
1

UNIT-II

C++ CLASSES AND DATA ABSTRACTION

CLASS DEFINITION

 In C++, the class forms the basis for object-oriented programming. The class is used to

define the nature of an object, and it is C++'s basic unit of encapsulation. Classes are created

using the keyword class. A class declaration defines a new type that links code and data. This

new type is then used to declare objects of that class. Thus, a class is a logical abstraction, but an

object has physical existence. In other words, an object is an instance of a class. A class

declaration is similar syntactically to a structure

General form: Class declaration that does not inherit any other class.

 class class-name

 {

 private: data and functions

 access-specifier:

 data and functions

 access-specifier:

 data and functions

 // ...

 access-specifier:

 data and functions

 } object-list;

 The object-list is optional. If present, it declares objects of the class. Here, access-

specifier is one of these three C++ keywords: public, private, protected

Access Specifier

1. private

 By default, functions and data declared within a class are private to that class and may be

accessed only by other members of the class.

2. public

 The public access specifier allows functions or data to be accessible to other parts of your

program.

3. protected

 The protected access specifier is needed only when inheritance is involved. Once an

access specifier has been used, it remains in effect until either another access specifier is

encountered or the end of the class declaration is reached.

Member Functions

 Functions that are declared within a class are called member functions. Member functions

may access any element of the class of which they are a part. This includes all private elements.

Member Variables

 Variables that are elements of a class are called member variables or data members. (The

term instance variable is also used.) Collectively, any element of a class can be referred to as a

member of that class.

2

Restrictions that apply to class members

There are a few restrictions that apply to class members.

1. A non-static member variable cannot have an initializer.

2. No member can be an object of the class that is being declared. (Although a member can

 be a pointer to the class that is being declared.)

3. No member can be declared as auto, extern, or register.

 In general, you should make all data members of a class private to that class. This is part

of the way that encapsulation is achieved.

PROGRAM 1: CLASS DEFINITION: LAB PROGRAM WEEK 4, 5

Class Function Definition

 It describes how the class functions are implemented. Member functions can be defined

in two places

a) Inside the class definition

 Member functions can be defined within the class declaration. It simply adds the function

directly to the class. This suits only for short function.

Example:

 class stack

 {

 ..

 ..

 ..

 int push(int i)

 {

 if(tos==SIZE)

 {

 cout << "Stack is full.\n";

 return;

 }

 stck[tos] = i;

 tos++;

 }

 ..

 ..

 ..

 };

b) Outside the class definition

 When it comes to code a function that is member of a class outside it, we must tell the

compiler which class the function belongs to by qualifying its name with the name of the class of

which it is a member along with Scope Resolution Operator(::)

Example:

3

 void stack::push(int i)

 {

 if(tos==SIZE)

 {

 cout << "Stack is full.\n";

 return;

 }

 stck[tos] = i;

 tos++;

 }

Structures and Classes Are Related

 In C++, the role of the structure was expanded, making it an alternative way to specify a

class. In fact, the only difference between a class and a struct is that by default all members are

public in a struct and private in a class. In all other respects, structures and classes are equivalent.

That is, in C++, a structure defines a class type.

 For example, consider this short program, which uses a structure to declare a class that

controls access to a string:

using namespace std;

struct mystr {

void buildstr(char *s); // public

void showstr();

private: // now go private

char str[255];

} ;

void mystr::buildstr(char *s)

{

if(!*s) *str = '\0'; // initialize string

else strcat(str, s);

}

void mystr::showstr()

{

cout << str << "\n";

}

int main()

{

mystr s;

s.buildstr(""); // init

s.buildstr("Hello ");

s.buildstr("there!");

s.showstr();

return 0;

}

This program displays the string Hello there!.

4

The class mystr could be rewritten by using class as shown here:

class mystr {

char str[255];

public:

void buildstr(char *s); // public

void showstr();

} ;

PROGRAM : STRUCTURES AND CLASSES: LAB PROGRAM WEEK 2

Referencing to a member of class

 When we want to refer to a member of a class we use objects name followed by the dot

operator, followed by the name of the member. This rule applies whether you are accessing a

data member or a function member.

FRIEND FUNCTIONS

 It is possible to grant a non-member function access to the private members of a class by

using a friend. A friend function has access to all private and protected members of the class

for which it is a friend. To declare a friend function, include its prototype within the class,

preceding it with the keyword friend.

PROGRAM 3: FRIEND FUNCTION

#include <iostream>

using namespace std;

class myclass

{

 int a, b;

public:

 friend int sum (myclass x);

 void set_ab (int i, int j);

};

void

myclass::set_ab (int i, int j)

{

 a = i;

 b = j;

}

// Note: sum() is not a member function of any class.

int

sum (myclass x)

{

/* Because sum() is a friend of myclass, it can

directly access a and b. */

5

 return x.a + x.b;

}

int main ()

{

 myclass n;

 n.set_ab (3, 4);

 cout << sum (n);

 return 0;

}

 In this example, the sum() function is not a member of myclass. However, it still has full

access to its private members. Also, notice that sum() is called without the use of the dot

operator. Because it is not a member function, it does not need to be (indeed, it may not be)

qualified with an object's name.

OUTPUT:

7

Circumstances in which friend functions are valuable

1. Friends can be useful when you are overloading certain types of operators

2. Friend functions make the creation of some types of I/O functions easier.

3. Friend functions may be desirable when two or more classes may contain members that are

interrelated relative to other parts of your program.

Friend function for interrelated parts of the program

 Imagine two different classes, each of which displays a pop-up message on the screen

when error conditions occur. Other parts of your program may wish to know if a pop-up message

is currently being displayed before writing to the screen so that no message is accidentally

overwritten. Although you can create member functions in each class that return a value

indicating whether a message is active, this means additional overhead when the condition is

checked (that is, two function calls, not just one). If the condition needs to be checked frequently,

this additional overhead may not be acceptable. However, using a function that is a friend of

each class, it is possible to check the status of each object by calling only this one function. Thus,

in situations like this, a friend function allows you to generate more efficient code.

PROGRAM 4: FRIEND FUNCTION FOR INTERRELATED PARTS OF THE

PROGRAM

#include <iostream>

using namespace std;

const int IDLE = 0;

const int INUSE = 1;

6

class C2; // forward declaration

class C1

{

int status; // IDLE if off, INUSE if on screen

// ...

public:

void set_status (int state);

friend int idle (C1 a, C2 b);

};

class C2

{

int status; // IDLE if off, INUSE if on screen

// ...

public:

void set_status (int state);

friend int idle (C1 a, C2 b);

};

void C1::set_status (int state)

{

 status = state;

}

void C2::set_status (int state)

{

 status = state;

}

int idle (C1 a, C2 b)

{

 if (a.status || b.status)

 return 0;

 else

 return 1;

}

int main ()

{

 C1 x;

 C2 y;

 x.set_status (IDLE);

 y.set_status (IDLE);

 if (idle (x, y))

 cout << "Screen can be used.\n";

 else

 cout << "In use.\n";

 x.set_status (INUSE);

 if (idle (x, y))

7

 cout << "Screen can be used.\n";

 else

 cout << "In use.\n";

 return 0;

}

 this program uses a forward declaration (also called a forward reference) for the class

C2. This is necessary because the declaration of idle() inside C1 refers to C2 before it is

declared. To create a forward declaration to a class, simply use the form shown in this program.

OUTPUT:

Screen can be used.

In use.

A friend of one class may be a member of another.

PROGRAM 5: FRIEND OF ONE CLASS MAY BE MEMBER OF ANOTHER

#include <iostream>

using namespace std;

const int IDLE = 0;

const int INUSE = 1;

class C2; // forward declaration

class C1

{

int status; // IDLE if off, INUSE if on screen

// ...

public:

void set_status (int state);

int idle (C2 b); // now a member of C1

};

class C2

{

int status; // IDLE if off, INUSE if on screen

// ...

public:

void set_status (int state);

friend int C1::idle (C2 b);

};

void C1::set_status (int state)

{

 status = state;

}

void C2::set_status (int state)

8

{

 status = state;

}

// idle() is member of C1, but friend of C2

 int C1::idle (C2 b)

{

 if (status || b.status)

 return 0;

 else

 return 1;

}

int main ()

{

 C1 x;

 C2 y;

 x.set_status (IDLE);

 y.set_status (IDLE);

 if (x.idle (y))

 cout << "Screen can be used.\n";

 else

 cout << "In use.\n";

 x.set_status (INUSE);

 if (x.idle (y))

 cout << "Screen can be used.\n";

 else

 cout << "In use.\n";

 return 0;

}

 Because idle() is a member of C1, it can access the status variable of objects of type

C1 directly. Thus, only objects of type C2 need be passed to idle().

OUTPUT:

Screen can be used.

In use.

Restrictions that apply to friend functions

There are two important restrictions that apply to friend functions.

1. A derived class does not inherit friend functions.

2. Friend functions may not have a storage-class specifier. That is, they may not be declared as

static or extern.

9

Friend Classes

 It is possible for one class to be a friend of another class. When this is the case, the

friend class and all of its member functions have access to the private members defined within

the other class.

 When one class is a friend of another, it only has access to names defined within the

other class. It does not inherit the other class. Specifically, the members of the first class do not

become members of the friend class. Friend classes are seldom used. They are supported to

allow certain special case situations to be handled.

PROGRAM 6: FRIEND CLASSES

#include <iostream>

using namespace std;

class TwoValues

{

int a;

int b;

public:

TwoValues (int i, int j)

 {

 a = i;

 b = j;

 }

friend class Min;

};

class Min

{

public:

int min (TwoValues x);

};

int Min::min (TwoValues x)

{

 return x.a < x.b ? x.a : x.b;

}

int main ()

{

TwoValues ob (10, 20);

Min m;

cout << m.min (ob);

return 0;

}

 class Min has access to the private variables a and b declared within the TwoValues class.

10

OUTPUT:

10

STATIC CLASS MEMBERS

 Both function and data members of a class can be made static. This section explains the

consequences of each.

Static Data Members

 When you precede a member variable's declaration with static, you are telling the

compiler that only one copy of that variable will exist and that all objects of the class will share

that variable. Unlike regular data members, individual copies of a static member variable are not

made for each object. No matter how many objects of a class are created, only one copy of a

static data member exists. Thus, all objects of that class use that same variable. All static

variables are initialized to zero before the first object is created.

 When you declare a static data member within a class, you are not defining it. (That is,

you are not allocating storage for it.) Instead, you must provide a global definition for it

elsewhere, outside the class.

 This is done by redeclaring the static variable using the scope resolution operator to

identify the class to which it belongs. This causes storage for the variable to be allocated.

PROGRAM 7: STATIC DATA MEMBERS

#include <iostream>

using namespace std;

class shared

{

static int a;

int b;

public:

void set (int i, int j)

 {

 a = i;

 b = j;

 }

void show ();

};

int shared::a; // define a

void

shared::show ()

{

 cout << "This is static a: " << a;

 cout << "\nThis is non-static b: " << b;

11

 cout << "\n";

}

int main ()

{

 shared x, y;

 x.set (1, 1); // set a to 1

 x.show ();

 y.set (2, 2); // change a to 2

 y.show ();

 x.show (); /* Here, a has been changed for both x and y

 because a is shared by both objects. */

 return 0;

}

 the integer a is declared both inside shared and outside of it. this is necessary because the

declaration of a inside shared does not allocate storage.

OUTPUT:

This is static a: 1

This is non-static b: 1

This is static a: 2

This is non-static b: 2

This is static a: 2

This is non-static b: 1

 A static member variable exists before any object of its class is created.

Use of a static member variable

1. Used to provide access control to some shared resource used by all objects of a class.

Example:

 We might create several objects, each of which needs to write to a specific disk file. only

one object can be allowed to write to the file at a time. In this case, you will want to declare

a static variable that indicates when the file is in use and when it is free. Each object then

interrogates this variable before writing to the file.

PROGRAM 8: STATIC MEMBER VARIABLE TO PROVIDE ACCESS CONTROL TO

SOME SHARED RESOURCE (USE-1)

#include <iostream>

using namespace std;

 class cl

{

 static int resource;

public:

int get_resource ();

12

void free_resource ()

 {

 resource = 0;

 }

};

int cl::resource; // define resource

int cl::get_resource ()

{

 if (resource)

 return 0; // resource already in use

 else

 {

 resource = 1;

 return 1; // resource allocated to this object

 }

}

int main ()

{

cl ob1, ob2;

if (ob1.get_resource ())

 cout << "ob1 has resource\n";

if (!ob2.get_resource ())

 cout << "ob2 denied resource\n";

ob1.free_resource (); // let someone else use it

 if (ob2.get_resource ())

cout << "ob2 can now use resource\n";

return 0;

}

OUTPUT:

ob1 has resource

ob2 denied resource

ob2 can now use resource

2. Used to keep track of the number of objects of a particular class type that are in existence.

PROGRAM 9: STATIC MEMBER VARIABLE IS TO KEEP TRACK OF THE

NUMBER OF OBJECTS OF A PARTICULAR CLASS TYPE

#include <iostream>

13

using namespace std;

 class Counter

{

public:

static int count;

Counter ()

 {

 count++;

 }

~Counter ()

 {

 count--;

}

};

int Counter::count;

void f ();

int main (void)

{

Counter o1;

cout << "Objects in existence: ";

cout << Counter::count << "\n";

Counter o2;

cout << "Objects in existence: ";

cout << Counter::count << "\n";

f ();

cout << "Objects in existence: ";

cout << Counter::count << "\n";

return 0;

}

void f ()

{

 Counter temp;

 cout << "Objects in existence: ";

 cout << Counter::count << "\n";

 // temp is destroyed when f() returns

}

 the static member variable count is incremented whenever an object is created and

decremented when an object is destroyed. This way, it keeps track of how many objects of type

Counter are currently in existence.

OUTPUT:

Objects in existence: 1

Objects in existence: 2

14

Objects in existence: 3

Objects in existence: 2

3. Using static member variables, you should be able to virtually eliminate any need for global

variables. The trouble with global variables relative to OOP is that they almost always

violate the principle of encapsulation.

Static Member Functions

 Member functions may also be declared as static.

Restrictions on static member functions

1. They may only directly refer to other static members of the class. (Of course, global

functions and data may be accessed by static member functions.)

2. A static member function does not have a this pointer.

3. There cannot be a static and a non-static version of the same function.

4. A static member function may not be virtual.

5. They cannot be declared as const or volatile.

PROGRAM 10: STATIC MEMBER FUNCTIONS

#include <iostream>

using namespace std;

 class cl

{

 static int resource;

 public:

 static int get_resource ();

void free_resource ()

 {

 resource = 0;

 }

};

int cl::resource; // define resource

int cl::get_resource ()

{

if (resource)

 return 0; // resource already in use

else

 {

resource = 1;

return 1; // resource allocated to this object

15

 }

}

int main ()

{

 cl ob1, ob2;

 /* get_resource() is static so may be called independent of any object. */

 if (cl::get_resource ())

 cout << "ob1 has resource\n";

 if (!cl::get_resource ())

 cout << "ob2 denied resource\n";

 ob1.free_resource ();

 if (ob2.get_resource ()) // can still call using object syntax

 cout << "ob2 can now use resource\n";

 return 0;

}

OUTPUT:

ob1 has resource

ob2 denied resource

ob2 can now use resource

Applications

 Static member functions have limited applications, but one good use for them is to

"preinitialize" private static data before any object is actually created.

PROGRAM 11: STATIC MEMBER FUNCTIONS APPLICATION TO

"PREINITIALIZE" PRIVATE STATIC DATA

#include <iostream>

using namespace std;

class static_type

{

 static int i;

 public:

 static void init (int x)

 {

 i = x;

 }

void show ()

16

 {

 cout << i;

}

};

int static_type::i; // define i

int main ()

{

// init static data before object creation

 static_type::init (100);

 static_type x;

 x.show (); // displays 100

 return 0;

}

CONSTRUCTORS AND DESTRUCTORS

 It is very common for some part of an object to require initialization before it can be

used. Because the requirement for initialization is so common, C++ allows objects to initialize

themselves when they are created. This automatic initialization is performed through the use of a

constructor function.

Definition: A constructor is a special function that is a member of a class and has the same name

as that class.

Example:

stack class to initialize a constructor

 // This creates the class stack.

 class stack

 {

 int stck[SIZE];

 int tos;

 public:

 stack(); // constructor

 void push(int i);

 int pop();

 };

stack() constructor is coded as,

 // stack's constructor

 stack::stack()

 {

 tos = 0;

 cout << "Stack Initialized\n";

 }

17

Characteristics

1. Constructors have the same name as that of class.

2. Constructors cannot return values i.e they have no return type.

3. An object's constructor is automatically called when the object is created. This means that it

is called when the objects declaration is executed.

4. An objects constructor is called once for global or static local objects

5. For local objects, the constructor is called each time the object declaration is encountered

6. They should be declared as public.

7. They cannot be inherited or virtual.

8. They can have default arguments.

PROGRAM 13: CONSTRUCTORS AND DESTRUCTORS

#include <iostream>

using namespace std;

#define SIZE 100

// This creates the class stack.

class stack

{

 int stck[SIZE];

 int tos;

 public:

 stack (); // constructor

 ~stack (); // destructor

 void push (int i);

 int pop ();

};

// stack's constructor

stack::stack ()

{

 tos = 0;

 cout << "Stack Initialized\n";

}

// stack's destructor

stack::~stack ()

{

 cout << "Stack Destroyed\n";

}

void stack::push (int i)

{

 if (tos == SIZE)

 {

 cout << "Stack is full.\n";

18

 return;

 }

 stck[tos] = i;

 tos++;

}

int stack::pop ()

{

 if (tos == 0)

 {

 cout << "Stack underflow.\n";

 return 0;

 }

 tos--;

 return stck[tos];

}

int main ()

{

 stack a, b; // create two stack objects

 a.push (1);

 b.push (2);

 a.push (3);

 b.push (4);

 cout << a.pop () << " ";

 cout << a.pop () << " ";

 cout << b.pop () << " ";

 cout << b.pop () << "\n";

 return 0;

}

OUTPUT:

Stack Initialized

Stack Initialized

3 1 4 2

Stack Destroyed

Stack Destroyed

Types of Constructors

 The following are the various types of constructors,

1. Default Constructor

 A constructor that accepts no parameters is called constructor.

 Example:

19

 test :: test()

 {

 }

PROGRAM 14: DEFAULT CONSTRUCTORS

#include <iostream>

using namespace std;

class Cube

{

 public:

 int side;

 Cube()

 {

 side = 10;

 }

};

int main()

{

 Cube c;

 cout << c.side;

}

OUTPUT:

10

2. Parameterized Constructor

 It is possible to pass arguments to constructors. Typically, these arguments help initialize

an object when it is created.

 To create a parameterized constructor, simply add parameters to it the way you would to

any other function. When you define the constructor's body, use the parameters to initialize the

object.

PROGRAM 15: PARAMETERIZED CONSTRUCTOR

#include <iostream>

using namespace std;

 class myclass

20

{

int a, b;

public:

myclass (int i, int j)

 {

 a = i;

 b = j;

 }

void show ()

 {

 cout << a << " " << b;

}

};

int main ()

{

 myclass ob (3, 5);

 ob.show ();

 return 0;

}

OUTPUT:

3 5

The most common way to specify arguments when you declare an object that uses a

parameterized constructor is , myclass ob(3, 4); causes an object called ob to be created and

passes the arguments 3 and 4 to the i and j parameters of myclass(). You may also pass

arguments using this type of declaration statement:

 myclass ob = myclass(3, 4);

PROGRAM 16: PARAMETERIZED CONSTRUCTOR

#include <iostream>

using namespace std;

class Employee

{

 public:

 int id;//data member (also instance variable)

 string name;//data member(also instance variable)

 float salary;

 Employee(int i, string n, float s)

 {

 id = i;

21

 name = n;

 salary = s;

 }

 void display()

 {

 cout<<id<<" "<<name<<" "<<salary<<endl;

 }

};

int main(void)

{

 Employee e1 =Employee(101, "Son", 890000); //creating an object of Employee

 Employee e2=Employee(102, "moon", 59000);

 e1.display();

 e2.display();

 return 0;

}

OUTPUT:

101 Son 890000

102 moon 59000

When useful

 Parameterized constructors are very useful because they allow you to avoid having to

make an additional function call simply to initialize one or more variables in an object. Each

function call you can avoid makes your program more efficient.

Constructors with One Parameter: A Special Case

 If a constructor only has one parameter, there is a third way to pass an initial value to that

constructor.

For example, consider the following short program.

 #include <iostream>

 using namespace std;

 class X

 {

 int a;

 public:

 X(int j)

 {

 a = j;

 }

 int geta()

 {

 return a;

 }

 };

22

 int main()

 {

 X ob = 99; // passes 99 to j

 cout << ob.geta(); // outputs 99

 return 0;

 }

 99 is automatically passed to the j parameter in the X() constructor. That is, the

declaration statement is handled by the compiler as if it were written like this:

 X ob = X(99);

 In general, any time you have a constructor that requires only one argument, you can use

either ob(i) or ob = i to initialize an object. The reason for this is that whenever you create a

constructor that takes one argument, you are also implicitly creating a conversion from the type

of that argument to the type of the class.

PROGRAM 17: PARAMETERIZED CONSTRUCTOR WITH ONE PARAMETER

#include <iostream>

using namespace std;

 class X

{

 int a;

 public:

 X (int j)

 {

 a = j;

 }

 int geta ()

 {

 return a;

 }

};

int main ()

{

 X ob = 99; // passes 99 to j

 cout << ob.geta (); // outputs 99

 return 0;

}

OUTPUT:

99

23

PROGRAM 18: PARAMETERIZED CONSTRUCTOR WITH ONE PARAMETER

#include <iostream>

using namespace std;

class Cube

{

 public:

 int side;

 Cube(int x)

 {

 side=x;

 }

};

int main()

{

 Cube c1(10);

 Cube c2(20);

 Cube c3(30);

 cout << c1.side<<endl;

 cout << c2.side<<endl;

 cout << c3.side<<endl;

}

OUTPUT:

10

20

30

