 4 we have 104 = 10000 and 104 - 1 = 9999.
· It follows that the 9' s complement of a decimal number is obtained by subtracting each digit from 9.
· For example, the 9's complement of 546700 is 999999 - 546700 =
453299 and the 9's complement of I2389 is 99999 - 12389 = 87610.
· The (r - 1)'s complement of octal or hexadecimal numbers are obtained by subtracting each digit from 7 or F (decimal 15) respectively.

(r's) Complement
· The r's complement of an n-digit number N in base r is defined as r n - N for N ≠ 0 and 0 for N = 0.
· Comparing with the (r - 1)'s complement, we note that the r's complement is obtained by adding 1 to the (r - 1)'s complement since r n - N = [(r n - 1) - N] + 1.
· Thus the 10's complement of the decimal 2389 is 7610 +
1 = 761 1 and is obtained by adding 1 to the 9' s complement value.
· The 2's complement of binary 101100 is 010011 + 1 = 010100 and is obtained by adding 1 to the 1's complement value.

Fixed-Point Representation
· Generally, Negative number is indicated by a minus sign and a positive number by a plus sign.
· As a consequence, it is customary to represent the sign with a
bit placed in the leftmost position of the number.
· The convention is to make the sign bit equal to 0 for positive and to 1 for negative.
· A number may have a binary (or decimal) point.
· The position of the binary point is needed to represent fractions, integers, or mixed integer-fraction numbers.
· The representation of the binary point in a register is complicated by the fact that it is characterized by a position in the register.

· There are two ways of specifying the position of the binary point in a register: by giving it a fixed position or by employing a floating-point representation.

· The fixed-point method assumes that the binary point is always fixed in one position.

· The two positions most widely used are (1) a binary point in the extreme left of the register to make the stored number a fraction, and (2) a binary point in the extreme right of the register to make the stored number an integer.

Integer Representation
· When an integer binary number is positive, the sign is represented by 0 and the magnitude by a positive binary number.
· When the number is negative, the sign is represented by 1 but the rest of the number may be represented in one of three possible ways:
· Signed-magnitude representation
· Signed-1' s complement representation
· Signed 2' s complement representation
· The signed-magnitude representation of a negative number consists of the magnitude and a negative sign.
· In the other two representations, the negative number is represented in either the 1's or 2's complement of its positive value.

Integer Representation
· As an example, consider the signed number 18 stored in an 8-bit register. + 18 is represented by a sign bit of 0 in the leftmost position followed by the binary equivalent of 18: 00010010.
· Note that each of the eight bits of the register must have a value and therefore 0' s must be inserted in the most significant positions following the sign bit.
· Although there is only one way to represent + 14, there are three different ways to represent - 14 with eight bits.
· In signed-magnitude representation 1 0010010
· In signed-1's complement representation 1 11 01101
· In signed-2's complement representation 1 11 01110
· The signed-magnitude representation of - 18 is obtained from + 18
by complementing only the sign bit.
· The signed-1's complement representation of – 18 is obtained by complementing all the bits of + 18, including the sign bit.
· The signed-2' s complement representation is obtained by taking the
2' s complement of the positive number, including its sign bit.

Arithmetic Addition
· The addition of two numbers in the signed-magnitude system follows the rules of ordinary arithmetic.
· If the signs are the same, we add the two magnitudes and give the sum the common sign.
· [image:]If the signs are different, we subtract the smaller magnitude from the larger and give the result the sign of the larger magnitude.

Arithmetic Subtraction
· Subtraction of two signed binary numbers when negative numbers are in 2' s complement form is very simple and can be stated as follows: Take the 2's complement of the subtrahend (including the sign bit) and add it to the minuend (including the sign bit).
· A carry out of the sign bit position is discarded.
· Solve - 6 – (-13).
· Solve – 10 – (-15)

Addition and Subtraction
· Addition and Subtraction with Signed-Magnitude Data
· We designate the magnitude of the two numbers by A and B.
· When the signed numbers are added or subtracted, we find that there are eight different conditions to consider, depending on the sign of the numbers and the operation performed.
· These conditions are listed in the first column of Table 3.1.
· The other columns in the table show the actual operation to be performed with the magnitude of the numbers.
· The last column is needed to prevent a negative zero.
· In other words, when two equal numbers are subtracted, the
result should be +0 not -0.

Addition (subtraction) Algorithm
· When the signs of A and B are identical (different), add the two magnitudes and attach the sign of A to the result.

· When the signs of A and B are different (identical), compare the magnitudes and subtract the smaller number from the larger.

· Choose the sign of the result to be the same as A if A > B or the complement of the sign of A if A < B.

· If the two magnitudes are equal, subtract B from A and make the
sign of the result positive.

Addition (subtraction) Algorithm
Table 3.1: Addition and Subtraction of Signed·Magnitude Numbers

[image:]

Fig. 3.1 : Hardware for sign-magnitude addition and subtraction.

[image:]

Fig. 3.2: Flowchan for add and subtract operations

Multiplication Algorithms
· The hardware for multiplication

[image:]

Fig. 3. : Hardware for multiply operation.

[image:]

[image:]

Fig. 3. : Flowchart for multiply operatio

TABLE 3. 2: Numerical Example for Binary Multiplier

[image:]

Booth Multiplication Algorithm
· Booth algorithm gives a procedure for multiplying binary integers in signed 2's complement representation.
· It operates on the fact that strings of 0's in the multiplier require no addition but just shifting, and a string of 1's in the multiplier from bit weight 2k to weight 2m can be treated as 2k+1 - 2m.
· For example, the binary number 001 110 (+ 14) has a string of
1's from 23 to 21 (k = 3, m = 1).
· The number can be represented as 2 k+ l - 2m = 24 - 21 = 16 -2 = 14.
· Therefore, the multiplication M x 14, where M is the multiplicand and 14 the multiplier, can be done as M x 24 - M X 21.

· Thus the product can be obtained by shifting the binary multiplicand M four times to the left and subtracting M shifted left once.

· As in all multiplication schemes, Booth algorithm requires examination
of the multiplier bits and shifting of the partial product.
· Prior to the shifting, the multiplicand may be added to the partial product, subtracted from the partial product, or left unchanged according to the following rules:
1. The multiplicand is subtracted from the partial product upon encountering the first least significant 1 in a string of 1's in the multiplier.
2. The multiplicand is added to the partial product upon encountering the first 0 (provided that there was a previous 1) in a string of O's in the multiplier.
3. The partial product does not change when the multiplier bit is
identical to the previous multiplier bit.

[image:]

Figure : Hardware for Booth algorithm.

[image:]

Figure : Booth algorithm for multiplication o f signed- 2's complement numbers.

TABLE : Example of Multiplication with Booth Algorithm

[image:]

image6.png

image7.png
o

B xom
Jont
10m
one +

pres
3 TOToE

image8.jpeg
N

T
Milipieri 0

)
(omdoct b b AQ),

image9.png
E 4 o =

)
1o

o o

o oo wm o
o

1 oo

o wa ow on

o 0w om oo

o o oow
it

o o

o oo oo wo

image10.png
[E—
i vr

o
I}

Ao

o

image11.png
= @0, >—
o
AceActBR <1 0 [Caceacean
regcaon
w0 o -

image12.png
He B

1
1

image1.png
00000110
00001101
00010011

00000110
11110011
11111001

11111010
00001101
00000111

11111010
11110011
11101101

image2.png

image3.png
Subtract Magnitudes
Add
Operation ~ Magnitudes ~ WhenA >B WhenA<B WhenA =B

(+A) + (+B) +(A + B)

(+A) + (-B) +(A-B) —(B - A) +(A-B)
(=A) + (+B) —(4-B) +(B - A) +A-B)
(-A)+(-B) -(A+B)

(+4) - (+B) +(A - B) -(B - A) +A-B)

(+A) - (-B) +(A +B)
(-A)-(+B) (A +B)
(-4) - (-B) -(A-B) +(B - A) +(A - B)

image4.jpeg

image5.png
Sublract operation Add operation

Vinvend in 4
Subtrahend n 8

Augendin 4
Addendin B

AT
A A,

