
1

3. Copy Constructor

 One of the more important forms of an overloaded constructor is the copy constructor.

Defining a copy constructor can help you prevent problems that might occur when one object

is used to initialize another.

 By default, when one object is used to initialize another, C++ performs a bitwise

copy. That is, an identical copy of the initializing object is created in the target object. There

are situations in which a bitwise copy should not be used. One of the most common is when

an object allocates memory when it is created.

 For example, assume a class called MyClass that allocates memory for each object

when it is created, and an object A of that class. This means that A has already allocated its

memory. Further, assume that A is used to initialize B, as shown here:

 MyClass B = A;

 If a bitwise copy is performed, then B will be an exact copy of A. This means that B

will be using the same piece of allocated memory that A is using, instead of allocating its

own. Clearly, this is not the desired outcome. For example, if MyClass includes a destructor

that frees the memory, then the same piece of memory will be freed twice when A and B are

destroyed!

The same type of problem can occur in two additional ways:

1. When a copy of an object is made when it is passed as an argument to a function;

2. When a temporary object is created as a return value from a function.

 To solve these types of problems, C++ allows you to create a copy constructor, which

the compiler uses when one object initializes another. Thus, your copy constructor bypasses

the default bitwise copy.

General form:

 classname (const classname &o)

 {

 // body of constructor

 }

 Here, o is a reference to the object on the right side of the initialization. It is

permissible for a copy constructor to have additional parameters as long as they have default

arguments defined for them. However, in all cases the first parameter must be a reference to

the object doing the initializing.

PROGRAM 19: COPY CONSTRUCTOR
#include <iostream>

using namespace std;

class Samplecopyconstructor

{

 private:

 int x, y; //data members

 public:

 Samplecopyconstructor(int x1, int y1)

 {

 x = x1;

 y = y1;

2

 }

 /* Copy constructor */

 Samplecopyconstructor (const Samplecopyconstructor &sam)

 {

 x = sam.x;

 y = sam.y;

 }

 void display()

 {

 cout<<x<<" "<<y<<endl;

 }

};

/* main function */

int main()

{

 Samplecopyconstructor obj1(10, 15); // Normal constructor

 Samplecopyconstructor obj2 = obj1; // Copy constructor

 cout<<"Normal constructor : ";

 obj1.display();

 cout<<"Copy constructor : ";

 obj2.display();

 return 0;

}

OUTPUT:

Normal constructor : 10 15

Copy constructor : 10 15

DESTRUCTOR

 The complement of the constructor is the destructor. In many circumstances, an

object will need to perform some action or actions when it is destroyed.

 Local objects are created when their block is entered, and destroyed when the block is

left. Global objects are destroyed when the program terminates. When an object is destroyed,

its destructor (if it has one) is automatically called. There are many reasons why a destructor

may be needed. For example, an object may need to deallocate memory that it had previously

allocated or it may need to close a file that it had opened.

 In C++, it is the destructor that handles deactivation events. The destructor has the

same name as the constructor, but it is preceded by a ~.

PROGRAM 20: DESTRUCTORS

#include <iostream>

using namespace std;

class myclass

{

public:

 int who;

3

 myclass (int id);

 ~myclass ();

} glob_ob1 (1), glob_ob2 (2);

myclass::myclass (int id)

{

 cout << "Initializing " << id << "\n";

 who = id;

}

myclass::~myclass ()

{

 cout << "Destructing " << who << "\n";

}

int main ()

{

 myclass local_ob1 (3);

 cout << "This will not be first line displayed.\n";

 myclass local_ob2 (4);

 return 0;

}

OUTPUT:

Initializing 1

Initializing 2

Initializing 3

This will not be first line displayed.

Initializing 4

Destructing 4

Destructing 3

Destructing 2

Destructing 1

PROGRAM 21: DESTRUCTORS

#include <iostream>

using namespace std;

class A

{

 public:

 // constructor

 A()

 {

 cout << "Constructor called"<<endl;

 }

 // destructor

 ~A()

4

 {

 cout << "Destructor called"<<endl;

 }

};

int main()

{

 A obj1; // Constructor Called

 int x = 1;

 if(x)

 {

 A obj2; // Constructor Called

 } // Destructor Called for obj2

} // Destructor called for obj1

OUTPUT:

Constructor called

Constructor called

Destructor called

Destructor called

CONST MEMBER FUNCTION

 Class member functions may be declared as const, which causes this to be treated as a

const pointer. Thus, that function cannot modify the object that invokes it. Also, a const

object may not invoke a non-const member function. However, a const member function can

be called by either const or non-const objects.

 To specify a member function as const, use the form shown in the following example.

 class X

 {

 int some_var;

 public:

 int f1() const; // const member function

 };

Purpose

 The purpose of declaring a member function as const is to prevent it from modifying

the object that invokes it.

Mutable

 Sometimes there will be one or more members of a class that you want a const

function to be able to modify even though you don't want the function to be able to modify

any of its other members. You can accomplish this through the use of mutable. It overrides

constness. That is, a mutable member can be modified by a const member function.

PROGRAM 12: CONST MEMBER FUNCTION WITH MUTABLE

#include <iostream>

using namespace std;

class Demo

5

{

 mutable int i;

 int j;

 public:

 int geti () const

 {

 return i; // ok

 }

 void seti (int x) const

 {

 i = x; // now, OK.

 }

/* The following function won't compile.

void setj(int x) const

 {

 j = x; // Still Wrong!

 }

*/

};

int main ()

{

Demo ob;

ob.seti (1900);

cout << ob.geti ();

return 0;

}

 i is specified as mutable, so it may be changed by the seti() function. However, j is

not mutable and setj() is unable to modify its value.

OUTPUT:

1900

THE SCOPE RESOLUTION OPERATOR

 The primary use of :: operator links a class name with a member name in order to tell

the compiler what class the member belongs to. However, the scope resolution operator has

another related use: it can allow access to a name in an enclosing scope that is "hidden" by a

local declaration of the same name.

For example, consider this fragment:

 int i; // global i

 void f()

 {

 int i; // local i

 i = 10; // uses local i

 ...

 ...

 ...

 }

6

 The assignment i = 10 refers to the local i. But what if function f() needs to access the

global version of i? It may do so by preceding the i with the :: operator, as shown here.

 int i; // global i

 void f()

 {

 int i; // local i

 ::i = 10; // now refers to global i

 ...

 ...

 ...

 }

PROGRAM 22: SCOPE RESOLUTION OPERATOR: LAB PROGRAM WEK -7

Arrays of Objects

 In C++, it is possible to have arrays of objects. The syntax for declaring and using an

object array is exactly the same as it is for any other type of array.

PROGRAM 23: ARRAYS OF OBJECTS WITHOUT INITIALIZATION OF

OBJECTS

#include <iostream>

using namespace std;

class cl

{

 int i;

 public:

 void set_i(int j)

 {

 i=j;

 }

 int get_i()

 {

 return i;

 }

};

int main()

{

 cl ob[3];

 int i;

 for(i=0; i<3; i++)

 ob[i].set_i(i+1);

 for(i=0; i<3; i++)

 cout << ob[i].get_i() << "\n";

 return 0;

}

OUTPUT:

1

7

2

3

Initializing objects

 If a class defines a parameterized constructor, you may initialize each object in an

array by specifying an initialization list, just like you do for other types of arrays. However,

the exact form of the initialization list will be decided by the number of parameters required

by the object's constructors.

1. Only one parameter

 For objects whose constructors have only one parameter, you can simply specify a list

of initial values, using the normal array-initialization syntax. This is a short form. As

each element in the array is created, a value from the list is passed to the constructor's

parameter.

PROGRAM 24: ARRAYS OF OBJECTS WITH INITIALIZATION OF OBJECTS

WITH ONE ARGUMENT

#include <iostream>

using namespace std;

class cl

{

 int i;

 public:

 cl(int j)

 {

 i=j;

 } // constructor

 int get_i()

 {

 return i;

 }

};

int main()

{

 cl ob[3] = {1, 2, 3}; // initializers

 int i;

 for(i=0; i<3; i++)

 cout << ob[i].get_i() << "\n";

 return 0;

}

OUTPUT:

1

2

3

8

2. Two or more arguments

 If an object's constructor requires two or more arguments, you will have to use the

longer initialization form.

PROGRAM 25: ARRAYS OF OBJECTS WITH INITIALIZATION OF OBJECTS

WITH TWO OR MORE ARGUMENTS

#include <iostream>

using namespace std;

 class cl

{

 int h;

 int i;

public:

cl (int j, int k)

 {

 h = j;

 i = k;

 } // constructor with 2 parameters

 int get_i ()

 {

 return i;

 }

int get_h ()

 {

 return h;

 }

};

int main ()

{

cl ob[3] =

 {

 cl (1, 2), // initialize

 cl (3, 4),

 cl (5, 6)

};

int i;

for (i = 0; i < 3; i++)

{

 cout << ob[i].get_h ();

 cout << ", ";

 cout << ob[i].get_i () << "\n";

}

return 0;

}

OUTPUT:

9

1, 2

3, 4

5, 6

PROGRAM 26: ARRAY OF CLASS OBJECTS LAB PROGRAM WEEK -1

Pointers to Objects

 Just as you can have pointers to other types of variables, you can have pointers to

objects. When accessing members of a class given a pointer to an object, use the arrow (–>)

operator instead of the dot operator.

PROGRAM 27: POINTERS TO OBJECTS

#include <iostream>

using namespace std;

class cl

{

 int i;

 public:

 cl (int j)

 {

 i = j;

 }

 int get_i ()

 {

 return i;

 }

};

int main ()

{

 cl ob (88), *p;

 p = &ob; // get address of ob

 cout << p->get_i (); // use -> to call get_i()

 return 0;

}

OUTPUT:

88

 When a pointer is incremented, it points to the next element of its type. For example,

an integer pointer will point to the next integer. In general, all pointer arithmetic is relative to

the base type of the pointer. The same is true of pointers to objects.

PROGRAM 28: POINTER INCREMENT

#include <iostream>

using namespace std;

class cl

{

10

 int i;

 public:

 cl ()

 {

 i = 0;

 }

 cl (int j)

 {

 i = j;

 }

int get_i ()

 {

 return i;

 }

};

int main ()

{

 cl ob[3] =

 {

 1, 2, 3};

 cl * p;

 int i;

 p = ob; // get start of array

 for (i = 0; i < 3; i++)

 {

 cout << p->get_i () << "\n";

 p++; // point to next object

 }

 return 0;

}

OUTPUT:

1

2

 We can assign the address of a public member of an object to a pointer and then access

that member by using the pointer.

PROGRAM 29: ASSIGN THE ADDRESS OF A PUBLIC MEMBER OF AN OBJECT

TO A POINTER AND THEN ACCESS THAT MEMBER

#include <iostream>

using namespace std;

class cl

{

 public:

 int i;

 cl (int j)

11

 {

 i = j;

 }

};

int main ()

{

 cl ob (1);

 int *p;

 p = &ob.i; // get address of ob.i

 cout << *p; // access ob.i via p

 return 0;

}

OUTPUT:

1

PROGRAM 30: POINTER TO CLASS LAB PROGRAM WEEK-2

THE this POINTER

 When defining member functions for a class, you sometimes want to refer to the

calling object. The this pointer is a predefined pointer that points to the calling object.

PROGRAM 31: THIS POINTER

#include <iostream>

using namespace std;

 class pwr

{

 double b;

 int e;

 double val;

 public:

 pwr (double base, int exp);

 double get_pwr ()

 {

 return val;

 }

};

pwr::pwr (double base, int exp)

{

 b = base;

 e = exp;

 val = 1;

 if (exp == 0)

 return;

 for (; exp > 0; exp--)

12

 val = val * b;

}

int main ()

{

 pwr x (4.0, 2), y (2.5, 1), z (5.7, 0);

cout << x.get_pwr () << " ";

cout << y.get_pwr () << " ";

cout << z.get_pwr () << "\n";

return 0;

}

OUTPUT:

16 2.5 1

 Within a member function, the members of a class can be accessed directly, without

any object or class qualification. Thus, inside pwr(), the statement

 b = base;

means that the copy of b associated with the invoking object will be assigned the value

contained in base. However, the same statement can also be written like this:

 this->b = base;

 The this pointer points to the object that invoked pwr(). Thus, this –>b refers to that

object's copy of b. For example, if pwr() had been invoked by x (as in x(4.0, 2)), then this in

the preceding statement would have been pointing to x. Writing the statement without using

this is really just shorthand.

 The this pointer is automatically passed to all member functions.Therefore,

get_pwr() could also be rewritten as shown here:

 double get_pwr() { return this->val; }

In this case, if get_pwr() is invoked like this:

 y.get_pwr();

then this will point to object y.

Two important points about this.

1. Friend functions are not members of a class and, therefore, are not passed a this pointer.

2. Static member functions do not have a this pointer.

PROGRAM 32: THIS POINTER

#include <iostream>

using namespace std;

class Box

{

 public:

 // Constructor definition

 Box(double l = 2.0, double b = 2.0, double h = 2.0)

 {

 cout <<"Constructor called." << endl;

13

 length = l;

 breadth = b;

 height = h;

 }

 double Volume() {

 return length * breadth * height;

 }

 int compare(Box box) {

 return this->Volume() > box.Volume();

 }

 private:

 double length; // Length of a box

 double breadth; // Breadth of a box

 double height; // Height of a box

};

int main(void)

{

 Box Box1(3.3, 1.2, 1.5); // Declare box1

 Box Box2(8.5, 6.0, 2.0); // Declare box2

 if(Box1.compare(Box2))

 {

 cout << "Box2 is smaller than Box1" <<endl;

 }

 else

 {

 cout << "Box2 is equal to or larger than Box1" <<endl;

 }

 return 0;

}

OUTPUT:

Constructor called.

Constructor called.

Box2 is equal to or larger than Box1

 When local variable’s name is same as member variables name then this pointer can

be used resolve the name clashes.

PROGRAM: THIS POINTER

#include<iostream>

using namespace std;

/* local variable is same as a member's name */

class Test

{

private:

 int x;

public:

14

 void setX (int x)

 {

 // The 'this' pointer is used to retrieve the object's x

 // hidden by the local variable 'x'

 this->x = x;

 }

 void print() { cout << "x = " << x << endl; }

};

int main()

{

 Test obj;

 int x = 20;

 obj.setX(x);

 obj.print();

 return 0;

}

OUTPUT:

x = 20

Pointers to Class Members

 C++ allows you to generate a special type of pointer that "points" generically to a

member of a class, not to a specific instance of that member in an object. This sort of pointer

is called a pointer to a class member or a pointer-to-member, for short.

 A pointer to a member is not the same as a normal C++ pointer. Instead, a pointer to a

member provides only an offset into an object of the member's class at which that member

can be found. Since member pointers are not true pointers, the . and –> cannot be applied to

them.

 To access a member of a class given a pointer to it, you must use the special pointer-

to-member operators .* and –>*. Their job is to allow you to access a member of a class

given a pointer to that member.

PROGRAM 33: POINTERS TO CLASS MEMBERS (ACCESSING A MEMBER OF

AN OBJECT BY USING AN OBJECT USING USE THE .* OPERATOR)

#include <iostream>

using namespace std;

class cl

{

public:

cl (int i)

 {

 val = i;

 }

int val;

int double_val ()

 {

15

 return val + val;

 }

};

int main ()

{

 int cl::*data; // data member pointer

 int (cl::*func) (); // function member pointer

 cl ob1 (1), ob2 (2); // create objects

 data = &cl::val; // get offset of val

 func = &cl::double_val; // get offset of double_val()

 cout << "Here are values: ";

cout << ob1.*data << " " << ob2.*data << "\n";

cout << "Here they are doubled: ";

cout << (ob1.*func) () << " ";

cout << (ob2.*func) () << "\n";

return 0;

}

OUTPUT:

Here are values: 1 2

Here they are doubled: 2 4

 When you are accessing a member of an object by using an object or a reference, you

must use the .* operator. However, if you are using a pointer to the object, you need to use

the –>* operator.

PROGRAM 34: POINTERS TO CLASS MEMBERS (USING A POINTER TO THE

OBJECT, YOU NEED TO USE THE –>* OPERATOR)

#include <iostream>

using namespace std;

class cl

{

public:

 cl (int i)

 {

 val = i;

 }

 int val;

 int double_val ()

 {

 return val + val;

 }

};

int main ()

{

16

 int cl::*data; // data member pointer

 int (cl::*func) (); // function member pointer

 cl ob1 (1), ob2 (2); // create objects

 cl *p1, *p2;

 p1 = &ob1; // access objects through a pointer

 p2 = &ob2;

 data = &cl::val; // get offset of val

 func = &cl::double_val; // get offset of double_val()

 cout << "Here are values: ";

 cout << p1->*data << " " << p2->*data << "\n";

 cout << "Here they are doubled: ";

 cout << (p1->*func) () << " ";

 cout << (p2->*func) () << "\n";

 return 0;

}

OUTPUT:

Here are values: 1 2

Here they are doubled: 2 4

Inline Function in classes

Inline functions may be class member functions.

PROGRAM: INLINE FUNCTION

#include <iostream>

using namespace std;

class myclass

{

 int a, b;

 public:

 void init(int i, int j);

 void show();

};

// Create an inline function.

inline void myclass::init(int i, int j)

{

 a = i;

 b = j;

}

// Create another inline function.

inline void myclass::show()

{

 cout << a << " " << b << "\n";

}

int main()

{

 myclass x;

 x.init(10, 20);

 x.show();

 return 0;

17

}

Output:

The inline keyword is not part of the C subset of C++. Thus, it is not defined by C89.

However, it has been added by C99.

Defining Inline Functions within a Class

It is possible to define short functions completely within a class declaration. When a

function is defined inside a class declaration, it is automatically made into an inline function

(if possible). It is not necessary (but not an error) to precede its declaration with the inline

keyword.

For example, the preceding program is rewritten here with the definitions of init()

and show() contained within the declaration of myclass:

#include <iostream>

using namespace std;

class myclass

{

 int a, b;

 public:

 // automatic inline

 void init(int i, int j)

 {

 a=i; b=j;

 }

 void show()

 {

 cout << a << " " << b << "\n";

 }

};

int main()

{

 myclass x;

 x.init(10, 20);

 x.show();

 return 0;

}

Constructor and destructor functions may also be inlined, either by default, if defined

within their class, or explicitly.

Passing References to Objects

When an object is passed as an argument to a function, a copy of that object is made.

When the function terminates, the copy's destructor is called. However, when you pass by

reference, no copy of the object is made. This means that no object used as a parameter is

destroyed when the function terminates, and the parameter's destructor is not called.

PROGRAM 71: PASSING REFERENCES TO OBJECTS

#include <iostream>

using namespace std;

18

class cl {

int id;

public:

int i;

cl(int i);

~cl();

void neg(cl &o) { o.i = -o.i; } // no temporary created

};

cl::cl(int num)

{

cout << "Constructing " << num << "\n";

id = num;

}

cl::~cl()

{

cout << "Destructing " << id << "\n";

}

int main()

{

cl o(1);

o.i = 10;

o.neg(o);

cout << o.i << "\n";

return 0;

}

OUTPUT:

Constructing 1

-10

Destructing 1

Passing Objects to Functions

 Objects may be passed to functions in just the same way that any other type of

variable can. Objects are passed to functions through the use of the standard call-by value

mechanism.

PROGRAM 35: PASSING OBJECTS TO FUNCTIONS

// Passing an object to a function.

#include <iostream>

using namespace std;

class myclass

{

 int i;

 public:

 myclass (int n);

 ~myclass ();

 void set_i (int n)

 {

 i = n;

19

 }

 int get_i ()

 {

 return i;

 }

};

myclass::myclass (int n)

{

 i = n;

 cout << "Constructing " << i << "\n";

}

myclass::~myclass ()

{

 cout << "Destroying " << i << "\n";

}

void f (myclass ob);

int main ()

{

 myclass o (1);

 f (o);

cout << "This is i in main: ";

cout << o.get_i () << "\n";

return 0;

}

void f (myclass ob)

{

 ob.set_i (2);

 cout << "This is local i: " << ob.get_i ();

 cout << "\n";

}

OUTPUT:

Constructing 1

This is local i: 2

Destroying 2

This is i in main: 1

Destroying 1

 When a copy of an object is created to be used as an argument to a function, the

normal constructor is not called. Instead, the default copy constructor makes a bit-by-bit

identical copy. However, when the copy is destroyed (usually by going out of scope when the

function returns), the destructor is called. Because the default copy constructor creates an

exact duplicate of the original, it can, at times, be a source of trouble. Even though objects are

passed to functions by means of the normal call-by-value parameter passing mechanism

which, in theory, protects and insulates the calling argument, it is still possible for a side

effect to occur that may affect, or even damage, the object used as an argument. For example,

20

if an object used as an argument allocates memory and frees that memory when it is

destroyed, then its local copy inside the function will free the same memory when its

destructor is called. This will leave the original object damaged and effectively useless. To

prevent this type of problem you will need to define the copy operation by creating a copy

constructor for the class.

Returning Objects

 A function may return an object to the caller.

PROGRAM 36: RETURNING OBJECTS FROM A FUNCTION

// Returning objects from a function.

#include <iostream>

using namespace std;

 class myclass

{

 int i;

 public:

 void set_i (int n)

 {

 i = n;

 }

 int get_i ()

 {

 return i;

 }

};

myclass f (); // return object of type myclass

int main ()

{

 myclass o;

 o = f ();

 cout << o.get_i () << "\n";

 return 0;

}

myclass f ()

{

 myclass x;

 x.set_i (1);

 return x;

}

OUTPUT:

1

 When an object is returned by a function, a temporary object is automatically created

that holds the return value. It is this object that is actually returned by the function. After the

value has been returned, this object is destroyed. The destruction of this temporary object

21

may cause unexpected side effects in some situations. For example, if the object returned by

the function has a destructor that frees dynamically allocated memory, that memory will be

freed even though the object that is receiving the return value is still using it. There are ways

to overcome this problem that involve overloading the assignment operator and defining a

copy constructor.

Object Assignment

 Assuming that both objects are of the same type, you can assign one object to another.

This causes the data of the object on the right side to be copied into the data of the object on

the left. For example, this program displays 99:

PROGRAM: OBJECT ASSIGNMENT

// Assigning objects.

#include <iostream>

using namespace std;

class myclass

{

 int i;

 public:

 void set_i(int n)

 {

 i=n;

 }

 int get_i()

 {

 return i;

 }

};

int main()

{

 myclass ob1, ob2;

 ob1.set_i(99);

 ob2 = ob1; // assign data from ob1 to ob2

 cout << "This is ob2's i: " << ob2.get_i();

 return 0;

}

 By default, all data from one object is assigned to the other by use of a bit-by-bit

copy. However, it is possible to overload the assignment operator and define some other

assignment procedure.

DYNAMICALLY ALLOCATING AND DEALLOCATING OBJECTS

 You can allocate objects dynamically by using new. When you do this, an object is

created and a pointer is returned to it. The dynamically created object acts just like any other

object. When it is created, its constructor (if it has one) is called. When the object is freed, its

destructor is executed.

PROGRAM 76: DYNAMIC MEMORY ALLOCATION AND DEALLOCATION OF

OBJECTS

#include <iostream>

#include<string.h>

22

using namespace std;

class balance

{

 double cur_bal;

 char name[80];

 public:

 void set(double n, char *s)

 {

 cur_bal = n;

 strcpy(name, s);

 }

 void get_bal(double &n, char *s)

 {

 n = cur_bal;

 strcpy(s, name);

 }

};

int main()

{

 balance *p;

 char s[80];

 double n;

 try

 {

 p = new balance;

 }

 catch (bad_alloc xa)

 {

 cout << "Allocation Failure\n";

 return 1;

 }

 p->set(12387.87, "Ralph Wilson");

 p->get_bal(n, s);

 cout << s << "'s balance is: " << n;

 cout << "\n";

 delete p;

 return 0;

}

OUTPUT:

Ralph Wilson's balance is: 12387.9

 As stated, dynamically allocated objects may have constructors and destructors. Also,

the constructors can be parameterized.

#include <iostream>

#include <new>

23

#include <cstring>

using namespace std;

class balance

{

 double cur_bal;

 char name[80];

 public:

 balance(double n, char *s)

 {

 cur_bal = n;

 strcpy(name, s);

 }

 ~balance()

 {

 cout << "Destructing ";

 cout << name << "\n";

 }

 void get_bal(double &n, char *s)

 {

 n = cur_bal;

 strcpy(s, name);

 }

};

int main()

{

 balance *p;

 char s[80];

 double n;

 // this version uses an initializer

 try

 {

 p = new balance (12387.87, "Ralph Wilson");

 }

 catch (bad_alloc xa)

 {

 cout << "Allocation Failure\n";

 return 1;

 }

 p->get_bal(n, s);

 cout << s << "'s balance is: " << n;

 cout << "\n";

 delete p;

 return 0;

}

