
1

UNIT-I

OBJECT ORIENTED THINKING

DIFFERENT PARADIGMS FOR PROBLEM SOLVING

Paradigm definition

 A paradigm is a way in which a computer language looks at the problem to be solved.

Evolution of Paradigms

 Since the invention of computers, many programming approaches have been

developed. The primary motivation of doing so is to handle the increasing complexity of

programs and to make them reliable and maintainable.

The following are the different paradigms for problem solving,

1. Monolithic programming

 This is the main technique used in 1980’s.

 The program is written with a single function. A program is not divided into parts

i.e. statements are written in sequence.

 When the program size increases it failed to show the desired result in terms of bug

free, easy to maintain and reusable programs.

 The concept of sub programs does not exist, and hence is useful for small programs.

2. Procedure Oriented Programming

 It basically consists of writing a list of instructions for the computer to follow and

break down the code and organize these instructions into manageable segments or

groups known as functions.

 In this, the problem is viewed as a sequence of things to be done such as reading,

calculating and printing. A number of functions are written to accomplish these

tasks.

 In a multi function program, many important data items are placed as global so that

they may be accessed by all the functions. Each function may have its local data.

Drawbacks

 Global data are more vulnerable to an inadvertent change by a function.

2

 In a large program it is very difficult to identify what data is used by which function.

This provides an opportunity for bugs to creep in.

 It does not model real world problems very well. This is because functions are action

oriented and do not really corresponding to the elements of the problem.

Characteristics

 Emphasis is on doing things (algorithms).

 Large programs are divided into smaller programs known as functions.

 Most of the functions share global data.

 Data move openly around the system from function to function.

 Functions transform data from one form to another.

 Employs top·down approach in program design.

3. Object Oriented Programming

 This is the most recent concept among programming paradigms.

 It is an approach that provides a way of modularizing programs by creating

partitioned memory area for both data and functions that can be used as template for

creating copies of such modules on demand.

 The major motivating factor in the invention of object oriented approach is to remove

some of the flaws encountered in the procedural approach.

Features

 Emphasis is on data rather than procedure.

 Programs are divided into what are known as objects.

 Data structures are designed such that they characterize the objects.

 Functions that operate on the data of an object are tied together in the data structure.

 Data is hidden and cannot be accessed by external functions.

 Objects may communicate with each other through functions.

 New data and functions can be easily added whenever necessary.

 Follows bottom-up approach in program design.

NEED FOR OBJECT-ORIENTED PARADIGM

 The object oriented programming paradigm is a methodology for producing re usable

software components.

 It promotes efficient design and development of software systems using reusable

components that can be quickly and safely assembled into larger systems.

 It produces reusable code/objects because of encapsulation and inheritance.

3

 The data is protected because it can be altered only by the encapsulated methods.

 It is more efficient to write programs which use pre-defined objects.

 The storage structure and/or procedures within an object type could be altered if

required without affecting programs that make use of that object type.

 New functions can easily be added to objects by using inheritance

 The code produced is likely to contain fewer errors because pretested objects are

being used.

 Less maintenance effort will be required by the developer because objects can be

reused.

DIFFERENCE BETWEEN OBJECT ORIENTED PROGRAMMING AND

PROCEDURE ORIENTED PROGRAMMING

S.NO Object oriented Programming Procedure Oriented Programming

1 Emphasis is on data Emphasis is on doing things

2 Programs are divided into Objects Programs are divided into Functions

3 Employs Botton up approach Employs Top down approach

4 Modification potential is high Modification potential is low

5
Data is hidden and cannot be accessed by

external functions

Data is open and can be accessed by any

functions

6 Suitable for solving big problems Not Suitable for solving big problems

7 It needs more memory than POP It needs less memory

8
Supports Polymorphism, Inheritance,

abstraction and Encapsulation

Does not supports Polymorphism,

Inheritance, abstraction and Encapsulation

9 Example languages are C++, Java
Example languages are C,VB,FORTRAN,

COBOL

OVERVIEW OF OOP CONCEPTS

1. Abstraction

 Abstraction refers to the act of representing essential features without including the

background details or explanations.

 Classes use the concept of abstraction and are defined as a list of abstract attributes

such as size, weight and cost and functions to operate on these attributes.

 They encapsulate all the essential properties of the objects that are to be created.

 The attributes are sometimes called data numbers because they hold information.

 The functions that operate on these data are sometimes called methods or member

functions.

 Since the classes use the concept of data abstraction, they are known as Abstract Data

Types (ADT).

2. Encapsulation

4

 Encapsulation is the mechanism that binds together code and the data it manipulates,

and keeps both safe from outside interference and misuse.

 In an object-oriented language, code and data may be combined in such a way that a

self-contained "black box" is created.

 When code and data are linked together in this fashion, an object is created. In other

words, an object is the device that supports encapsulation.

 Within an object, code, data, or both may be private to that object or public.

 Private code or data is known to and accessible only by another part of the object.

That is, private code or data may not be accessed by a piece of the program that exists

outside the object.

 When code or data is public, other parts of your program may access it even though it

is defined within an object. Typically, the public parts of an object are used to provide

a controlled interface to the private elements of the object.

3. Polymorphism

 Object-oriented programming languages support polymorphism, which is

characterized by the phrase "one interface, multiple methods."

 In simple terms, polymorphism is the attribute that allows one interface to control

access to a general class of actions. The specific action selected is determined by the

exact nature of the situation.

 For example, you might have a program that defines three different types of stacks.

One stack is used for integer values, one for character values, and one for floating-

point values. Because of polymorphism, you can define one set of names, push() and

pop(), that can be used for all three stacks.

 Polymorphism helps reduce complexity by allowing the same interface to be used to

access a general class of actions. It is the compiler's job to select the specific action

(i.e., method) as it applies to each situation. You, the programmer, don't need to do

this selection manually. You need only remember and utilize the general interface.

4. Inheritance

 Inheritance is the process by which one object can acquire the properties of another

object.

 This is important because it supports the concept of classification. If you think about

it, most knowledge is made manageable by hierarchical classifications.

 For example, a Red Delicious apple is part of the classification apple, which in turn is

part of the fruit class, which is under the larger class food. Without the use of

classifications, each object would have to define explicitly all of its characteristics.

However, through the use of classifications, an object need only define those qualities

that make it unique within its class. It is the inheritance mechanism that makes it

possible for one object to be a specific instance of a more general case.

C++ BASICS

Origin of C++

 C++ began as an expanded version of C. The C++ extension was invented by Bjarne

Stroupstrup in 1979 at Bell laboratories He initially called the new language as “C with

Classes” but renamed it as “C++” in 1983.

STRUCTURE OF A C++ PROGRAM

Most C++ programs has the following general form,

5

#include

base class declarations

derived class declarations

non-member function prototypes

int main()

{

 //.....

}

non member function definition

Sample C++ Program

#include<iostream.h>

int main()

{

 int i;

cout<< “enter a number”:

cin>>i;

cout<<i<<” squared is“<<i*i<<endl;

return 0;

}

Output:

enter a number 10

10 squared is 100

Header File

 Header <iostream> is included. This header supports C++ style of I/O operations.

Input Operator

 cin>>i;

 This is an input statement and causes the program to wait for the user to type in a

number.

 Operator >> is known as extraction or getfrom operator. It takes the value from the

keyboard and assigns it to the variable on its right. Similar to scanf() inn C.

Output Operator

cout<< “enter a number”:

 This causes the string in quotation marks to be displayed on the screen.

Operator << is called insertion or putto operator. It inserts (or sends) the contents of

the variable on its right to the object on its left. Similar to print() in C.

DATA TYPES

There are 7 different data types in C++.They are

1. Character(char)

2. Integer(int)

3. Floating-point(float)

4. Double floating-point(double)

5. Valueless(void)

6. Boolean(bool)

6

7. Wide Character(Wchar_t)

6. bool Data Type

 C++ defines a built-in Boolean type called bool. Objects of type bool can store only

the values true or false, which are keywords defined by C++. Automatic conversions take

place which allow bool values to be converted to integers, and vice versa. Specifically, any

non-zero value is converted to true and zero is converted to false. The reverse also occurs;

true is converted to 1 and false is converted to zero.

General form: bool b1=true;

7.Wide Characters

 C++ define wide characters which are 16 bits long. To specify a wide character

precede the character with an L.

General form: wchar_t wc;

 wc = L'A';

Here, wc is assigned the wide-character constant equivalent of A. The type of wide characters

is wchar_t. In C, this type is defined in a header file and is not a built-in type. In C++,

wchar_t is built in.

Program 1: Write a C++ program to demonstrate different data types available in C++

#include <iostream>

using namespace std;

int main ()

{

 bool b = true;

 wchar_t w = L'A';

 int i;

 char ch;

 float fl;

 double d1;

 cout << "Enter a character: ";

 cin >> ch;

 cout << "\nYou entered: " << ch;

 cout << "\n\nEnter a floating-point number: ";

 cin >> fl;

 cout << "\nYou entered: " << fl;

 cout << "\n Enter a integer";

 cin >> i;

 cout << "\n You entered :" << i;

 cout << "\n Enter a double";

 cin >> d1;

 cout << "\n You entered :" << d1;

 cout << "\n boolean value is :" << b;

7

 cout << "\n Wide character value::" << w << '\n';

 return 0;

}

Output:

Enter a character: a

You entered: a

Enter a floating-

point number: 3345

You entered: 3345

 Enter a integer56

 You entered :56

 Enter a double57

 You entered :57

 boolean value is :1

 Wide character value::65

Program 2: Write a C++ program to know sizes of different data types available in C++

#include <iostream>

using namespace std;

int main()

{

 cout << "Size of char : " << sizeof(char) << " byte" << endl;

 cout << "Size of int : " << sizeof(int) << " bytes" << endl;

cout << "Size of short int : " << sizeof(short int) << " bytes" << endl;

cout << "Size of long int : " << sizeof(long int) << " bytes" << endl;

cout << "Size of signed long int : " << sizeof(signed long int) << " bytes" << endl;

cout << "Size of unsigned long int : "<< sizeof(unsigned long int)<< " bytes" << endl;

cout << "Size of float : " << sizeof(float) << " bytes" <<endl;

cout << "Size of double : " << sizeof(double) << " bytes" << endl;

cout << "Size of wchar_t : " << sizeof(wchar_t) << " bytes" <<endl;

 return 0;

}

8

Output:

Size of char : 1 byte

Size of int : 4 bytes

Size of short int : 2 bytes

Size of long int : 8 bytes

Size of signed long int : 8 bytes

Size of unsigned long int : 8 bytes

Size of float : 4 bytes

Size of double : 8 bytes

Size of wchar_t : 4 bytes

Data types size and Range

Modifying the Basic Types

 Except for type void, the basic data types may have various modifiers preceding

them. You use a modifier to alter the meaning of the base type to fit various situations more

precisely.

 You can apply the modifiers signed, short, long, and unsigned to integer base types.

You can apply unsigned and signed to characters. You may also apply long to double.

The list of modifiers is shown here:

1. signed

2. unsigned

3. long

4. short

9

VARIABLES

 A variable is a named location in memory that is used to hold a value that may be

modified by the program.

Declaration of a variable

 All variables must be declared before they can be used.

General form: type variable_list;

Here, type must be a valid data type plus any modifiers, and variable_list may consist of one

or more identifier names separated by commas.

Examples: int i,j,l;

 short int si;

 unsigned int ui;

 double balance, profit, loss;

Initialization of a variable

 We can assign a value to a variable.

General form: variable= expression;

Example: i=10;

 We can initialize a variable at the time of declaration.

General form: type variable= expression;

Example: int i=10;

Where Variables Are Declared

Variables will be declared in three basic places:

1. Inside functions (local variables)

2. In the definition of function parameters(formal parameters)

3. And outside of all functions (global variables)

1. Local Variables

 Variables that are declared inside a function are called local variables. Local variables

may be referenced only by statements that are inside the block in which the variables are

declared. In other words, local variables are not known outside their own code block.

 Local variables exist only while the block of code in which they are declared is

executing. That is, a local variable is created upon entry into its block and destroyed upon

exit. The most common code block in which local variables are declared is the function.

For example, consider the following two functions:

void func1(void)

{

int x;

x = 10;

}

void func2(void)

{

int x;

x = -199;

}

10

 The integer variable x is declared twice, once in func1() and once in func2(). The x

in func1() has no bearing on or relationship to the x in func2(). This is because each x is

known only to the code within the block in which it is declared.

Program 1: Write a C++ program to demonstrate Local Variables

#include <iostream>

using namespace std;

int main()

{

float f;

double d;

cout << "Enter two floating point numbers: ";

cin >> f >> d;

cout << "Enter a string: ";

char str[80]; // str declared here, just before 1st use

cin >> str;

cout <<"printing received values"<<endl<< f << " " << d << " " << str;

return 0;

}

Output:

Enter two floating point numbers: 9.9

17.21

Enter a string: keerthi

printing received values

9.9 17.21 keerthi

Important difference between C and C++

 An important difference between C and C++ is when local variables can be declared.

In C89, you must declare all local variables used within a block at the start of that block. You

cannot declare a variable in a block after an "action" statement has occurred. For example, in

C89, this fragment is incorrect:

/* Incorrect in C89. OK in C++. */

int f()

{

int i;

i = 10;

int j; /* won't compile as a C program */

j = i*2;

return j;

}

 In a C89 program, this function is in error because the assignment intervenes between

11

the declaration of i and that of j. However, when compiling it as a C++ program, this

fragment is perfectly acceptable. In C++ (and C99) you may declare local variables at any

point within a block—not just at the beginning.

2. Formal Parameters

 If a function is to use arguments, it must declare variables that will accept the values

of the arguments. These variables are called the formal parameters of the function. They

behave like any other local variables inside the function. As shown in the following program

fragment, their declarations occur after the function name and inside parentheses:

/* Return 1 if c is part of string s; 0 otherwise */

int is_in(char *s, char c)

{

while(*s)

if(*s==c) return 1;

else s++;

return 0;

}

 The function is_in() has two parameters: s and c. This function returns 1 if the

character specified in c is contained within the string s; 0 if it is not.

3. Global Variables

 Unlike local variables, global variables are known throughout the program and may

be used by any piece of code. Also, they will hold their value throughout the program's

execution. You create global variables by declaring them outside of any function. Any

expression may access them, regardless of what block of code that expression is in.

Program 2: Write a C++ program to demonstrate Global Variables

#include <iostream>

using namespace std;

int count; /* count is global */

void func1(void);

void func2(void);

int main(void)

{

count = 100;

func1();

return 0;

}

void func1(void)

{

int temp;

temp = count;

cout<<"count is (from func1)"<< count; /* will print 100 */

func2();

}

void func2(void)

{

12

int temp;

temp = count;

cout<<"count is (from func2)"<< count; /* will print 100 */

}

Output:

count is (from func1)100count is (from func2)100

OPERATORS

 C++ is rich in built-in operators. There are four main classes of operators: arithmetic,

relational, logical, and bitwise. In addition, there are some special operators for particular

tasks.

1. Arithmetic Operators

 These are defined to perform basic arithmetic operations. The operators +, −, *, and /

work as they do in most other computer languages. You can apply them to almost any built-in

data type.

Assume variable A holds 10 and variable B holds 20

 Both the increment and decrement operators may either precede (prefix) or follow

(postfix) the operand. For example,

 x = x+1;

 can be written

 ++x;

 or

 x++;

 There is, however, a difference between the prefix and postfix forms when you use

these operators in an expression. When an increment or decrement operator precedes its

operand, the increment or decrement operation is performed before obtaining the value of the

operand for use in the expression. If the operator follows its operand, the value of the operand

is obtained before incrementing or decrementing it. For instance,

 x = 10;

 y = ++x;

 sets y to 11. However, if you write the code as

 x = 10;

 y = x++;

 y is set to 10. Either way, x is set to 11; the difference is in when it happens.

13

Precedence of the Arithmetic Operators

PROGRAM 3: ARITHEMATIC OPERATORS

#include <iostream>

#include<conio.h>

using namespace std;

int main()

{

 int num1, num2, res;

cout<<"Enter any two number: ";

 cin>>num1>>num2;

res = num1 + num2;

 cout<<"\n";

 cout<<num1<<" + "<<num2<<" = "<<res<<endl;

res = num1 - num2;

 cout<<num1<<" - "<<num2<<" = "<<res<<endl;

res = num1 * num2;

 cout<<num1<<" * "<<num2<<" = "<<res<<endl;

res = num1 / num2;

 cout<<num1<<" / "<<num2<<" = "<<res<<endl;

res = num1 % num2;

 cout<<num1<<" % "<<num2<<" = "<<res<<endl;

 getch();

}

OUTPUT:

Enter any two number: 2

3

2 + 3 = 5

2 - 3 = -1

2 * 3 = 6

2 / 3 = 0

2 % 3 = 2

2. Relational Operators

 Relational operators refer to the relationships that values can have with one another.

The result of relational operators is either true or false.

14

Assume variable A holds 10 and variable B holds 20

PROGRAM 4: RELATIONAL OPERATORS

#include <iostream>

#include<conio.h>

using namespace std;

int main()

{

 int p, q;

 int res;

 cout<<"Enter any two number: ";

 cin>>p>>q;

 cout<<"\n";

 cout<<"p q p<q p<=q p==q p>q p>=q p!=q\n\n";

 res = p<q;

 cout<<p<<" "<<q<<" "<<res<<" ";

 res = p<=q;

 cout<<res<<" ";

 res = p==q;

 cout<<res<<" ";

 res = p>q;

 cout<<res<<" ";

 res = p>=q;

 cout<<res<<" ";

 res = p!=q;

 cout<<res<<endl;

 getch();

}

15

OUTPUT:

Enter any two number: 3 4

p q p<q p<=q p==q p>q p>=q p!=q

3 4 1 1 0 0 0 1

3. Logical Operators
 Logical refers to the ways these relationships can be connected or combined. The

result of logical operators is either true or false.

Assume variable A holds 1 and variable B holds 0

The truth table for the logical operators is

Precedence of the Relational and Logical operators:

PROGRAM 5: LOGICAL OPERATORS

#include <iostream>

#include<conio.h>

using namespace std;

int main()

{

 int res;

 res = (6 <= 6) || (5 <3);

 cout<<res<<endl;

 res = (6 <= 6) && (5 < 3);

 cout<<res<<endl;

 res = !(6 <= 6);

16

 cout<<res<<endl;

 res = !(5 > 9);

 cout<<res<<endl;

 getch();

}

OUTPUT:

1

0

0

1

4. Bitwise Operators

 C++ supports a full complement of bitwise operators. Bitwise operation refers to

testing, setting, or shifting the actual bits in a byte or word, which correspond to the char and

int data types and variants. You cannot use bitwise operations on float, double, long double,

void, bool, or other, more complex types.

 Bitwise operations most often find application in device drivers—such as modem

programs, disk file routines, and printer routines — because the bitwise operations can be

used to mask off certain bits, such as parity.

 Assume if A = 60; and B = 13; now in binary format they will be as follows:

A = 0011 1100

B = 0000 1101

A&B = 0000 1100

A|B = 0011 1101

A^B = 0011 0001

~A = 1100 0011

 You can combine several operations together into one expression, as shown here:

10>5 && !(10<9) || 3<=4

Assume variable A holds 60 and variable B holds 13

17

PROGRAM 6: BITWISE OPERATORS

#include <iostream>

#include<conio.h>

using namespace std;

int main()

{

 unsigned int a = 60; // 60 = 0011 1100

 unsigned int b = 13; // 13 = 0000 1101

 int c = 0;

 c = a & b; // 12 = 0000 1100

 cout<<"a = 0011 1100 (60)\tand\tb = 0000 1101 (13)\n\n";

 cout<<"a & b = "<<c<<endl;

c = a | b; // 61 = 0011 1101

 cout<<"a | b = "<<c<<endl;

 c = a ^ b; // 49 = 0011 0001

 cout<<"a ^ b = "<<c<<endl;

 c = ~a; // -61 = 1100 0011

 cout<<"~a = "<<c<<endl;

 getch();

}

OUTPUT:

a = 0011 1100 (60) and b = 0000 1101 (13)

a & b = 12

a | b = 61

a ^ b = 49

~a = -61

Special operators

a. The ? Operator

 C++ contains a very powerful and convenient operator that replaces certain statements

of the if-then-else form. The ternary operator ? takes the general form

 Exp1 ? Exp2 : Exp3;

where Exp1, Exp2, and Exp3 are expressions.

 The ? operator works like this: Exp1 is evaluated. If it is true, Exp2 is evaluated and

becomes the value of the expression. If Exp1 is false, Exp3 is evaluated and its value becomes

the value of the expression.

For example,

 x = 10;

 y = x>9 ? 100 : 200;

y is assigned the value 100. If x had been less than 9, y would have received the value

200.

18

b. &(the address of) Pointer Operators

 It is a unary operator that returns the memory address of its operand.

Example: m = &count;

 places into m the memory address of the variable count.

c. *(at address) Pointer Operators

 It is a unary operator that returns the value of the variable located at the address that

follows it.

For example, if m contains the memory address of the variable count,

 q = *m;

places the value of count into q. Now q has the value 100 because 100 is stored at location

2000, the memory address that was stored in m.

d. sizeof

 sizeof is a unary compile-time operator that returns the length, in bytes, of the variable

or parenthesized type-specifier that it precedes.

Example: sizeof(int) will display 4

e. The Comma Operator

 The comma operator strings together several expressions. The left side of the comma

operator is always evaluated as void. This means that the expression on the right side

becomes the value of the total comma-separated expression.

For example,

 x = (y=3, y+1);

first assigns y the value 3 and then assigns x the value 4.

f. The Dot (.) and Arrow (>) Operators

 The . (dot) and the >(arrow) operators access individual elements of structures and

unions. In C++, the dot and arrow operators are also used to access the members of a class.

 The dot operator is used when working with a structure or union directly. The arrow

operator is used when a pointer to a structure or union is used.

struct employee

{

char name[80];

int age;

float wage;

} emp;

struct employee *p = &emp; /* address of emp into p */

you would write the following code to assign the value 123.23 to the wage member of

structure variable emp:

emp.wage = 123.23;

However, the same assignment using a pointer to emp would be

p->wage = 123.23;

g. The [] and () Operators

 Parentheses are operators that increase the precedence of the operations inside them.

19

Square brackets perform array indexing

 s[3] = 'X';

h. The Assignment Operator

 You can use the assignment operator within any valid expression. C++ uses a single

equal sign to indicate assignment

General form : variable_name = expression;

 Operators Precedence in C++

EXPRESSIONS

 An expression in C++ is any valid combination of Operators, constants, and variables.

Expressions 1nay be of the following seven types:

 Constant expressions

 Integral expressions

 Float expressions

 Point.er expressions

 Relational expressions

 Logical expressions

 Bitwise expressions

Constant Expressions

 Constant Expressions consist of only constant va1ues.

Examples: 15

 20 + 5 / 2.0

 'x'

Integral Expressions

 Integral Expressions are those which produce integer results after implementing all

the automatic and explicit type conversions.

Examples: m

 m * n -5

 m • 'x'

20

 5 + int(2.0)

 where m and n are integer variables.

Float Expressions

 Float Expressions are those which, after all conversions, produce floating-point

results.

Examples: x + y

 x * y / 10

 5 * float(10)

 10.75

 where x and y are floating-point variables.

Pointer Expressions

 Pointer Expressions produce address values.

Examples: &m

 ptr

 ptr + l

 “xyz”

 where m is a variable and ptr is a pointer.

Relational Expressions

 Relational Expressions yield results of type bool which takes a value true or false.

Examples: x<=y

 a+b == c+d

 m+-n > 100

 When arithmetic expressions are used on either side of a relational operator, they will

be evaluated first and then the results compared. Relational expressions are also known as

Boolean expressions.

Logical Expressions

 Logical Expressions combine two or more relationa1 expressions and produces bool

type results.

Examples: a>b && x0010

 x==10 || y==5

Bitwise Expressions

 Bitwise Expressions are used to manipulate data at bit level. They are basically used

for testing or shifting bits.

Examples: x << 3 // Shift three bit position to left

 y >>1 // Shift one bit position to right

Shift operators are often used for multiplication and division by powers of two.

 ANSI C++ has introduced what ore termed as operator keyword that can be used as

alternative representation for operator symbols.

Special Assignment Expressions

Chained Assignment

 x=(y=10);

 or

 x=y=10;

First 10 is assigned to y and then to x.

21

 A chained statement cannot be used to initialize variables at the time of declaration.

For instance, the statement

 float a =b =12.34;

 is illegal. This may be written as

 float a=12.34,b=12.34

Embedded Assignment

 x= (y= 50) + 10 ;

(y = 50) is an assignment expression known as embedded assignment. Here, the value 50 is

assigned to y and then the result 50+ 10 = 60 is assigned to x. This statement is identical to

 y = 50;

 x =y + 10;

Compound Assignment

 Like C, C+-+ supports a compound assignment operator which is a combination of

the assignment operator with a binary arithmetic operator. For example, the simple

assignment statement

 x= x + 10;

may be written as

 x+= 10;

 The operator += is known as compound assignment operator or short-hand

assignment operator. The general form of the compound assignment operator is:

 Variable1 op= variable2;

where op is a binary arithmetic operator. This means that

variable1 = variable op variable2;

ORDER OF EVALUATION OF EXPRESSIONS

 C++ does not specify the order in which the sub expressions of an expression are

evaluated. This leaves the compiler free to rearrange an expression to produce more optimal

code. However, it also means that your code should never rely upon the order in which sub

expressions are evaluated. For example, the expression

 x = f1() + f2();

does not ensure that f1() will be called before f2().

TYPE CONVERSION IN EXPRESSIONS

 When constants and variables of different types are mixed in an expression, they are

all converted to the same type. The compiler converts all operands up to the type of the

largest operand, which is called type promotion.

 First, all char and short int values are automatically elevated to int. (This process is

called integral promotion.) Once this step has been completed, all other conversions are done

operation by operation, as described in the following type conversion algorithm:

 IF an operand is a long double

 THEN the second is converted to long double

 ELSE IF an operand is a double

 THEN the second is converted to double

 ELSE IF an operand is a float

 THEN the second is converted to float

 ELSE IF an operand is an unsigned long

22

 THEN the second is converted to unsigned long

 ELSE IF an operand is long

 THEN the second is converted to long

 ELSE IF an operand is unsigned int

 THEN the second is converted to unsigned int

Additional special case: If one operand is long and the other is unsigned int, and if the value

of the unsigned int cannot be represented by a long, both operands are converted to unsigned

long.

Example:

 First, the character ch is converted to an integer. Then the outcome of ch/i is

converted to a double because f*d is double. The outcome of f+i is float, because f is a float.

The final result is double.

Casts

 You can force an expression to be of a specific type by using a cast.

General form : (type) expression

 where type is a valid data type.

Example:

 To make sure that the expression x/2 evaluates to type float, write (float) x/2

PROGRAM: TYPE CONVERSION

#include <iostream>

#include<conio.h>

using namespace std;

int main()

{

 float res;

 float f1=15.5, f2=2;

res = (int)f1/(int)f2;

 cout<<res<<endl;

res = (int)(f1/f2);

 cout<<res<<endl;

res = f1/f2;

 cout<<res;

 getch();

23

}

OUTPUT:

7

7

7.75

FLOW CONTROL STATEMENTS

A) SELECTION STATEMENTS

 C++ supports two types of selection statements:

a) if

b) switch.

if

The general form of the if statement is

 if (expression)

 statement;

 else

 statement;

 where a statement may consist of a single statement, a block of statements, or nothing

(in the case of empty statements). The else clause is optional.

 If expression evaluates to true (anything other than 0), the statement or block that

forms the target of if is executed; otherwise, the statement or block that is the target of else

will be executed, if it exists. Remember, only the code associated with if or the code

associated with else executes, never both.

 The conditional statement controlling if must produce a scalar result. A scalar is an

integer, character, pointer, or floating-point type. In C++, it may also be of type bool.

PROGRAM: IF

#include <iostream>

using namespace std;

int main ()

{

 int magic; /* magic number */

 int guess; /* user's guess */

 magic = rand (); /* generate the magic number */

 cout<<"Guess the magic number: "<<endl;

 cin>>guess;

 if (guess == magic)

 cout<<"** Right **";

 return 0;

}

OUTPUT:

Guess the magic number:

777

24

PROGRAM: IF ELSE IF

#include <iostream>

using namespace std;

int main ()

{

 int magic; /* magic number */

 int guess; /* user's guess */

 magic = rand (); /* generate the magic number */

 cout << "Guess the magic number: " << endl;

 cin >> guess;

 if (guess == magic)

 cout << "** Right **";

 else

 cout<<"Wrong";

 return 0;

}

OUTPUT:

Guess the magic number:

897

Wrong

PROGRAM: IF –ELSE-IF STATEMENT

#include <iostream>

#include<conio.h>

using namespace std;

int main()

{

 int num;

 cout<<"Enter a number: ";

 cin>>num;

 if(num%2==0)

 {

 cout<<"You entered an even number";

 }

 else

 {

 cout<<"You entered an odd number";

 }

 getch();

}

OUTPUT:

Enter a number: 21

You entered an odd number

NESTED ifs

25

 A nested if is an if that is the target of another if or else. Nested ifs are very common

in programming. In a nested if, an else statement always refers to the nearest if statement that

is within the same block as the else and that is not already associated with an else.

Example,

 if(i)

 {

 if(j) statement 1;

 if(k) statement 2; /* this if */

 else statement 3; /* is associated with this else */

 }

 else statement 4; /* associated with if(i) */

 Standard C++ suggests that at least 256 levels of nested ifs be allowed in a C++

program which 15 in C language.

PROGRAM: NESTED IF

#include <iostream>

using namespace std;

int main ()

{

 int magic; /* magic number */

 int guess; /* user's guess */

 magic = rand (); /* generate the magic number */

 cout << "Guess the magic number: " << endl;

 cin >> guess;

 if (guess == magic)

 {

 cout<<"** Right **"<<endl;

 cout<<" is the magic number\n"<< magic;

 }

 else

 {

 cout<<"Wrong "<<endl;

 if (guess > magic)

 cout<<"too high\n";

 else

 cout<<"too low\n";

 }

 return 0;

}

OUTPUT:

Guess the magic number:

1721

Wrong

too low

26

The if-else-if Ladder

 A common programming construct is the if-else-if ladder, sometimes called the if-

else-if staircase because of its appearance.

Its general form is

 if (expression) statement;

 else

 if (expression) statement;

 else

 if (expression) statement;

 ...

 else statement;

 The conditions are evaluated from the top downward. As soon as a true condition is

found, the statement associated with it is executed and the rest of the ladder is bypassed. If

none of the conditions are true, the final else is executed. That is, if all other conditional tests

fail, the last else statement is performed. If the final else is not present, no action takes place

if all other conditions are false.

PROGRAM: IF-ELSE-IF LADDER

#include <iostream>

#include<conio.h>

using namespace std;

int main()

{

 char ch;

 float a, b, result;

 cout<<"Enter any two number: ";

 cin>>a>>b;

 cout<<"\n"<<"Enter the operator(+, -, *, /) : ";

 cin>>ch;

 cout<<"\n";

 if(ch=='+')

 {

 result=a+b;

 }

 else if(ch=='-')

 {

 result=a-b;

 }

 else if(ch=='*')

 {

 result=a*b;

 }

 else if(ch=='/')

 {

 result=a/b;

 }

 else

 {

 cout<<"Wrong Operator..!!.. exiting...press a key..";

27

 getch();

 exit(1);

 }

 cout<<"\n"<<"The calculated result is : "<<result<<"\n";

 getch();

}

OUTPUT:

Enter any two number: 2

3

Enter the operator(+, -, *, /) : +

The calculated result is : 5

PROGRAM 4: IF-ELSE-IF LADDER

#include <iostream>

using namespace std;

int main ()

{

 int magic; /* magic number */

 int guess; /* user's guess */

 magic = rand (); /* generate the magic number */

 cout << "Guess the magic number: " << endl;

 cin >> guess;

 cout<<magic<<endl;

 if (guess == magic)

 {

 cout<<"** Right ** "<<endl;

 cout<<" is the magic number"<< magic<<endl;

 }

 else if (guess > magic)

 cout<<"Wrong, too high"<<endl;

 else

 cout<<"Wrong, too low"<<endl;

 return 0;

}

OUTPUT:

Guess the magic number:

67

1804289383

Wrong, too low

SWITCH

 C++ has a built-in multiple-branch selection statement, called switch, which

successively tests the value of an expression against a list of integer or character constants.

When a match is found, the statements associated with that constant are executed.

The general form of the switch statement is

 switch (expression)

28

 {

 case constant1:

 statement sequence

 break;

 case constant2:

 statement sequence

 break;

 case constant3:

 statement sequence

 break;

 ...

 default

 statement sequence

 }

 The expression must evaluate to a character or integer value. Floating-point

expressions, for example, are not allowed. The value of expression is tested, in order, against

the values of the constants specified in the case statements. When a match is found, the

statement sequence associated with that case is executed until the break statement or the end

of the switch statement is reached. The default statement is executed if no matches are

found. The default is optional and, if it is not present, no action takes place if all matches fail.

 Standard C++ recommends that at least 16,384 case statements be supported! Which

is at least 257 case statements in C language. In practice, you will want to limit the number of

case statements to a smaller amount for efficiency.

There are three important things to know about the switch statement:

 The switch differs from the if in that switch can only test for equality, whereas if can

evaluate any type of relational or logical expression.

 No two case constants in the same switch can have identical values. Of course, a switch

statement enclosed by an outer switch may have case constants that are the same.

 If character constants are used in the switch statement, they are automatically converted

to integers.

 The switch statement is often used to process keyboard commands, such as

menu selection.

PROGRAM: SWITCH

#include <iostream>

#include<conio>

using namespace std;

int main()

{

 int dow;

 cout<<"Enter number of week's day (1-7): ";

 cin>>dow;

 switch(dow)

 {

 case 1 : cout<<"\nSunday";

 break;

 case 2 : cout<<"\nMonday";

29

 break;

 case 3 : cout<<"\nTuesday";

 break;

 case 4 : cout<<"\nWednesday";

 break;

 case 5 : cout<<"\nThursday";

 break;

 case 6 : cout<<"\nFriday";

 break;

 case 7 : cout<<"\nSaturday";

 break;

 default : cout<<"\nWrong number of day";

 break;

 }

 getch();

}

OUTPUT:

Enter number of week's day (1-

7): 4

Wednesday

NESTED SWITCH STATEMENTS

 You can have a switch as part of the statement sequence of an outer switch. Even if

the case constants of the inner and outer switch contain common values, no conflicts arise.

For example, the following code fragment is perfectly acceptable:

 switch(x)

 {

 case 1:

 switch(y)

 {

 case 0: printf("Divide by zero error.\n");

 break;

 case 1: process(x,y);

 }

 break;

 case 2:

.

.COMPARISON OF IF AND SWITCH

 The switch differs from the if in that switch can only test for equality, whereas if can

evaluate any type of relational or logical expressions.

B) ITERATION STATEMENTS

 In C++, and all other modern programming languages, iteration statements (also

called loops) allow a set of instructions to be executed repeatedly until a certain condition is

reached. This condition may be predefined (as in the for loop), or open-ended (as in the while

and do-while loops).

30

1. The for Loop

 The general design of the for loop is reflected in some form or another in all

procedural programming languages. However, in C++, it provides unexpected flexibility and

power.

General form:

 for(initialization; condition; increment)

 {

 statement;

 }

 The initialization is an assignment statement that is used to set the loop control

variable.

 The condition is a relational expression that determines when the loop exits.

 The increment defines how the loop control variable changes each time the loop is

repeated.

 You must separate these three major sections by semicolons.

 The for loop continues to execute as long as the condition is true. Once the condition

becomes false, program execution resumes on the statement following the for.

PROGRAM: FOR LOOP

#include <iostream>

using namespace std;

int main ()

{

 int x;

 for (x = 1; x <= 10; x++)

 {

 cout << x<<endl;

 }

 return 0;

}

OUTPUT:

1

2

3

4

5

6

7

8

9

10

 In for loops, the conditional test is always performed at the top of the loop. This

means that the code inside the loop may not be executed at all if the condition is false to

begin with.

31

for Loop Variations

 Several variations of the for are allowed that increase its power, flexibility, and

applicability to certain programming situations.

 One of the most common variations uses the comma operator to allow two or more

variables to control the loop.

 For example, the variables x and y control the following loop, and both are initialized

inside the for statement:

 for(x=0, y=0; x+y<10; ++x)

 {

 y = getchar();

 y = y - '0'; /* subtract the ASCII code for 0

 from y */

 .

 .

 .

 }

 Commas separate the two initialization statements. Each time the loop repeats, x is

incremented and y's value is set by keyboard input. Both x and y must be at the correct value

for the loop to terminate. Even though y's value is set by keyboard input, y must be initialized

to 0 so that its value is defined before the first evaluation of the conditional expression.

PROGRAM: MULTIPLE LOOP VARIABLES

#include <iostream>

using namespace std;

int main ()

{

 for (int i = 0, j = 0; i < 3; i++, j++)

 {

 cout << "i: " << i << " j: " << j << endl;

 }

 return 0;

}

OUTPUT:

i: 0 j: 0

i: 1 j: 1

i: 2 j: 2

PROGRAM: PATTERN PRINTING

#include <iostream>

#include<conio.h>

using namespace std;

int main()

{

 int i, j;

 for(i=0; i<5; i++)

 {

 for(j=0; j<=i; j++)

32

 {

 cout<<"* ";

 }

 cout<<"\n";

 }

 getch();

}

OUTPUT:

*

* *

* * *

* * * *

* * * * *

Interesting trait of the for loop

 The conditional expression does not have to involve testing the loop control variable

against some target value. In fact, the condition may be any relational or logical

statement. This means that you can test for several possible terminating conditions.

 For example, you could use the following function to log a user onto a remote system.

The user has three tries to enter the password. The loop terminates when the three tries

are used up or the user enters the correct password.

 void sign_on(void)

 {

 char str[20] = "";

 int x;

 for(x=0; x<3 && strcmp(str, "password"); ++x)

 {

 cout<<"Enter password please:";

 gets(str);

 }

 if(x==3) return;

 /* else log user in ... */

 }

 This function uses strcmp(), the standard library function that compares two strings

and returns 0 if they match.

 Each of the three sections of the for loop may consist of any valid expression. The

expressions need not actually have anything to do with what the sections are generally

used for.

PROGRAM: FOR LOOP VARIATIONS

#include <iostream>

using namespace std;

int sqrnum (int num);

int readnum (void);

int prompt (void);

int

main (void)

{

33

 int t;

 for (prompt (); t = readnum (); prompt ())

 {

 sqrnum (t);

 }

 return 0;

}

int

prompt (void)

{

 cout << "Enter a number: " ;

 return 0;

}

int

readnum (void)

{

 int t;

 cin >> t;

 return t;

}

int

sqrnum (int num)

{

 cout << "SQUARE is " <<num * num<<endl;

 return num * num;

}

OUTPUT:

Enter a number: 17

SQUARE is 289

Enter a number: 21

SQUARE is 441

Enter a number: 0

 Pieces of the loop definition need not be there. In fact, there need not be an expression

present for any of the sections— the expressions are optional.

 For example, this loop will run until the user enters 123:

 for(x=0; x!=123;)

 cout<<x;

 The increment portion of the for definition is blank. This means that each time the

loop repeats, x is tested to see if it equals 123, but no further action takes place. If you

type 123 at the keyboard, however, the loop condition becomes false and the loop

terminates.

 The initialization of the loop control variable can occur outside the for statement. This

most frequently happens when the initial condition of the loop control variable must be

computed by some complex means as in this example:

 gets(s); /* read a string into s */

34

 if(*s) x = strlen(s); /* get the string's length */

 else x = 10;

 for(; x<10;)

 {

 cout << x;

 ++x;

 }

 The initialization section has been left blank and x is initialized before the loop is

entered.

The Infinite Loop

 Although you can use any loop statement to create an infinite loop, for is traditionally

used for this purpose. Since none of the three expressions that form the for loop are required,

you can make an endless loop by leaving the conditional expression empty:

 for(; ;)

 cout<<"This loop will run forever.\n";

 When the conditional expression is absent, it is assumed to be true. You may have an

initialization and increment expression, but C++ programmers more commonly use the

for(;;) construct to signify an infinite loop.

 Actually, the for(;;) construct does not guarantee an infinite loop because a break

statement, encountered anywhere inside the body of a loop, causes immediate termination.

Program control then resumes at the code following the loop, as shown here:

 ch = '\0';

 for(; ;)

 {

 ch = getchar(); /* get a character */

 if(ch=='A') break; /* exit the loop */

 }

 cout<<"you typed an A";

 This loop will run until the user types an A at the keyboard.

for Loops with No Bodies

 A statement may be empty. This means that the body of the for loop (or any other

loop) may also be empty. You can use this fact to improve the efficiency of certain

algorithms and to create time delay loops.

 Removing spaces from an input stream is a common programming task. For example,

a database program may allow a query such as "show all balances less than 400." The

database needs to have each word fed to it separately, without leading spaces. That is, the

database input processor recognizes "show" but not " show". The following loop shows one

way to accomplish this. It advances past leading spaces in the string pointed to by str.

 for(; *str == ' '; str++) ;

 As you can see, this loop has no body—and no need for one either.

 Time delay loops are often used in programs. The following code shows how to create

one by using for:

 for(t=0; t<SOME_VALUE; t++) ;

2. The while Loop

 The second loop available in C/C++ is the while loop.

General form:

 while(condition)

35

 {

 statement;

 }

 where statement is either an empty statement, a single statement, or a block of

statements.

 The condition may be any expression, and true is any nonzero value. The loop iterates

while the condition is true. When the condition becomes false, program control passes to the

line of code immediately following the loop.

 The following example shows a keyboard input routine that simply loops until the

user types A:

 char wait_for_char(void)

 {

 char ch;

 ch = '\0'; /* initialize ch */

 while(ch != 'A') ch = getchar();

 return ch;

 }

 while loops check the test condition at the top of the loop, which means that the body

of the loop will not execute if the condition is false to begin with. This feature may eliminate

the need to perform a separate conditional test before the loop.

PROGRAM : WHILE LOOP

#include <iostream>

#include<conio.h>

using namespace std;

int main()

{

 unsigned long num, fact=1;

 cout<<"Enter a number: ";

 cin>>num;

 while(num)

 {

 fact = fact*num;

 num--;

 }

 cout<<"The factorial of the number is "<<fact;

 getch();

}

OUTPUT:

Enter a number: 34

The factorial of the number is 4926277576697053184

PROGRAM 20: CHECK PALINDROME OR NOT

#include <iostream>

#include<conio.h>

36

using namespace std;

int main()

{

 int num, rem, orig, rev=0;

 cout<<"Enter a number : ";

 cin>>num;

 orig=num;

 while(num!=0)

 {

 rem=num%10;

 rev=rev*10 + rem;

 num=num/10;

 }

 if(rev==orig) // check if original number is equal to its reverse

 {

 cout<<"Palindrome";

 }

 else

 {

 cout<<"Not Palindrome";

 }

 getch();

}

 OUTPUT:

Enter a number : 2345

Not Palindrome

Interesting trait of the while loop

 If several separate conditions need to terminate a while loop, a single variable commonly

forms the conditional expression. The value of this variable is set at various points

throughout the loop.

 In this example,

 void func1(void)

 {

 int working;

 working = 1; /* i.e., true */

 while(working)

 {

 working = process1();

 if(working)

 working = process2();

 if(working)

 working = process3();

 }

 }

 Any of the three routines may return false and cause the loop to exit.

 There need not be any statements in the body of the while loop.

For example,

37

 while((ch=getchar()) != 'A') ;

 will simply loop until the user types A. If you feel uncomfortable putting the

assignment inside the while conditional expression, remember that the equal sign is just

an operator that evaluates to the value of the right-hand operand.

3. The do-while Loop

 Unlike for and while loops, which test the loop condition at the top of the loop, the

do-while loop checks its condition at the bottom of the loop. This means that a do-while loop

always executes at least once.

General form:

 do

 {

 statement;

 } while(condition);

 The do-while loop iterates until condition becomes false.

 Perhaps the most common use of the do-while loop is in a menu selection function.

When the user enters a valid response, it is returned as the value of the function. Invalid

responses cause a reprompt.

PROGRAM: DO-WHILE

#include <iostream>

#include<conio.h>

using namespace std;

int main()

{

 int num, l=0;

 cout<<"Enter a number: ";

 cin>>num;

 cout<<"\nIncrementing & Printing the number, 10 times:\n";

 do

 {

 num++;

 cout<<num<<"\n";

 l++;

 }while(l<10);

 getch();

}

OUTPUT:

Enter a number: 04

Incrementing & Printing the number, 10 times:

5

6

7

8

38

9

10

11

12

13

14

PROGRAM: FINDING AREA, PERIMETER AND DIAGONAL OF A RECTANGLE

#include <iostream>

#include<conio.h>

#include<math.h>

using namespace std;

int main()

{

 char ch, ch1;

 float l, b, peri, area, diag;

 cout<<"Rectangle Menu";

 cout<<"\n 1. Area";

 cout<<"\n 2. Perimeter";

 cout<<"\n 3. Diagonal";

 cout<<"\n 4. Exit\n";

 cout<<"\nEnter your choice: ";

 do

 {

 cin>>ch;

 if(ch == '1' || ch == '2' || ch == '3')

 {

 cout<<"Enter length & breadth: ";

 cin>>l>>b;

 }

 switch(ch)

 {

 case '1' : area = l * b ;

 cout<<"Area = "<<area;

 break ;

 case '2' : peri = 2 * (l + b);

 cout<<"Perimeter = "<<peri;

 break;

 case '3' : diag = sqrt((l * l) + (b * b));

 cout<<"Diagonal = "<<diag;

 break;

 case '4' : cout<<"Breaking..Press a key..";

 getch();

 exit(1);

 default : cout<<"Wrong choice !!!!";

 cout<<"\nEnter a valid one";

 break;

 } //end of switch

 cout<<"\nWant to enter more (y/n) ? ";

39

 cin>>ch1;

 if(ch1 == 'y' || ch1 == 'Y')

 cout<<"Again enter choice (1-4): ";

 }while(ch1 == 'y' || ch1 == 'Y') ; //end of DO-WHILE loop

 getch();

}

OUTPUT:

Rectangle Menu

 1. Area

 2. Perimeter

 3. Diagonal

 4. Exit

Enter your choice: 1

Enter length & breadth: 2

3

Area = 6

Want to enter more (y/n) ? n

DECLARING VARIABLES WITHIN SELECTION AND ITERATION

STATEMENTS

 In C++ (but not C89), it is possible to declare a variable within the conditional

expression of an if or switch, within the conditional expression of a while loop, or within the

initialization portion of a for loop. A variable declared in one of these places has its scope

limited to the block of code controlled by that statement. For example, a variable declared

within a for loop will be local to that loop.

Example: declares a variable within the initialization portion of a

 for loop:

 /* i is local to for loop; j is known outside loop. */

 int j;

 for(int i = 0; i<10; i++)

 j = i * i;

 /* i = 10; // *** Error *** -- i not known here! */

Here, i is declared within the initialization portion of the for and is used to control the

loop. Outside the loop, i is unknown.

 C++, then you can also declare a variable within any conditional expression, such as

those used by the if or a while.

Example: ,

 if(int x = 20)

 {

 x = x - y;

 if(x>10) y = 0;

 }

 declares x and assigns it the value 20. Since this is a true value, the target of the if

executes. Variables declared within a conditional statement have their scope limited to the

block of code controlled by that statement. Thus, in this case, x is not known outside the if.

C) JUMP STATEMENTS

40

 C++ has four statements that perform an unconditional branch: return, goto, break,

and continue. Of these, you may use return and goto anywhere in your program. You may

use the break and continue statements in conjunction with any of the loop statements.

1. The return Statement

 The return statement is used to return from a function. It is categorized as a jump

statement because it causes execution to return (jump back) to the point at which the call to

the function was made. A return may or may not have a value associated with it. If return

has a value associated with it, that value becomes the return value of the function.

 In C89, a non-void function does not technically have to return a value. If no return

value is specified, a garbage value is returned. However, in C++ (and in C99), a non-void

function must return a value. That is, in C++, if a function is specified as returning a value,

any return statement within it must have a value associated with it.

General form: return expression;

 The expression is present only if the function is declared as returning a value. In this

case, the value of expression will become the return value of the function.

 You can use as many return statements as you like within a function. However, the

function will stop executing as soon as it encounters the first return. The } that ends a

function also causes the function to return. It is the same as a return without any specified

value. If this occurs within a non-void function, then the return value of the function is

undefined.

 A function declared as void may not contain a return statement that specifies a value.

Since a void function has no return value, it makes sense that no return statement within a

void function can return a value.

2. The goto Statement

 It is used for jumping to a specific location. The goto statement requires a label for

operation. (A label is a valid identifier followed by a colon.) Furthermore, the label must be

in the same function as the goto that uses it—you cannot jump between functions.

General form:
 statement is

 goto label;

 ...

 label:

 where label is any valid label either before or after goto.

Example: you could create a loop from 1 to 100 using the goto and a label, as shown here:

 x = 1;

 loop1:

 x++;

 if(x<100) goto loop1;

PROGRAM: GOTO

#include <iostream>

using namespace std;

int main()

{

 ineligible:

 cout<<"checking eligibility to vote!\n";

41

 cout<<"Enter your age:\n";

 int age;

 cin>>age;

 if (age < 18){

 goto ineligible;

 }

 else

 {

 cout<<"You are eligible to vote!";

 }

}

OUTPUT:

3. The break Statement

The break statement has two uses.

 You can use it to terminate a case in the switch statement.

 You can also use it to force immediate termination of a loop, bypassing the normal loop

conditional test.

 When the break statement is encountered inside a loop, the loop is immediately

terminated and program control resumes at the next statement following the loop.

For example,

#include <iostream>

using namespace std;

int main(void)

{

int t;

for(t=0; t<100; t++) {

cout<< t;

if(t==10) break;

}

return 0;

}

 Programmers often use the break statement in loops in which a special condition can

cause immediate termination.

 A break causes an exit from only the innermost loop.

Example:

 for(t=0; t<100; ++t)

 {

 count = 1;

 for(;;)

 {

 cout<<count;

 count++;

42

 if(count==10) break;

 }

 }

 prints the numbers 1 through 10 on the screen 100 times. Each time execution

encounters break, control is passed back to the outer for loop.

 A break used in a switch statement will affect only that switch. It does not affect any

loop the switch happens to be in.

PROGRAM: BREAK

#include <iostream>

using namespace std;

int main(void)

{

int t;

for(t=0; t<100; t++)

{

printf("%d ", t);

if(t==10) break;

}

return 0;

}

OUTPUT:

4. The continue Statement

 The continue statement works somewhat like the break statement. Instead of forcing

termination, however, continue forces the next iteration of the loop to take place, skipping

any code in between. For the for loop, continue causes the conditional test and increment

portions of the loop to execute. For the while and do-while loops, program control passes to

the conditional tests. For example, the following program counts the number of spaces

contained in the string entered by the user:

PROGRAM: CONTINUE

include <iostream>

using namespace std;

int main(void)

{

char s[80], *str;

int space;

printf("Enter a string: ");

gets(s);

str = s;

for(space=0; *str; str++)

{

if(*str != ' ') continue;

43

space++;

}

printf("%d spaces\n", space);

return 0;

}

OUTPUT:

 Each character is tested to see if it is a space. If it is not, the continue statement forces

the for to iterate again. If the character is a space, space is incremented.

PROGRAM: BREAK AND CONTINUE
#include <iostream>

using namespace std;

int main()

{

 cout<<"The loop with \'break\' produces output as:\n";

 for(int i=1; i<=10; i++)

 {

 if((i%3)==0)

 break;

 else

 cout<<i<<endl;

 }

 cout<<"\nThe loop with \'continue\' produce output as:\n";

 for(int i=1; i<=10; i++)

 {

 if((i%3)==0)

 continue;

 else

 cout<<i<<endl;

 }

}

OUTPUT:

44

ARRAYS

Definition: An array is a collection of variables of the same type that are referred to through

a common name. A specific element in an array is accessed by an index. In C++, all arrays

consist of contiguous memory locations. The lowest address corresponds to the first element

and the highest address to the last element.

Single-Dimension Arrays

 Single-dimension arrays are essentially lists of information of the same type that

are stored in contiguous memory locations in index order.

General form: type var_name[size];

 Like other variables, arrays must be explicitly declared so that the compiler may

allocate space for them in memory. Here, type declares the base type of the array, which is

the type of each element in the array, and size defines how many elements the array will hold.

Example: To declare a 100-element array called balance of type double, use this statement:

 double balance[100];

 An element is accessed by indexing the array name. This is done by placing the index

of the element within square brackets after the name of the array.

Example: balance[3] = 12.23;

 assigns element number 3 in balance the value 12.23.

 In C++, all arrays have 0 as the index of their first element. Therefore, when you write

 char p[10];

you are declaring a character array that has ten elements, p[0] through p[9].

 The amount of storage required to hold an array is directly related to its type and size.

For a single-dimension array, the total size in bytes is computed as shown here:

 total bytes = sizeof(base type) x size of array

 C++ has no bounds checking on arrays. You could overwrite either end of an array

and write into some other variable's data or even into the program's code. As the programmer,

it is your job to provide bounds checking where needed.

PROGRAM 31: SINGLE DIMENSIONAL ARRAY

#include <iostream>

using namespace std;

int main()

{

 int arr[50], n;

 cout<<"How many element you want to store in the array ? ";

 cin>>n;

 cout<<"Enter "<<n<<" element to store in the array : ";

 for(int i=0; i<n; i++)

 {

 cin>>arr[i];

 }

 cout<<"The Elements in the Array is : \n";

 for(int i=0; i<n; i++)

45

 {

 cout<<arr[i]<<" ";

 }

}

OUTPUT:

PROGRAM 32: LARGEST ELEMENTS IN ARRAY
#include <iostream>

using namespace std;

int main()

{

 int small, arr[50], size, i;

 cout<<"Enter Array Size (max 50) : ";

 cin>>size;

 cout<<"Enter array elements : ";

 for(i=0; i<size; i++)

 {

 cin>>arr[i];

 }

 cout<<"Searching for smallest element ...\n\n";

 small=arr[0];

 for(i=0; i<size; i++)

 {

 if(small>arr[i])

 {

 small=arr[i];

 }

 }

 cout<<"Smallest Element = "<<small;

}

OUTPUT:

46

Two-Dimensional Arrays

 C++ supports multidimensional arrays. The simplest form of the multidimensional

array is the two-dimensional array. A two-dimensional array is, essentially, an array of one-

dimensional arrays.

 To declare a two-dimensional integer array d of size 10,20, you would write

 int d[10][20];

 C++ places each dimension in its own set of brackets.

 A two-dimensional array, the following formula yields the number of bytes of

memory needed to hold it:

 bytes = size of 1st index x size of 2nd index x sizeof(base type)

 Therefore, assuming 4-byte integers, an integer array with dimensions 10,5 would

have 10 x 5 x 4 or 200 bytes allocated.

 Two-dimensional arrays are stored in a row-column matrix, where the first index

indicates the row and the second indicates the column. This means that the rightmost index

changes faster than the leftmost when accessing the elements in the array in the order in

which they are actually stored in memory.

PROGRAM 38: TWO DIMENSIONAL ARRAYS

#include <iostream>

using namespace std;

int main()

{

 int arr[10][10], row, col, i, j;

 cout<<"Enter number of row for Array (max 10) : ";

 cin>>row;

 cout<<"Enter number of column for Array (max 10) : ";

 cin>>col;

 cout<<"Now Enter "<<row<<"*"<<col<<" Array Elements : ";

 for(i=0; i<row; i++)

 {

 for(j=0; j<col; j++)

 {

 cin>>arr[i][j];

 }

 }

 cout<<"The Array is :\n";

 for(i=0; i<row; i++)

 {

 for(j=0; j<col; j++)

 {

 cout<<arr[i][j]<<" ";

 }

 cout<<"\n";

 }

}

47

OUTPUT:

PROGRAM 39: ADD TWO MATRICES

#include <iostream>

using namespace std;

int main()

{

 int r, c, a[100][100], b[100][100], sum[100][100], i, j;

 cout << "Enter number of rows (between 1 and 100): ";

 cin >> r;

 cout << "Enter number of columns (between 1 and 100): ";

 cin >> c;

 cout << endl << "Enter elements of 1st matrix: " << endl;

 // Storing elements of first matrix entered by user.

 for(i = 0; i < r; ++i)

 for(j = 0; j < c; ++j)

 {

 cout << "Enter element a" << i + 1 << j + 1 << " : ";

 cin >> a[i][j];

 }

 // Storing elements of second matrix entered by user.

 cout << endl << "Enter elements of 2nd matrix: " << endl;

 for(i = 0; i < r; ++i)

 for(j = 0; j < c; ++j)

 {

 cout << "Enter element b" << i + 1 << j + 1 << " : ";

 cin >> b[i][j];

 }

 // Adding Two matrices

 for(i = 0; i < r; ++i)

 for(j = 0; j < c; ++j)

 sum[i][j] = a[i][j] + b[i][j];

 // Displaying the resultant sum matrix.

 cout << endl << "Sum of two matrix is: " << endl;

 for(i = 0; i < r; ++i)

 for(j = 0; j < c; ++j)

 {

 cout << sum[i][j] << " ";

 if(j == c - 1)

48

 cout << endl;

 }

 return 0;

}

OUTPUT:

Enter number of rows (between 1 and 100): 2

Enter number of columns (between 1 and 100): 2

Enter elements of 1st matrix:

Enter element a11 : 1

Enter element a12 : 2

Enter element a21 : 3

Enter element a22 : 4

Enter elements of 2nd matrix:

Enter element b11 : 4

5

Enter element b12 : Enter element b21 : 7

Enter element b22 : 7

Sum of two matrix is:

5 7

10 11

Multidimensional Arrays

 C++ allows arrays of more than two dimensions. The exact limit, if any, is determined

by your compiler.

General form: type name[Size1][Size2][Size3]. . .[SizeN];

 Arrays of more than three dimensions are not often used because of the amount of

memory they require. For example, a four-dimensional character array with dimensions

10,6,9,4 requires 10 * 6 * 9 * 4 or 2,160 bytes. If the array held 2-byte integers, 4,320 bytes

would be needed. If the array held doubles (assuming 8 bytes per double), 17,280 bytes

would be required.

 The storage required increases exponentially with the number of dimensions. For

example, if a fifth dimension of size 10 was added to the preceding array, then 172,

800 bytes would be required.

 In multidimensional arrays, it takes the computer time to compute each index. This

means that accessing an element in a multidimensional array can be slower than accessing an

element in a single-dimension array.

Array Initialization

 C++ allows the initialization of arrays at the time of their declaration.

General form: type_specifier array_name[size1]. . .[sizeN] = { value_list };

 The value_list is a comma-separated list of values whose type is compatible with

type_specifier. The first value is placed in the first position of the array, the second value in

the second position, and so on. Note that a semicolon follows the }.

Example: A 10-element integer array is initialized with the numbers 1 through 10:

49

 int i[10] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

 This means that i[0] will have the value 1 and i[9] will have the value 10.

 Character arrays that hold strings allow a shorthand initialization that takes the form:

 char array_name[size] = "string";

Example, this code fragment initializes str to the phrase "I like C++".

 char str[11] = "I like C++";

 This is the same as writing char str[11] = {'I', ' ', 'l', 'i', 'k', 'e',' ', 'C',
 '+', '+', '\0'};

 Multidimensional arrays are initialized the same as single-dimension ones.

Example: The following initializes sqrs with the numbers 1 through 10 and their squares.

 int sqrs[10][2] = {1, 1,

 2, 4,

 3, 9,

 4, 16,

 5, 25,

 6, 36,

 7, 49,

 8, 64,

 9, 81,

 10, 100

 };

 When initializing a multidimensional array, you may add braces around the

initializers for each dimension. This is called subaggregate grouping.

Example: Here is another way to write the preceding declaration.

int sqrs[10][2] = { {1, 1},

 {2, 4},

 {3, 9},

 {4, 16},

 {5, 25},

 {6, 36},

 {7, 49},

 {8, 64},

 {9, 81},

 {10, 100}

 };

 When using subaggregate grouping, if you don't supply enough initializers for a given

group, the remaining members will be set to zero automatically.

Unsized Array Initializations

 Imagine that you are using array initialization to build a table of error messages,

as shown here:

 char e1[12] = "Read error\n";

 char e2[13] = "Write error\n";

 char e3[18] = "Cannot open file\n";

 As you might guess, it is tedious to count the characters in each message manually\ to

determine the correct array dimension. Fortunately, you can let the compiler automatically

calculate the dimensions of the arrays. If, in an array initialization statement, the size of the

array is not specified, the C++ compiler automatically creates an array big enough to hold all

50

the initializers present. This is called an unsized array. Using this approach, the message

table becomes

 char e1[] = "Read error\n";

 char e2[] = "Write error\n";

 char e3[] = "Cannot open file\n";

Given these initializations, this statement

 cout<<”has length \n", e2, sizeof(e2);

will print

 Write error has length 13

POINTERS

Definition: A pointer is a variable that holds a memory address. This address is the location

of another object (typically another variable) in memory. For example, if one variable

contains the address of another variable, the first variable is said to point to the second.

Pointer Variables

 If a variable is going to hold a pointer, it must be declared as such. A pointer

declaration consists of a base type, an *, and the variable name.

General form: type *name;

 where type is the base type of the pointer and may be any valid type. The name of the

pointer variable is specified by name.

The Pointer Operators

 There are two special pointer operators: * and &.

& Operator

 The & is a unary operator that returns the memory address of its operand.

Example: m = &count;

 places into m the memory address of the variable count. This address is the

computer's internal location of the variable. It has nothing to do with the value of count. You

can think of & as returning "the address of." Therefore, the preceding assignment statement

means "m receives the address of count."

 To understand the above assignment better, assume that the variable count uses

memory location 2000 to store its value. Also assume that count has a value of 100. Then,

after the preceding assignment, m will have the value 2000.

* Operator

51

 The second pointer operator, *, is the complement of &. It is a unary operator that

returns the value located at the address that follows.

Example: If m contains the memory address of the variable count,

 q = *m;

 places the value of count into q. Thus, q will have the value 100 because 100 is stored

at location 2000, which is the memory address that was stored in m. You can think of * as "at

address." In this case, the preceding statement means "q receives the value at address m."

 In C++, it is illegal to convert one type of pointer into another without the use of an

explicit type cast.

PROGRAM 43: POINTERS

#include <iostream>

using namespace std;

int main()

{

 int var1 = 3;

 int var2 = 24;

 int var3 = 17;

 cout << &var1 << endl;

 cout << &var2 << endl;

 cout << &var3 << endl;

}

OUTPUT:

0x7ffe74f8b134

0x7ffe74f8b138

0x7ffe74f8b13c

PROGRAM 44: POINTERS

#include <iostream>

using namespace std;

int main()

{

 int *pc, c;

 c = 5;

 cout << "Address of c (&c): " << &c << endl;

 cout << "Value of c (c): " << c << endl << endl;

 pc = &c; // Pointer pc holds the memory address of variable c

 cout << "Address that pointer pc holds (pc): "<< pc << endl;

 cout << "Content of the address pointer pc holds (*pc): " << *pc << endl << endl;

 c = 11; // The content inside memory address &c is changed from 5 to 11.

 cout << "Address pointer pc holds (pc): " << pc << endl;

 cout << "Content of the address pointer pc holds (*pc): " << *pc << endl << endl;

 *pc = 2;

52

 cout << "Address of c (&c): " << &c << endl;

 cout << "Value of c (c): " << c << endl << endl;

 return 0;

}

OUTPUT:

Address of c (&c): 0x7ffe72819c04

Value of c (c): 5

Address that pointer pc holds (pc): 0x7ffe72819c04

Content of the address pointer pc holds (*pc): 5

Address pointer pc holds (pc): 0x7ffe72819c04

Content of the address pointer pc holds (*pc): 11

Address of c (&c): 0x7ffe72819c04

Value of c (c): 2

Pointer Expressions

1. Pointer Assignments

 As with any variable, you may use a pointer on the right-hand side of an assignment

statement to assign its value to another pointer.

PROGRAM 47: POINTER ASSIGNMENTS

#include <iostream>

using namespace std;

int main()

{

 int x;

int *p1, *p2;

p1 = &x;

p2 = p1;

cout<<p2; /* print the address of x, not x's value! */

return 0;

}

OUTPUT:

0x7ffd862f1e5c

2. Pointer Arithmetic

 There are only two arithmetic operations that you may use on pointers: addition and

subtraction. To understand what occurs in pointer arithmetic, let p1 be an integer pointer with

a current value of 2000. Also, assume integers are 2 bytes long.

 After the expression

 p1++;

53

 p1 contains 2002, not 2001. The reason for this is that each time p1 is incremented, it

will point to the next integer. The same is true of decrements. For example, assuming that p1

has the value 2000, the expression

 p1--;

 causes p1 to have the value 1998.

 You are not limited to the increment and decrement operators. For example, you may

add or subtract integers to or from pointers. The expression

 p1 = p1 + 12;

makes p1 point to the twelfth element of p1's type beyond the one it currently points to.

 Besides addition and subtraction of a pointer and an integer, only one other arithmetic

operation is allowed: You may subtract one pointer from another in order to find the number

of objects of their base type that separate the two. All other arithmetic operations are

prohibited. Specifically, you may not multiply or divide pointers; you may not add two

pointers; you may not apply the bitwise operators to them; and you may not add or subtract

type float or double to or from pointers.

PROGRAM 48: POINTER ARITHMETIC: INCREMENTING POINTERS

#include <iostream>

using namespace std;

int main()

{

 int var[5] = {10,20,30,40,50}; //Array Declaration.

 int *ptr; //pointer point to int.

 ptr = var; // let us have array address in pointer.

 for (int i = 0; i < 5; i++) //Loop to show Address and Value:

 {

 cout << "\n Address of var[" << i << "] = " <<ptr<<endl; //show the Address:

 cout << "Value of var[" << i << "] = "<<*ptr<<endl; //show the value:

 ptr++; // point to the next location (incrementation)

 }

 return 0;

 }

OUTPUT:

Address of var[0] = 0x7fff8ea2bc90

Value of var[0] = 10

 Address of var[1] = 0x7fff8ea2bc94

Value of var[1] = 20

 Address of var[2] = 0x7fff8ea2bc98

Value of var[2] = 30

54

 Address of var[3] = 0x7fff8ea2bc9c

Value of var[3] = 40

 Address of var[4] = 0x7fff8ea2bca0

Value of var[4] = 50

PROGRAM 49: POINTER ARITHMETIC: DECREMENTING POINTERS

#include <iostream>

using namespace std;

int main()

{

 int var[5] = {10,20,30,40,50}; //Array Declaration.

 int *ptr; //pointer point to int.

 ptr = &var[4]; //ptr point to the last address of Array:

 for (int i = 5; i > 0; i--) //Loop to show Address and Value:

 {

 cout << "\n Address of var[" << i << "] = " <<ptr<<endl; //show the Address:

 cout << "Value of var[" << i << "] = "<<*ptr<<endl; //show the value:

 ptr--; // point to the Previous location:

 }

 return 0;

 }

OUTPUT:

Address of var[5] = 0x7ffec8e97200

Value of var[5] = 50

 Address of var[4] = 0x7ffec8e971fc

Value of var[4] = 40

 Address of var[3] = 0x7ffec8e971f8

Value of var[3] = 30

 Address of var[2] = 0x7ffec8e971f4

Value of var[2] = 20

 Address of var[1] = 0x7ffec8e971f0

Value of var[1] = 10

3. Pointer Comparisons

 You can compare two pointers in a relational expression. For instance, given two

pointers p and q, the following statement is perfectly valid:

 if(p<q)

 cout<<"p points to lower memory than q\n";

55

 Generally, pointer comparisons are used when two or more pointers point to

a common object, such as an array

PROGRAM 50: POINTER COMPARISION

#include <iostream>

using namespace std;

int main()

{

 int var[5] = {10,20,30,40,50}; //Array Declaration.

 int *ptr; //pointer point to int.

 ptr = var; //ptr point to the first address of Array:

 int i=0; //Variable to use in while loop:

 while(ptr <= &var[4]) //Loop to show Address and Value:

 {

 for(int i=0; i<5; i++)

 {

 cout << "\n Address of var[" << i << "] = "

 <<ptr<<endl; //show the Address:

 cout << "Value of var[" << i << "] = "

 <<*ptr<<endl; //show the value:

 ptr++; // point to the Next location:

 }

 }

 return 0;

 }

OUTPUT:

Address of var[0] = 0x7ffe055b21f0

Value of var[0] = 10

 Address of var[1] = 0x7ffe055b21f4

Value of var[1] = 20

 Address of var[2] = 0x7ffe055b21f8

Value of var[2] = 30

 Address of var[3] = 0x7ffe055b21fc

Value of var[3] = 40

 Address of var[4] = 0x7ffe055b2200

Value of var[4] = 50

Pointers and Arrays

 There is a close relationship between pointers and arrays. Consider this program

56

fragment:

 char str[80], *p1;

 p1 = str;

 Here, p1 has been set to the address of the first array element in str. To access the fifth

element in str, you could write

 str[4]

 or

 *(p1+4)

 C++ provides two methods of accessing array elements: pointer arithmetic and array

indexing. Although the standard array-indexing notation is sometimes easier to understand,

pointer arithmetic can be faster. Since speed is often a consideration in programming, C/C++

programmers commonly use pointers to access array elements.

 These two versions of putstr()—one with array indexing and one with pointers

/* Index s as an array. */

void putstr(char *s)

{

register int t;

for(t=0; s[t]; ++t) putchar(s[t]);

}

/* Access s as a pointer. */

void putstr(char *s)

{

while(*s) putchar(*s++);

}

Arrays of Pointers

 Pointers may be arrayed like any other data type. The declaration for an int pointer

array of size 10 is

 int *x[10];

 To assign the address of an integer variable called var to the third element of the

pointer array, write

 x[2] = &var;

To find the value of var, write

 *x[2]

Initializing Pointers

 After a nonstatic local pointer is declared but before it has been assigned a value,

it contains an unknown value. There is an important convention that most C/C++

programmers follow when working with pointers: A pointer that does not currently point to a

valid memory location is given the value null (which is zero).

All pointers, when they are created, should be initialized to some value, even if it is only

zero. A pointer whose value is zero is called a null pointer.

If the pointer is initialized to zero, you must specifically assign the address to the pointer.

 pCount = &Count; // assign the address to the pointer (NO * is present)

57

It is also possible to assign the address at the time of declaration.

 int *pCount = &Count; //declare and assign an integer pointer

 Another variation on the initialization theme is the following type of string

declaration:

char *p = "hello world";

PROGRAM 51: ARRAY OF POINTERS: LAB PROGRAM

FUNCTIONS

Functions are the building blocks of C and C++ and the place where all program

activity occurs

General Form:

ret-type function-name(parameter list)

{

body of the function

}

The ret-type specifies the type of data that the function returns. A function may return

any type of data except an array. The parameter list is a comma-separated list of variable

names and their associated types that receive the values of the arguments when the

function is called. A function may be without parameters

All function parameters must be declared individually, each including both the type

and name.

General form:

f(type varname1, type varname2, . . . , type varnameN)

For example,

f(int i, int k, int j) /* correct */

f(int i, k, float j) /* incorrect */

PROGRAM 52: FUNCTIONS

#include <iostream>

using namespace std;

int add(int, int);

int main()

{

 int num1, num2, sum;

 cout<<"Enters two numbers to add: ";

 cin >> num1 >> num2;

 // Function call

 sum = add(num1, num2);

 cout << "Sum = " << sum;

 return 0;

}

// Function definition

int add(int a, int b)

{

 int add;

 add = a + b;

58

 // Return statement

 return add;

}

OUTPUT:

Enters two numbers to add: 5

4

Sum = 9

Scope Rules of Functions

The scope rules of a language are the rules that govern whether a piece of code knows

about or has access to another piece of code or data. Each function is a discrete block of code.

A function's code is private to that function and cannot be accessed by any statement in any

other function except through a call to that function because the two functions have a

different scope.

Variables that are defined within a function are called local variables. A local variable

comes into existence when the function is entered and is destroyed upon exit. That is, local

variables cannot hold their value between function calls.

In C++ you cannot define a function within a function.

Function Arguments

 If a function is to use arguments, it must declare variables that accept the values of

the arguments. These variables are called the formal parameters of the function. They behave

like other local variables inside the function and are created upon entry into the function and

destroyed upon exit.

/* Return 1 if c is part of string s; 0 otherwise. */

int is_in(char *s, char c)

{

while(*s)

if(*s==c) return 1;

else s++;

return 0;

 }

Parameter Passing

In a computer language, there are two ways that arguments can be passed to a

subroutine.

a. Call by value

This method copies the value of an argument into the formal parameter of the subroutine.

In this case, changes made to the parameter have no effect on the argument.

By default, C/C++ uses call by value to pass arguments. In general, this means that code

within a function cannot alter the arguments used to call the function.

PROGRAM 53: CALL BY VALUE

#include <iostream>

#include<conio.h>

using namespace std;

void swap(int a, int b)

59

{

 int temp;

 temp = a;

 a = b;

 b = temp;

}

int main()

{

 int a = 100, b = 200;

 swap(a, b); // passing value to function

 cout<<"Value of a"<<a;

 cout<<"Value of b"<<b;

 getch();

 return 0;

}

OUTPUT:

Value of a100Value of b200

b. Call by reference

In this method, the address of an argument is copied into the parameter. Inside the

subroutine, the address is used to access the actual argument used in the call. This means that

changes made to the parameter affect the argument.

Creating a Call by Reference

You can create a call by reference by passing a pointer to an argument, instead of the

argument itself. Since the address of the argument is passed to the function, code within the

function can change the value of the argument outside the function. Pointers are passed to

functions just like any other value.

Example:

void swap(int *x, int *y)

{

int temp;

temp = *x; /* save the value at address x */

*x = *y; /* put y into x */

y = temp; / put x into y */

}

swap() is able to exchange the values of the two variables pointed to by x and y

because their addresses (not their values) are passed. Thus, within the function, the contents

of the variables can be accessed using standard pointer operations, and the contents of the

variables used to call the function are swapped.

PROGRAM 54: CALL BY REFERENCE

#include<iostream>

using namespace std;

#include<conio.h>

void swap (int *a, int *b)

60

{

 int temp;

 temp = *a;

 *a = *b;

 *b = temp;

}

int main ()

{

 int a = 100, b = 200;

 swap (&a, &b); // passing value to function

 cout << "Value of a" << a;

 cout << "Value of b" << b;

 return 0;

}

OUTPUT:
Value of a200Value of b100

C++ allows you to fully automate a call by reference through the use of reference

parameters.

Reference parameters: refer References

Function declaration (Function Prototypes)

In C++ all functions must be declared before they are used. This is normally

accomplished using a function prototype.

General form
type func_name(type parm_name1, type parm_name2,. . .,

type parm_nameN);

Example: void sqr_it(int *i); /* prototype */

The only function that does not require a prototype is main(), since it is the first

function called when your program begins.

In C++, an empty parameter list is simply indicated in the prototype by the absence of

any parameters.

Example: int f(); /* C++ prototype for a function with no parameters */

However, in C this prototype means something different. An empty parameter list

simply says that no parameter information is given.

In C, when a function has no parameters, its prototype uses void inside the parameter

list.

Example: here is f()'s prototype as it would appear in a C program.

float f(void);

This tells the compiler that the function has no parameters, and any call to that

function that has parameters is an error. In C++, the use of void inside an empty parameter

list is still allowed, but is redundant.

In C++, f() and f(void) are equivalent.

61

Default Function Arguments

C++ allows a function to assign a parameter a default value when no argument

corresponding to that parameter is specified in a call to that function. The default value is

specified in a manner syntactically similar to a variable initialization.

Example: This declares myfunc() as taking one double argument with a default value of

0.0:

void myfunc(double d = 0.0)

{

// ...

}

Now, myfunc() can be called one of two ways, as the following examples show:

myfunc(198.234); // pass an explicit value

myfunc(); // let function use default

The first call passes the value 198.234 to d. The second call automatically gives d the

default value zero.

One reason that default arguments are included in C++ is because they provide

another method for the programmer to manage greater complexity. To handle the widest

variety of situations, quite frequently a function contains more parameters than are required

for its most common usage. Thus, when the default arguments apply, you need specify only

the arguments that are meaningful to the exact situation, not all those needed by the most

general case. For example, many of the C++ I/O functions make use of default arguments for

just this reason.

A default argument can also be used as a flag telling the function to reuse a previous

argument. To illustrate this usage, a function called iputs() is developed here that

automatically indents a string by a specified amount.

Program: Default argument

#include <iostream>

using namespace std;

/* Default indent to -1. This value tells the function

to reuse the previous value. */

void iputs(char *str, int indent = -1);

int main()

{

iputs("Hello there", 10);

iputs("This will be indented 10 spaces by default");

iputs("This will be indented 5 spaces", 5);

iputs("This is not indented", 0);

return 0;

}

void iputs(char *str, int indent)

{

static int i = 0; // holds previous indent value

if(indent >= 0)

i = indent;

else // reuse old indent value

indent = i;

for(; indent; indent--) cout << " ";

cout << str << "\n";

}

62

Output:

When you are creating functions that have default arguments, it is important to

remember that the default values must be specified only once, and this must be the first time

the function is declared within the file.

All parameters that take default values must appear to the right of those that do not.

For example, it is incorrect to define iputs() like this:

// wrong!

void iputs(int indent = -1, char *str);

Once you begin to define parameters that take default values, you cannot specify a

non defaulting parameter. That is, a declaration like this is also wrong and will not compile:

int myfunc(float f, char *str, int i=10, int j);

Program: Default arguments

#include <iostream>

using namespace std;

class cube

{

int x, y, z;

public:

cube(int i=0, int j=0, int k=0)

{

x=i;

y=j;

z=k;

}

int volume()

{

return x*y*z;

}

};

int main()

{

cube a(2,3,4), b;

cout << a.volume() << endl;

cout << b.volume();

return 0;

}

Advantages

There are two advantages to including default arguments,

1. First, they prevent you from having to provide an overloaded constructor that takes no

parameters.

63

For example, if the parameters to cube() were not given defaults, the second constructor

shown here would be needed to handle the declaration of b (which specified no

arguments).

cube() {x=0; y=0; z=0}

2. Second, defaulting common initial values is more convenient than specifying them each

time an object is declared.

Inline Functions

There is an important feature in C++, called an inline function that is commonly used

with classes.

In C++, you can create short functions that are not actually called; rather, their code is

expanded in line at the point of each invocation. This process is similar to using a function-

like macro. To cause a function to be expanded in line rather than called, precede its

definition with the

Program: Inline Function

#include <iostream>

using namespace std;

inline int max(int a, int b)

{

return a>b ? a : b;

}

int main()

{

cout << max(10, 20);

cout << " " << max(99, 88);

return 0;

}

Output:

The reason that inline functions are an important addition to C++ is that they allow

you to create very efficient code. Since classes typically require several frequently executed

interface functions (which provide access to private data), the efficiency of these functions is

of critical concern. As you probably know, each time a function is called, a significant

amount of overhead is generated by the calling and return mechanism. Typically, arguments

are pushed onto the stack and various registers are saved when a function is called, and then

restored when the function returns. The trouble is that these instructions take time. However,

when a function is expanded in line, none of those operations occur. Although expanding

function calls in line can produce faster run times, it can also result in larger code size

because of duplicated code. For this reason, it is best to inline only very small functions.

Further, it is also a good idea to inline only those functions that will have significant impact

on the performance of your program.

 Inline is actually just a request, not a command, to the compiler. The compiler can

choose to ignore it.

64

Recursion

In C/C++, a function can call itself. A function is said to be recursive if a statement in

the body of the function calls itself. Recursion is the process of defining something in terms

of itself, and is sometimes called circular definition.

A simple example of a recursive function is factr(),

/* recursive */

int factr(int n) {

int answer;

if(n==1) return(1);

answer = factr(n-1)*n; /* recursive call */

return(answer);

}

/* non-recursive */

int fact(int n) {

int t, answer;

answer = 1;

for(t=1; t<=n; t++)

answer=answer*(t);

return(answer);

}

When a function calls itself, a new set of local variables and parameters are allocated

storage on the stack, and the function code is executed from the top with these new variables.

A recursive call does not make a new copy of the function. Only the values being operated

upon are new. As each recursive call returns, the old local variables and parameters are

removed from the stack and execution resumes at the point of the function call inside the

function.

PROGRAM 59: RECURSION

#include <iostream>

#include<conio.h>

using namespace std;

int main()

{

long int factorial(int);

long int fact,value;

cout<<"Enter any number: ";

cin>>value;

fact=factorial(value);

cout<<"Factorial of a number is: "<<fact<<endl;

return 0;

}

long int factorial(int n)

{

if(n<0)

return(-1); /*Wrong value*/

if(n==0)

return(1); /*Terminating condition*/

65

else

{

return(n*factorial(n-1));

}

}

OUTPUTS:

Enter any number: -1

Factorial of a number is: -1

Enter any number: 0

Factorial of a number is: 1

Enter any number: 17

Factorial of a number is: 355687428096000

Advantage

The main advantage to recursive functions is that you can use them to create clearer

and simpler versions of several algorithms. For example, the Quicksort algorithm is difficult

to implement in an iterative way.

Also, some problems, especially ones related to artificial intelligence, lend themselves

to recursive solutions. Finally, some people seem to think recursively more easily than

iteratively.

Pointers to Functions

A particularly confusing yet powerful feature of C++ is the function pointer. Once a

pointer points to a function, the function can be called through that pointer. Function pointers

also allow functions to be passed as arguments to other functions.

You obtain the address of a function by using the function's name without any

parentheses or arguments.

PROGRAM 60: POINTERS TO FUNCTION

#include <iostream>

#include<conio.h>

#include <string.h>

using namespace std;

void check(char *a, char *b,

int (*cmp)(const char *, const char *));

int main(void)

{

char s1[80], s2[80];

int (*p)(const char *, const char *);

p = strcmp;

cout<<"enter 2 strings";

gets(s1);

gets(s2);

check(s1, s2, p);

return 0;

}

void check(char *a, char *b,

int (*cmp)(const char *, const char *))

66

{

cout<<"Testing for equality.\n";

if(!(*cmp)(a, b)) cout<<"Equal";

else cout<<"Not Equal";

}

OUTPUT:

enter 2 strings hj

hj

Testing for equality.

Equal

STRINGS

C++ supports two types of strings.

a. Null-terminated string

Null-terminated string is a null-terminated character array. (A null is zero.) Thus a null-

terminated string contains the characters that comprise the string followed by a null. This is

the only type of string defined by C, and it is still the most widely used. Sometimes null-

terminated strings are called C-strings.

When declaring a character array that will hold a null-terminated string, you need to

declare it to be one character longer than the largest string that it is to hold. For example, to

declare an array str that can hold a 10-character string, you would write

char str[11];

This makes room for the null at the end of the string.

When you use a quoted string constant in your program, you are also creating a null-

terminated string. A string constant is a list of characters enclosed in double quotes.

For example,

"hello there"

You do not need to add the null to the end of string constants manually—the compiler

does this for you automatically.

Null-terminated strings cannot be manipulated by any of the standard C++ operators.

Nor can they take part in normal C++ expressions. For example, consider this fragment:

char s1[80], s2[80], s3[80];

s1 = "Alpha"; // can't do

s2 = "Beta"; // can't do

s3 = s1 + s2; // error, not allowed

As the comments show, in C++ it is not possible to use the assignment operator to

give a character array a new value (except during initialization), nor is it possible to use the +

operator to concatenate two strings. These

b. C++String Class

C++ also defines a string class, called string, which provides an object-oriented

approach to string handling prevents such errors.

There are three reasons for the inclusion of the standard string class: consistency (a

string now defines a data type), convenience (you may use the standard C++ operators), and

safety (array boundaries will not be overrun).

C/C++ supports a wide range of functions that manipulate null-terminated strings.

The most common are

67

Name Function

strcpy(s1, s2) Copies s2 into s1.

strcat(s1, s2) Concatenates s2 onto the end of s1.

strlen(s1) Returns the length of s1.

strcmp(s1, s2) Returns 0 if s1 and s2 are the same; less than 0 if s1<s2;

greater than 0 if s1>s2.

strchr(s1, ch) Returns a pointer to the first occurrence of ch in s1.

strstr(s1, s2) Returns a pointer to the first occurrence of s2 in s1.

These functions use the standard header file string.h. (C++ programs can also use the

C++-style header <cstring>.)

PROGRAM 61: STRING TO READ A WORD

#include <iostream>

#include<conio.h>

#include <string.h>

using namespace std;

int main()

{

 char str[100];

 cout << "Enter a string: ";

 cin >> str;

 cout << "You entered: " << str << endl;

 cout << "\nEnter another string: ";

 cin >> str;

 cout << "You entered: "<<str<<endl;

 return 0;

}

OUTPUT:

Enter a string: KEERTHI

You entered: KEERTHI

Enter another string: KEERTHI

You entered: KEERTHI

PROGRAM 63: STRING USING STRING DATA TYPE

#include <iostream>

#include<conio.h>

#include <string.h>

using namespace std;

int main()

{

 // Declaring a string object

 string str;

 cout << "Enter a string: ";

 getline(cin, str);

 cout << "You entered: " << str << endl;

68

 return 0;

}

OUTPUT:

Enter a string: GOOD EVENING

You entered: GOOD EVENING

PROGRAM 64: STRING FUNCTIONS

#include<iostream>

using namespace std;

#include<conio.h>

#include <string.h>

int main ()

{

 char s1[80], s2[80];

 cout << "enter 2 strings";

 gets (s1);

 gets (s2);

 cout << "lengths: \n" << strlen (s1) << endl << strlen (s2) << endl;

 if (!strcmp (s1, s2))

 cout << "The strings are equal" << endl;

 strcat (s1, s2);

 cout << s1 << endl;

 strcpy (s1, "This is a test.\n");

 cout << s1;

 if (strchr ("hello", 'e'))

 cout << "e is in hello\n";

 if (strstr ("hi there", "hi"))

 cout << "found hi";

 return 0;

}

OUTPUT:
enter 2 stringshello

hello

lengths:

5

5

The strings are equal

hellohello

This is a test.

e is in hello

found hi

STRUCTURES

A structure is a collection of variables referenced under one name, providing a

convenient means of keeping related information together. A structure declaration forms a

template that may be used to create structure objects (that is, instances of a structure). The

variables that make up the structure are called members. (Structure members are also

commonly referred to as elements or fields.)

69

General form:

struct struct-type-name

{

type member-name;

type member-name;

type member-name;

..

} structure-variables;

where either struct-type-name or structure-variables may be omitted, but not both.

Example:
struct addr

{

char name[30];

char street[40];

char city[20];

char state[3];

unsigned long int zip;

} addr_info, binfo, cinfo;

At this point, no variable has actually been created. Only the form of the data has

been defined. When you define a structure, you are defining a compound variable type, not a

variable. Not until you declare a variable of that type does one actually exist. In C, to declare

a variable (i.e., a physical object) of type addr, write

struct addr addr_info;

This declares a variable of type addr called addr_info. In C++, you may use this

shorter form.

addr addr_info;

In C++, once a structure has been declared, you may declare variables of its type

using only its type name, without preceding it with the keyword struct. The reason for this

difference is that in C, a structure's name does not define a complete type name. In fact,

Standard C refers to a structure's name as a tag. In C, you must precede the tag with the

keyword struct when declaring variables. However, in C++, a structure's name is a complete

type name and may be used by itself to define variables.

When a structure variable (such as addr_info) is declared, the compiler automatically

allocates sufficient memory to accommodate all of its members.

Accessing Structure Members

Individual members of a structure are accessed through the use of the . operator

(usually called the dot operator).

The structure variable name followed by a period and the member name references

that individual member. The general form for accessing a member of a structure is

structure-name.member-name

Therefore, to print the ZIP code on the screen, write

printf("%lu", addr_info.zip);

Structure Assignments

The information contained in one structure may be assigned to another structure of the

same type using a single assignment statement. That is, you do not need to assign the value of

each member separately.

struct {

int a;

70

int b;

} x, y;

x.a = 10;

y = x; /* assign one structure to another */

PROGRAM 66: STRUCTURE ASSIGNMENT

#include <iostream>

using namespace std;

int main()

{

 struct {

int a;

int b;

} x, y;

x.a = 10;

y = x; /* assign one structure to another */

cout<<y.a;

return 0;

}

OUTPUT:

10

Arrays of Structures

To declare an array of structures, you must first define a structure and then declare an

array variable of that type. For example, to declare a 100-element array of structures of

type addr, defined earlier, write

struct addr addr_info[100];

To access a specific structure, index the structure name. For example, to print the

ZIP code of structure 3, write

printf("%lu", addr_info[2].zip);

Passing Structures to Functions

a. Passing Structure Members to Functions

When you pass a member of a structure to a function, you are actually passing the value

of that member to the function. Therefore, you are passing a simple variable

For example,

consider this structure:

struct fred

{

char x;

int y;

float z;

char s[10];

} mike;

Here are examples of each member being passed to a function:

func(mike.x); /* passes character value of x */

71

func2(mike.y); /* passes integer value of y */

func3(mike.z); /* passes float value of z */

func4(mike.s); /* passes address of string s */

func(mike.s[2]); /* passes character value of s[2] */

If you wish to pass the address of an individual structure member, put the & operator

before the structure name. For example, to pass the address of the members of the structure

mike, write

func(&mike.x); /* passes address of character x */

func2(&mike.y); /* passes address of integer y */

func3(&mike.z); /* passes address of float z */

func4(mike.s); /* passes address of string s */

func(&mike.s[2]); /* passes address of character s[2] */

b. Passing Entire Structures to Functions

When a structure is used as an argument to a function, the entire structure is passed using

the standard call-by-value method. Of course, this means that any changes made to the

contents of the structure inside the function to which it is passed do not affect the structure

used as an argument.

/* Define a structure type. */

struct struct_type {

int a, b;

char ch;

} ;

void f1(struct struct_type parm);

int main(void)

{

struct struct_type arg;

arg.a = 1000;

f1(arg);

return 0;

}

void f1(struct struct_type parm)

{

printf("%d", parm.a);

}

As this program illustrates, if you will be declaring parameters that are structures, you

must make the declaration of the structure type global so that all parts of your program can

use it. For example, had struct_type been declared inside main() (for example), then it

would not have been visible to f1().

PROGRAM 67: PASSING A STRUCTURE TO A FUNCTION

#include <iostream>

using namespace std;

struct struct_type

{

int a, b;

char ch;

72

} ;

void f1(struct struct_type parm);

int main(void)

{

struct struct_type arg;

arg.a = 1000;

f1(arg);

return 0;

}

void f1(struct struct_type parm)

{

cout<<parm.a;

}

OUTPUT:

1000

PROGRAM 68: PASSING A STRUCTURE TO A FUNCTION

#include <iostream>

using namespace std;

struct Person

{

 char name[50];

 int age;

 float salary;

};

void displayData(Person); // Function declaration

int main()

{

 Person p;

 cout << "Enter Full name: ";

 cin.get(p.name, 50);

 cout << "Enter age: ";

 cin >> p.age;

 cout << "Enter salary: ";

 cin >> p.salary;

 // Function call with structure variable as an argument

 displayData(p);

 return 0;

}

void displayData(Person p)

{

 cout << "\nDisplaying Information." << endl;

 cout << "Name: " << p.name << endl;

 cout <<"Age: " << p.age << endl;

 cout << "Salary: " << p.salary;

}

73

OUTPUT:

Enter Full name: ABC

Enter age: 23

Enter salary: 25000

Displaying Information.

Name: ABC

Age: 23

Salary: 25000

Structure Pointers

C++ allows pointers to structures just as it allows pointers to any other type of

variable.

Declaring a Structure Pointer

Like other pointers, structure pointers are declared by placing * in front of a structure

variable's name. For example, assuming the previously defined structure addr, the following

declares addr_pointer as a pointer to data of that type:

struct addr *addr_pointer;

Remember, in C++ it is not necessary to precede this declaration with the keyword

struct.

Using Structure Pointers

There are two primary uses for structure pointers: to pass a structure to a function

using call by reference, and to create linked lists and other dynamic data structures that rely

on dynamic allocation.

When a pointer to a structure is passed to a function, only the address of the structure

is pushed on the stack. This makes for very fast function calls. A second advantage, in some

cases, is when a function needs to reference the actual structure used as the argument, instead

of a copy. By passing a pointer, the function can modify the contents of the structure used in

the call.

To find the address of a structure, place the & operator before the structure's name.

For example, given the following fragment:

struct bal {

float balance;

char name[80];

} person;

struct bal *p; /* declare a structure pointer */

then

p = &person;

places the address of the structure person into the pointer p.

To access the members of a structure using a pointer to that structure, you must use

the -> operator. For example, this references the balance field:

p->balance

The -> is usually called the arrow operator, and consists of the minus sign followed

by a greater-than sign. The arrow is used in place of the dot operator when you are accessing

a structure member through a pointer to the structure.

PROGRAM 69: POINTER STRUCTURES

#include <iostream>

74

using namespace std;

struct Distance

{

 int feet;

 float inch;

};

int main()

{

 Distance *ptr, d;

 ptr = &d;

 cout << "Enter feet: ";

 cin >> (*ptr).feet;

 cout << "Enter inch: ";

 cin >> (*ptr).inch;

 cout << "Displaying information." << endl;

 cout << "Distance = " << (*ptr).feet << " feet " << (*ptr).inch << " inches";

 return 0;

}

OUTPUT:

Enter feet: 10

Enter inch: 2

Displaying information.

Distance = 10 feet 2 inches

REFERENCES

C++ contains a feature that is related to the pointer called a reference. A reference is

essentially an implicit pointer. There are three ways that a reference can be used: as a

function parameter, as a function return value, or as a stand-alone reference.

Reference Parameters

Probably the most important use for a reference is to allow you to create functions

that automatically use call-by-reference parameter passing. Arguments can be passed to

functions in one of two ways: using call-by-value or call-by-reference. When using call-by-

value, a copy of the argument is passed to the function. Call-by-reference passes the address

of the argument to the function

By default, C++ uses call-by-value, but it provides two ways to achieve call-by-

reference parameter passing. First, you can explicitly pass a pointer to the argument. Second,

you can use a reference parameter. For most circumstances the best way is to use a reference

parameter.

PROGRAM 70: REFERENCES

WITHOUT REFERENCE

// Manually create a call-by-reference using a pointer.

75

#include <iostream>

using namespace std;

void neg(int *i);

int main()

{

int x;

x = 10;

cout << x << " negated is ";

neg(&x);

cout << x << "\n";

return 0;

}

void neg(int *i)

{

*i = -*i;

}

WITH REFERENCE

#include <iostream>

using namespace std;

void neg(int &i); // i now a reference

int main()

{

int x;

x = 10;

cout << x << " negated is ";

neg(x); // no longer need the & operator

cout << x << "\n";

return 0;

}

void neg(int &i)

{

i = -i; // i is now a reference, don't need *

}

OUTPUT:

10 negated is -10

Returning References

A function may return a reference

simple program:

#include <iostream>

using namespace std;

char &replace(int i); // return a reference

char s[80] = "Hello There";

int main()

{

replace(5) = 'X'; // assign X to space after Hello

76

cout << s;

return 0;

}

char &replace(int i)

{

return s[i];

}

One thing you must be careful about when returning references is that the object being

referred to does not go out of scope after the function terminates.

PROGRAM 72: RETURNING REFERENCES

#include <iostream>

using namespace std;

char &replace(int i); // return a reference

char s[80] = "Hello There";

int main()

{

replace(5) = 'X'; // assign X to space after Hello

cout << s;

return 0;

}

char &replace(int i)

{

return s[i];

}

OUTPUT:

HelloXThere

C++'S DYNAMIC ALLOCATION OPERATORS

 C++ provides two dynamic allocation operators: new and delete. C++ also supports

dynamic memory allocation functions, called malloc() and free(). These are included for the

sake of compatibility with C.

 The new operator allocates memory and returns a pointer to the start of it. The delete

operator frees memory previously allocated using new.

General forms:
 p_var = new type;

 delete p_var;

 Here, p_var is a pointer variable that receives a pointer to memory that is large

enough to hold an item of type type.

 Since the heap is finite, it can become exhausted. If there is insufficient available

memory to fill an allocation request, then new will fail and a bad_alloc exception will be

generated. This exception is defined in the header <new>. Your program should handle this

exception and take appropriate action if a failure occurs

 The delete operator must be used only with a valid pointer previously allocated by

using new. Using any other type of pointer with delete is undefined and will almost certainly

cause serious problems, such as a system crash.

 Although new and delete perform functions similar to malloc() and free(), they have

several advantages.

77

1. First, new automatically allocates enough memory to hold an object of the specified

type. You do not need to use the sizeof operator. Because the size is computed

automatically, it eliminates any possibility for error in this regard.

2. Second, new automatically returns a pointer of the specified type. You don't need to use

an explicit type cast as you do when allocating memory by using malloc(). Finally, both

new and delete can be overloaded, allowing you to create customized allocation systems.

Initializing Allocated Memory

 You can initialize allocated memory to some known value by putting an initialize

after the type name in the new statement. Here is the general form of new when an

initialization is included:

General Form: p_var = new var_type (initializer);

PROGRAM 73: DYNAMIC MEMORY ALLOCATION AND DEALLOCATION TO

HOLD AN INTEGER

#include <iostream>

using namespace std;

int main()

{

int *p;

try {

 p = new int; // allocate space for an int

} catch (bad_alloc xa) {

cout << "Allocation Failure\n";

return 1;

}

*p = 100;

cout << "At " << p << " ";

cout << "is the value " << *p << "\n";

delete p;

return 0;

}

OUTPUT:

At 0x162cc20 is the value 100

PROGRAM 74: DYNAMIC MEMORY ALLOCATION AND DEALLOCATION

WHICH GIVES THE ALLOCATED INTEGER AN INITIAL VALUE

#include <iostream>

using namespace std;

int main()

{

int *p;

try {

p = new int (87); // initialize to 87

} catch (bad_alloc xa) {

cout << "Allocation Failure\n";

78

return 1;

}

cout << "At " << p << " ";

cout << "is the value " << *p << "\n";

delete p;

return 0;

}

OUTPUT:

At 0xc14c20 is the value 87

Allocating Arrays

 You can allocate arrays using new.

General form: p_var = new array_type [size];

 Here, size specifies the number of elements in the array.

 To free an array, use this form of delete:

General form: delete [] p_var;

 Here, the [] informs delete that an array is being released.

PROGRAM: DYNAMIC MEMORY ALLOCATION AND DEALLOCATION OF

ARRAYS

#include <iostream>

using namespace std;

int main()

{

int *p, i;

try {

p = new int [10]; // allocate 10 integer array

} catch (bad_alloc xa) {

cout << "Allocation Failure\n";

return 1;

}

for(i=0; i<10; i++)

p[i] = i;

for(i=0; i<10; i++)

cout << p[i] << " ";

delete [] p; // release the array

return 0;

}

OUTPUT:

0 1 2 3 4 5 6 7 8 9

The Placement Form of new

 There is a special form of new, called the placement form, that can be used to specify

an alternative method of allocating memory. It is primarily useful when overloading the new

operator for special circumstances.

General form: p_var = new (arg-list) type;

79

 Here, arg-list is a comma-separated list of values passed to an overloaded form of

new.

PREPROCESSOR DIRECTIVES

 You can include various instructions to the compiler in the source code of a C/C++

program. These are called preprocessor directives

 C++ preprocessor is virtually identical to the one defined by C. The main difference

between C and C++ in this regard is the degree to which each relies upon the preprocessor. In

C, each preprocessor directive is necessary. In C++, some features have been rendered

redundant by newer and better C++ language elements.

 All preprocessor directives begin with a # sign. In addition, each preprocessing

directive must be on its own line.

For example,

 #include <stdio.h> #include <stdlib.h>

will not work.

The preprocessor contains the following directives:

#define

 The #define directive defines an identifier and a character sequence (i.e., a set of

characters) that will be substituted for the identifier each time it is encountered in the source

file. The identifier is referred to as a macro name and the replacement process as macro

replacement.

General form : #define macro-name char-sequence

 Notice that there is no semicolon in this statement.

Example:

 #define LEFT 1

 #define RIGHT 0

#if , #elif , #else , #endif

 Perhaps the most commonly used conditional compilation directives are the #if, #else,

#elif, and #endif. These directives allow you to conditionally include portions of code based

upon the outcome of a constant expression.

General form of #if :
 #if constant-expression

 statement sequence

 #endif

 If the constant expression following #if is true, the code that is between it and #endif

is compiled. Otherwise, the intervening code is skipped. The #endif directive marks the end

of an #if block.

For example,

/* Simple #if example. */

#include <stdio.h>

#define MAX 100

int main(void)

{

#if MAX>99

cout<<"Compiled for array greater than 99.\n";

#endif

return 0;

80

}

This program displays the message on the screen because MAX is greater than 99.

 The #elif directive means "else if" and establishes an if-else-if chain for multiple

compilation options. #elif is followed by a constant expression. If the expression is true, that

block of code is compiled and no other #elif expressions are tested. Otherwise, the next block

in the series is checked.

General form for #elif :

 #if expression

 statement sequence

 #elif expression 1

 statement sequence

 #elif expression 2

 statement sequence

 #elif expression 3

 statement sequence

 #elif expression 4

.

 .

 .

 #elif expression N

 statement sequence

 #endif

#error

 The #error directive forces the compiler to stop compilation. It is used primarily for

debugging.

General form : #error error-message

 The error-message is not between double quotes. When the #error directive is

encountered, the error message is displayed, possibly along with other information defined by

the compiler.

#ifdef , #ifndef

 Another method of conditional compilation uses the directives #ifdef and #ifndef,

which mean "if defined" and "if not defined," respectively.

General form of #ifdef:

 #ifdef macro-name

 statement sequence

 #endif

 If macro-name has been previously defined in a #define statement, the block of code

will be compiled.

General form of #ifndef:

 #ifndef macro-name

 statement sequence

 #endif

 If macro-name is currently undefined by a #define statement, the block of code is

compiled.

 Both #ifdef and #ifndef may use an #else or #elif statement.

For example,

81

#include <stdio.h>

#define TED 10

int main(void)

{

#ifdef TED

cout<<"Hi Ted\n";

#else

cout<<"Hi anyone\n";

#endif

#ifndef RALPH

cout<<"RALPH not defined\n";

#endif

return 0;

}

 You may nest #ifdefs and #ifndefs to at least eight levels in Standard C. Standard

C++ suggests that at least 256 levels of nesting be supported.

#include

 The #include directive instructs the compiler to read another source file in addition to

the one that contains the #include directive. The name of the additional source file must be

enclosed between double quotes or angle brackets.

For example,

 #include "stdio.h"

 #include <stdio.h>

both instruct the compiler to read and compile the header for the C I/O system library

functions.

 Include files can have #include directives in them. This is referred to as nested

includes. The number of levels of nesting allowed varies between compilers. However,

Standard C stipulates that at least eight nested inclusions will be available. Standard C++

recommends that at least 256 levels of nesting be supported.

#undef

 The #undef directive removes a previously defined definition of the macro name that

follows it. That is, it "undefines" a macro.

General form : #undef macro-name

For example,

#define LEN 100

#define WIDTH 100

char array[LEN][WIDTH];

#undef LEN

#undef WIDTH

/* at this point both LEN and WIDTH are undefined */

 Both LEN and WIDTH are defined until the #undef statements are encountered.

#undef is used principally to allow macro names to be localized to only those sections of

code that need them.

#line

82

 The #line directive changes the contents of _ _LINE_ _ and _ _FILE_ _ , which are

predefined identifiers in the compiler. The _ _LINE_ _ identifier contains the line number of

the currently compiled line of code. The _ _FILE_ _ identifier is a string that contains the

name of the source file being compiled.

General form: #line number "filename"

 where number is any positive integer and becomes the new value of _ _LINE_ _ , and

the optional filename is any valid file identifier, which becomes the new value of _ _FILE_

_. #line is primarily used for debugging and special applications.

 For example, the following code specifies that the line count will begin with 100. The

cout statement displays the number 102 because it is the third line in the program after the

#line 100 statement.

 For example, the following code specifies that the line count will begin with 100. The

cout statement displays the number 102 because it is the third line in the program after the

#line 100 statement.

#include <stdio.h>

#line 100 /* reset the line counter */

int main(void) /* line 100 */

{ /* line 101 */

cout<<__LINE__; /* line 102 */

return 0;

}

#pragma

 #pragma is an implementation-defined directive that allows various instructions to be

given to the compiler. For example, a compiler may have an option that supports program

execution tracing. A trace option would then be specified by a #pragma statement.

PROGRAM: PREPROCESSOR DIRECTIVES (#define)

#include <iostream>

#include<string.h>

using namespace std;

#define PI 3.14159

int main () {

 cout << "Value of PI :" << PI << endl;

 return 0;

}

OUTPUT:

Value of PI :3.14159

	#include <iostream>
	#include<conio.h>
	using namespace std;
	int main()
	{
	int i, j;
	for(i=0; i<5; i++)
	{ (1)
	for(j=0; j<=i; j++)
	{ (2)
	cout<<"* ";
	}
	cout<<"\n";
	} (1)
	getch();
	} (2)
	OUTPUT:
	PROGRAM 20: CHECK PALINDROME OR NOT
	#include <iostream> (1)
	#include<conio.h> (1)
	using namespace std; (1)
	int main() (1)
	{ (3)
	int num, rem, orig, rev=0;
	cout<<"Enter a number : ";
	cin>>num;
	orig=num;
	while(num!=0)
	{ (4)
	rem=num%10;
	rev=rev*10 + rem;
	num=num/10;
	} (3)
	if(rev==orig) // check if original number is equal to its reverse
	{ (5)
	cout<<"Palindrome";
	} (4)
	else
	{ (6)
	cout<<"Not Palindrome";
	} (5)
	getch(); (1)
	} (6)
	OUTPUT: (1)

