
1

UNIT - IV

C++ I/O

C++ supports two complete I/O systems.

 Inherits from C.

 Object-oriented I/O system defined by C++

NOTE: C++ programs can also use the C++-style header #include<cstdio>

 .

I/O using C functions

It includes,

 Console I/O

 Streams

 Files

Console I/O

 This can be divided into Unformatted and Formatted Console I/O.

Unformatted Console I/O

a. Reading and Writing Characters

 The simplest of the console I/O functions are getchar() and putchar().

getchar() : It reads a character from the keyboard. It waits until a key is pressed and then returns its

value. The key pressed is also automatically echoed to the screen.

Prototype: int getchar(void);

putchar(): It prints or writes a character to the screen at the current cursor position.

Prototype: int putchar(int c);

Program:

#include <iostream>

#include<cstdio>

using namespace std;

int main()

{

char ch;

cout<<"\n Enter a character in lower case: ";

ch = getchar();

cout<<"\nThe entered character is ";

putchar(ch);

cout<<"\nCharacter in UPPER CASE: ";

putchar(ch - 32);

return 0;

}

Output:

Enter a character in lower case: t

The entered character is t

Character in UPPER CASE: T

b. Alternatives to getchar()

 getchar() is not useful in an interactive environment. Two of the most common alternative

functions, getch() and getche()

2

getch() : It waits for a keypress, after which it returns immediately. It does not echo the character to

the screen.

Prototype: int getch(void);

getche() : It is the same as getch(), but the key is echoed.

Prototype: int getche(void);

c. Reading and Writing Strings

gets() : It reads a string of characters entered at the keyboard and places them at the address pointed

to by its argument. You may type characters at the keyboard until you press ENTER. The carriage

return does not become part of the string; instead, a null terminator is placed at the end and gets()

returns.

Prototype: char *gets(char *str);

Problem with gets() : It performs no boundary checks on the array that is receiving input. Thus, it is

possible for the user to enter more characters than the array can hold. One alternative is the fgets()

function.

puts(): It writes its string argument to the screen followed by a newline.

Prototype: int puts(const char *str);

Program:

include <iostream>

#include<cstdio>

using namespace std;

int main()

{

 char str[100];

 cout << "Enter a string: ";

 gets(str);

 cout << "You entered: " << str;

 char str1[] = "Happy New Year";

 char str2[] = "Happy Birthday";

 puts(str1);

 /* Printed on new line since '/n' is added */

 puts(str2);

 return 0;

}

Output:

main.cpp:18:5: warning: ‘char* gets(char*)’ is deprecated [-Wdeprecated-declarations]

/usr/include/stdio.h:638:14: note: declared here

main.cpp:18:13: warning: ‘char* gets(char*)’ is deprecated [-Wdeprecated-declarations]

/usr/include/stdio.h:638:14: note: declared here

main.cpp:(.text+0x31): warning: the `gets' function is dangerous and should not be used.

Enter a string: rt

You entered: rtHappy New Year

Happy Birthday

3

Formatted Console I/O

 The functions printf() and scanf() perform formatted output and input. Both functions can

operate on any of the built-in data types, including characters, strings, and numbers.

printf(): It writes data to the console.

Prototype: int printf(const char *control_string, ...);

 The control_string consists of two types of items. The first type is composed of characters

that will be printed on the screen. The second type contains format specifiers that define the way the

subsequent arguments are displayed. A format specifier begins with a percent sign and is followed by

the format code.

scanf(): Its reads data from the keyboard.

Prototype: int scanf(const char *control_string, ...);

4

 The control_string determines how values are read into the variables pointed to in the

argument list. The control string consists of three classifications of characters:

 Format specifiers

 White-space characters

 Non-white-space characters

Format specifiers

 The input format specifiers are preceded by a % sign and tell scanf() what type of data is to

be read next.

White-space characters

 A white-space character in the control string causes scanf() to skip over one or more leading

white-space characters in the input stream. A white-space character is a space, a tab, vertical tab, form

feed, or a newline.

Non-white-space characters

 A non-white-space character in the control string causes scanf() to read and discard matching

characters in the input stream. For example, "%d,%d" causes scanf() to read an integer, read and

discard a comma, and then read another integer

Program:

#include<iostream>

#include<cstdio>

using namespace std;

int main()

{

int f;

printf(" ff");

scanf("%d",f);

printf(f);

return 0;

}

5

Output: ff f

Streams

 The C file system is designed to work with a wide variety of devices, including terminals,

disk drives, and tape drives. The file system transforms each into a logical device called a stream.

There are two types of streams: text and binary.

 Text Streams

 A text stream is a sequence of characters. Standard C allows (but does not require) a text

stream to be organized into lines terminated by a newline character.

 Certain character translations may occur as required by the host environment. For example, a

newline may be converted to a carriage return/linefeed pair. Therefore, there may not be a one-to-one

relationship between the characters that are written (or read) and those on the external device. Also,

because of possible translations, the number of characters written (or read) may not be the same as

those on the external device.

 Binary Streams
 A binary stream is a sequence of bytes that have a one-to-one correspondence to those in the

external device that is, no character translations occur. Also, the number of bytes written (or read) is

the same as the number on the external device.

The Standard Streams

As it relates to the C file system, when a program starts execution, three streams are opened

automatically. They are stdin (standard input), stdout (standard output), and stderr (standard error).

Using freopen() to Redirect the Standard Streams

You can redirect the standard streams by using the freopen() function. This function associates an

existing stream with a new file. Thus, you can use it to associate a standard stream with a new file.

Prototype: FILE *freopen(const char *filename, const char *mode, FILE *stream);

filename is a pointer to the filename you wish associated with the stream pointed to by stream.

The file is opened using the value of mode, which may have the same values as those used with

fopen(). freopen() returns stream if successful or NULL on failure.

Program

#include <cstdio>

#include <cstdlib>

int main()

{

FILE* fp = fopen("test1.txt","w");

fprintf(fp,"%s","This is written to test1.txt");

if (freopen("test2.txt","w",fp))

fprintf(fp,"%s","This is written to test2.txt");

else

{

printf("freopen failed");

exit(1);

}

fclose(fp);

return 0;

}

6

Output:

Files

In C/C++, a file may be anything from a disk file to a terminal or printer. Each stream that is

associated with a file has a file control structure of type FILE.

 File System Basics

The C file system is composed of several interrelated functions. C++ programs may also

use the C++-style header <cstdio>.

 The File Pointer

The file pointer is the common thread that unites the C I/O system. A file pointer is a pointer

to a structure of type FILE. It points to information that defines various things about the file,

including its name, status, and the current position of the file.

In order to read or write files, your program needs to use file pointers

Prototype : FILE *fp;

File Operations

 fopen() : It opens a stream for use and links a file with that stream. Then it returns the file pointer

associated with that file.

Prototype: FILE *fopen(const char *filename, const char *mode);

where filename is a pointer to a string of characters that make up a valid filename and may

include a path specification.

The legal values for mode are,

 fclose(): It closes a stream that was opened by a call to fopen().

Prototype: int fclose(FILE *fp);

where fp is the file pointer returned by the call to fopen(). The function returns EOF if an

error occurs.

Program:

#include <cstdio>

#include <cstring>

7

#include<iostream>

using namespace std;

int main()

{

int c;

FILE *fp;

fp = fopen("file.txt", "w+r");

char str[20] = "Hello World!";

if (fp)

{

for(int i=0; i<strlen(str); i++)

putc(str[i],fp);

}

fclose(fp);

}

Output:

Hello World!

 putc() and fputc()

These two equivalent functions writes characters to a file that was previously opened for writing

using the fopen() function.

Prototype : int putc(int ch, FILE *fp);

where fp is the file pointer returned by fopen() and ch is the character to be output. The file

pointer tells putc() which file to write to.

If a putc() operation is successful, it returns the character written. Otherwise, it returns EOF.

Program:

#include <cstdio>

#include <cstring>

#include<iostream>

using namespace std;

int main()

{

char str[] = "Testing putc() function";

FILE *fp;

fp = fopen("file.txt","w");

if (fp)

{

for(int i=0; i<strlen(str); i++)

{

putc(str[i],fp);

}

for(int i=0; i<strlen(str); i++)

{

fputc(str[i],fp);

}

}

else

perror("File opening failed");

8

fclose(fp);

return 0;

}

Output:

Testing putc() functionTesting putc() function

 getc() and fgetc()

These two equivalent functions reads characters from a file opened in read mode by fopen().

Prototype : int getc(FILE *fp);

where fp is a file pointer of type FILE returned by fopen(). The getc() function returns an

EOF when the end of the file has been reached. getc() also returns EOF if an error occurs.

Program:

#include <cstdio>

#include <cstring>

#include<iostream>

using namespace std;

int main()

{

int c;

FILE *fp;

fp = fopen("file.txt","r");

if (fp)

{

while(feof(fp) == 0)

{

c = getc(fp);

putchar(c);

}

while(feof(fp) == 0)

{

c = fgetc(fp);

putchar(c);

}

}

else

perror("File opening failed");

fclose(fp);

return 0;

}

Output:

Testing putc() functionTesting putc() function

 feof(): It determines when the end of the file has been encountered.

Prototype: int feof(FILE *fp);

feof() returns true if the end of the file has been reached; otherwise, it returns 0.

9

 fputs() and fgets()

These functions work just like putc() and getc(), but instead of reading or writing a single

character, they read or write strings.

Prototypes:
int fputs(const char *str, FILE *fp);

char *fgets(char *str, int length, FILE *fp);

The fputs() function writes the string pointed to by str to the specified stream. It returns EOF

if an error occurs.

The fgets() function reads a string from the specified stream until either a newline character

is read or length −1 characters have been read.

Program:

#include <cstdio>

#include <cstring>

#include<iostream>

using namespace std;

int main()

{

int count = 10;

char str[10];

FILE *fp;

fp = fopen("file.txt","w+");

fputs("An example file\n", fp);

fputs("Filename is file.txt\n", fp);

rewind(fp);

while(feof(fp) == 0)

{

 fgets(str,count,fp);

 cout << str << endl;

 }

fclose(fp);

return 0;

}

Output:

An exampl

e file

Filename

is file.t

xt

xt

 rewind()

The rewind() function resets the file position indicator to the beginning of the file specified as its

argument. That is, it "rewinds" the file.

Prototype: void rewind(FILE *fp);

10

where fp is a valid file pointer.

Program:

#include <cstdio>

#include <cstring>

#include<iostream>

using namespace std;

int main()

{

int c;

FILE *fp;

fp = fopen("file.txt", "r+w");

if (fp)

{

while ((c = getc(fp)) != EOF)

putchar(c);

rewind(fp);

putchar('\n');

while ((c = getc(fp)) != EOF)

putchar(c);

}

fclose(fp);

return 0;

}

Output:

welcome

welcome

 ferror()

The ferror() function determines whether a file operation has produced an error.

Prototype: int ferror(FILE *fp);

where fp is a valid file pointer. It returns true if an error has occurred during the last file

operation; otherwise, it returns false.

Program:

#include <cstdio>

#include <cstring>

#include<iostream>

using namespace std;

int main()

{

int ch;

FILE* fp;

fp = fopen("file.txt","w");

if(fp)

{

ch = getc(fp);

if (ferror(fp))

cout << "Can't read from file";

}

11

fclose (fp);

return 0;

}

Output:

Can't read from file

 remove()
The remove() function erases the specified file.

Prototype: int remove(const char *filename);

It returns zero if successful; otherwise, it returns a nonzero value.

Program:

#include <cstdio>

#include <cstring>

#include<iostream>

using namespace std;

int main()

{

char filename[] = "file.txt";

/*Deletes the file if exists */

if (remove(filename) != 0)

perror("File deletion failed");

else

cout << "File deleted successfully";

return 0;

}

Output:

File deleted successfully

 fflush()
If you wish to flush the contents of an output stream, use the fflush() function.

Prototype: int fflush(FILE *fp);

Program:

#include <cstdio>

#include <cstring>

#include<iostream>

using namespace std;

int main()

{

int x;

char buffer[1024];

setvbuf(stdout, buffer, _IOFBF, 1024);

printf("Enter an integer - ");

fflush(stdout);

scanf("%d",&x);

printf("You entered %d", x);

return(0);

}

12

Output:

Enter an integer - 89

You entered 89

 fread() and fwrite().

These functions allow the reading and writing of blocks of any type of data.

Prototypes:

size_t fread(void *buffer, size_t num_bytes, size_t count, FILE *fp);

size_t fwrite(const void *buffer, size_t num_bytes, size_t count, FILE *fp);

For fread(), buffer is a pointer to a region of memory that will receive the data from the file.

For fwrite(), buffer is a pointer to the information that will be written to the file. The value of count

determines how many items are read or written, with each item being num_bytes bytes in length.

Finally, fp is a file pointer to a previously opened stream.

The fread() function returns the number of items read. This value may be less than count if

the end of the file is reached or an error occurs. The fwrite() function returns the number of items

written. This value will equal count unless an error occurs.

Program:

#include <cstdio>

#include <cstring>

#include<iostream>

using namespace std;

int main()

{

int retVal;

FILE *fp;

char buffer[] = "Writing to a file using fwrite.";

fp = fopen("data.txt","wb");

retVal = fwrite(buffer,sizeof(buffer),1,fp);

cout << "fwrite returned " << retVal;

return 0;

}

Output:

fwrite returned 1

Program:

#include <cstdio>

#include <cstring>

#include<iostream>

using namespace std;

int main()

{

 FILE *fp;

 char buffer[100];

 fp = fopen("data.txt","rb");

 while(!feof(fp))

 {

13

 fread(buffer,sizeof(buffer),1,fp);

 cout << buffer;

 }

 return 0;

}

Output:

Writing to a file using fwrite.

Program:

#include <cstdio>

#include <cstring>

#include<iostream>

using namespace std;

int main()

{

FILE *fp;

double d = 12.23;

int i = 101;

long l = 123023L;

if((fp=fopen("test", "wb+"))==NULL)

{

printf("Cannot open file.\n");

exit(1);

}

fwrite(&d, sizeof(double), 1, fp);

fwrite(&i, sizeof(int), 1, fp);

fwrite(&l, sizeof(long), 1, fp);

rewind(fp);

fread(&d, sizeof(double), 1, fp);

fread(&i, sizeof(int), 1, fp);

fread(&l, sizeof(long), 1, fp);

printf("%f %d %ld", d, i, l);

fclose(fp);

return 0;

}

Output:

12.230000 101 123023

 fseek()

You can perform random-access read and write operations using the C I/O system with the help of

fseek(), which sets the file position indicator.

Prototype : int fseek(FILE *fp, long int numbytes, int origin);

Here, fp is a file pointer returned by a call to fopen(). numbytes is the number of bytes from

origin that will become the new current position, and origin is one of the following macros:

Origin Macro Name

Beginning of file SEEK_SET

Current position SEEK_CUR

End of file SEEK_END

Program:

#include <cstdio>

14

#include <cstring>

#include<iostream>

using namespace std;

int main(int argc, char *argv[])

{

 FILE * pFile;

 pFile = fopen ("example.txt" , "wb");

 fputs ("This is an apple." , pFile);

 fseek (pFile , 9 , SEEK_SET);

 fputs (" sam" , pFile);

 fclose (pFile);

 return 0;

}

Output:

After this code is successfully executed, the file example.txt contains:

 This is a sample.

 fprintf() and fscanf()

These functions behave exactly like printf() and scanf() except that they operate with files.

Prototypes:

int fprintf(FILE *fp, const char *control_string,. . .);

int fscanf(FILE *fp, const char *control_string,. . .);

where fp is a file pointer returned by a call to fopen(). fprintf() and fscanf() direct their I/O

operations to the file pointed to by fp.

Program:

#include <cstdio>

#include <cstring>

#include<iostream>

using namespace std;

int main(int argc, char *argv[])

{

FILE *fp;

char name[50];

int age;

fp = fopen("example.txt","w");

fprintf(fp, "%s %d", "Tim", 9);

fclose(fp);

fp = fopen("example.txt","r");

fscanf(fp, "%s %d", name, &age);

fclose(fp);

printf("Hello %s, You are %d years old\n", name, age);

return 0;

}

Output:

Hello Tim, You are 9 years old

15

Object-oriented I/O system defined by C++

C++ Streams

The C++ I/O system operates through streams. A stream is a logical device that either

produces or consumes information.

A stream is linked to a physical device by the I/O system. All streams behave the same, the

same I/O functions can operate

Stream classes’ hierarchy

Standard C++ provides support for its I/O system in <iostream> header, which gives a set of

class hierarchies is defined that supports I/O operations.

The C++ I/O system is built upon two related but different class hierarchies.

 basic_streambuf
Low-level I/O class is called basic_streambuf. This class supplies the basic, low-level input and

output operations, and provides the underlying support for the entire C++ I/O system. Unless you are

doing advanced I/O programming, you will not need to use basic_streambuf directly.

 basic_ios
The class hierarchy that you will most commonly be working with is derived from basic_ios.

This is a high-level I/O class that provides formatting, error checking, and status information

related to stream I/O.

 ios_base
A base class for basic_ios is called ios_base. basic_ios is used as a base for several derived

classes, including basic_istream, basic_ostream, and basic_iostream. These classes are used to

create streams capable of input, output, and input/output, respectively.

16

istream_withassign, ostream_withassign and iostream_withassign add assignment operators

to these classes.

Class hierarchies for 8-bit characters and wide characters.

C++'s Predefined Streams

When a C++ program begins execution, four built-in streams are automatically opened.

They are:

 Stream Meaning Default Device

 cin Standard input Keyboard

 cout Standard output Screen

 cerr Standard error output Screen

 clog Buffered version of cerr Screen

Streams cin, cout, and cerr correspond to C's stdin, stdout, and stderr. By default, the

standard streams are used to communicate with the console.

 Standard C++ also defines these four additional streams: win, wout, werr, and wlog. These

are wide-character versions of the standard streams. Wide characters are of type wchar_t and are

generally 16-bit quantities. Wide characters are used to hold the large character sets associated with

some human languages.

Operator Overloading

Overloading << and >>

<< and the >> operators are overloaded in C++ to perform I/O. the << output operator is

referred to as the insertion operator because it inserts characters into a stream. Likewise, the >> input

operator is called the extraction operator because it extracts characters from a stream. The functions

that overload the insertion and extraction operators are generally called inserters and extractors,

respectively.

Creating Your Own Inserters

It is quite simple to create an inserter for a class that you create.

General form:

ostream &operator<<(ostream &stream, class_type obj)

17

{

// body of inserter

return stream;

}

The function returns a reference to a stream of type ostream. The first parameter to the

function is a reference to the output stream. The second parameter is the object being inserted.

Within an inserter function, you may put any type of procedures or operations that you want.

inserters cannot be members of the class for which they are defined seems to be a serious problem

because they cannot access the private elements of a class. Solution is to Make the inserter a friend of

the class

An inserter need not be limited to handling only text. An inserter can be used to output data in

any form like CAD plotters, graphics images, dialog boxes etc.

Creating Your Own Extractors

Extractors are the complement of inserters.

General form
istream &operator>>(istream &stream, class_type &obj)

{

// body of extractor

return stream;

}

Extractors return a reference to a stream of type istream, which is an input stream. The first

parameter must also be a reference to a stream of type istream. The second parameter must be a

reference to an object of the class for which the extractor is overloaded. This is so the object can be

modified by the input (extraction) operation.

Program:

#include <iostream>

#include <cstring>

using namespace std;

class Box

{

double height;

double width;

double vol ;

public :

friend istream & operator >> (istream &, Box &);

friend ostream & operator << (ostream &, Box &);

};

istream & operator >> (istream &stream, Box &b)

{

cout << "Enter Box Height: " ; stream >> b.height ;

cout << "Enter Box Width : " ; stream >> b.width ;

return (stream) ;

}

ostream & operator << (ostream &stream, Box &b)

{

stream << endl << endl;

stream << "Box Height : " << b.height << endl ;

18

stream << "Box Width : " << b.width << endl ;

b.vol = b.height * b.width ;

stream << "The Volume of Box : " << b.vol << endl;

return(stream) ;

}

 int main()

 {

Box b1;

cin >> b1;

cout << b1;

}

Output:

Enter Box Height: 1

Enter Box Width : 2

Box Height : 1

Box Width : 2

The Volume of Box : 2

Creating Your Own Manipulator Functions

We can customize C++'s I/O system by creating your own manipulator functions. Custom

manipulators are important for two main reasons.

 You can consolidate a sequence of several separate I/O operations into one manipulator.

 When you need to perform I/O operations on a nonstandard device. For example, you might use a

manipulator to send control codes to a special type of printer or to an optical recognition system.

Types of manipulators

There are two basic types of manipulators:

 Those that operate on input streams

 Those that operate on output streams.

Apart from this , there is one more classification,

 Manipulators that take an argument

The procedures necessary to create a parameterized manipulator vary widely from compiler to

compiler, and even between two different versions of the same compiler. For this reason, you must

consult the documentation to your compiler for instructions on creating parameterized manipulators

 Manipulators that don't.take an argument

The creation of parameterless manipulators is straightforward and the same for all

compilers.

General Form

ostream &manip-name(ostream &stream)

{

// your code here

return stream;

}

manip-name is the name of the manipulator. a reference to a stream of type ostream is

returned. This is necessary if a manipulator is used as part of a larger I/O expression.

Using an output manipulator is particularly useful for sending special codes to a device. For

example, a printer may be able to accept various codes that change the type size or font, or that

19

position the print head in a special location. If these adjustments are going to be made frequently, they

are perfect candidates for a manipulator.

General Form

istream &manip-name(istream &stream)

{

// your code here

return stream;

}

An input manipulator receives a reference to the stream for which it was invoked. This stream

must be returned by the manipulator.

Program:

#include <iostream>

#include <iomanip>

#include <string>

#include <cctype>

using namespace std;

// A simple output manipulator that sets the fill character to * and sets the field width to 10.

ostream &star_fill(ostream &stream)

{

 stream << setfill('*') << setw(10);

 return stream;

}

// A simple input manipulator that skips leading digits.

istream &skip_digits(istream &stream)

{

char ch;/*w w w . j ava 2s.c o m*/

do

{

ch = stream.get();

} while(!stream.eof() && isdigit(ch));

if(!stream.eof()) stream.unget();

return stream;

}

int main()

{

string str;

// Demonstrate the custom output manipulator.

cout << 512 << endl;

cout << star_fill << 512 << endl;

// Demonstrate the custom input manipulator.

cout << "Enter some characters: ";

cin >> skip_digits >> str;

cout << "Contents of str: " << str;

 return 0;

}

Output:

512

*******512

Enter some characters: abc

20

Contents of str: abc

File streams and String streams

String streams

C++ provides a <sstream> header , which uses the same public interface to support I/O

between a program and string object.

The string streams is based on istringstream(subclass of istream), and

ostringstream(subclass of ostream) and bidirectional stringstream(subclass of iostream),

General Form:

typedef basic_istringstream<char>istringstream;

typedef basic_ostringstream<char>ostringstream;

Stream input can be used to validate input data,stream output can be used to format the output.

Ostringstream constructors

explicit ostringstream(ios::openmode mode=ios::out);//default with empty string

explicit ostringstream(const string &str, ios::openmode

mode=ios::out);//with initial str

string str() const;//get contents

void str(const string &s)//set contents

Example:

ostringstream sout;

//write into string buffer

sout<<”apple”<<endl;

sout<<”orange”<<endl;

//get contents

cout<<sout.str()<<endl;

ostringstream is responsible for dynamic memory allocation and management.

istringstream constructors

explicit istringstream(ios::openmode mode=ios::in); //default with empty string

explicit istringstream(const string &str, ios::openmode mode=ios::in); //with initial str

Example:

istringstream sin(“123 12.34 hello”);

//read from buffer

int I;

double d;

string s;

sin>>i>>d>>s;

cout<<i<<”,”<<d<<”,”<<s<<endl;

stringstream constructors
explicit stringstream(ios::openmode mode = ios::in | ios::out);

explicit stringstream(const string &str,

ios::openmode mode = ios::in | ios::out);

Program:

// Demonstrate string streams.

#include <iostream>

#include <sstream>

using namespace std;

21

int main()

{

stringstream s("This is initial string.");

// get string

string str = s.str();

cout << str << endl;

// output to string stream

s << "Numbers: " << 10 << " " << 123.2;

int i;

double d;

s >> str >> i >> d;

cout << str << " " << i << " " << d;

return 0;

}

Output:

This is initial string.

Numbers: 10 123.2

File streams

Formatted file streams

To perform file I/O, you must include the header <fstream> in your program. It defines

several classes, including ifstream, ofstream, and fstream. These classes are derived from istream,

ostream, and iostream, respectively. Remember, istream, ostream, and iostream are derived from

ios, so ifstream, ofstream, and fstream also have access to all operations defined by ios

Opening and Closing a File

open()

In C++, you open a file by linking it to a stream. Before you can open a file, you must first

obtain a stream.

There are three types of streams:

Input

To create an input stream, you must declare the stream to be of class ifstream.

Output

To create an output stream, you must declare it as class ofstream.

Input/Output

Streams that will be performing both input and output operations must be declared as class

fstream.

General form for creating streams

ifstream in; // input

ofstream out; // output

fstream io; // input and output

Once you have created a stream, one way to associate it with a file is by using open(). This

function is a member of each of the three stream classes.

Prototype:

void ifstream::open(const char *filename, ios::openmode mode = ios::in);

void ofstream::open(const char *filename, ios::openmode mode = ios::out | ios::trunc);

void fstream::open(const char *filename, ios::openmode mode = ios::in | ios::out);

22

filename is the name of the file; it can include a path specifier. The value of mode determines how

the file is opened. It must be one or more of the following values

 ios::app : Including ios::app causes all output to that file to be appended to the end. This

value can be used only with files capable of output.

 ios::ate : Including ios::ate causes a seek

to the end of the file to occur when the file is opened.

 ios::in : The ios::in value specifies that the file is capable of input.

 ios::out : The ios::out value specifies that the file is capable of output.

 ios::binary : The ios::binary value causes a file to be opened in binary mode. By default, all files

are opened in text mode.

 ios::trunc : The ios::trunc value causes the contents of a preexisting file by the same name to be

destroyed, and the file is truncated to zero length.

Checking open() is successful or not

a. If open() fails, the stream will evaluate to false when used in a Boolean expression. Therefore,

before using a file, you should test to make sure that the open operation succeeded.

Example:

 if(!mystream) {

cout << "Cannot open file.\n";

// handle error

}

b. You can also check to see if you have successfully opened a file by using the is_open() function,

which is a member of fstream, ifstream, and ofstream.

Prototype:

bool is_open();

It returns true if the stream is linked to an open file and false otherwise.

Example:

if(!mystream.is_open()) {

cout << "File is not open.\n";

// ...

close()
To close a file, use the member function close()

Prototype: mystream.close();

The close() function takes no parameters and returns no value.

Reading and Writing Text Files

It is very easy to read from or write to a text file. Simply use the << and >> operators the

same way you do when performing console I/O, except that instead of using cin and cout, substitute a

stream that is linked to a file.

Program:

#include <iostream>

#include <fstream>

using namespace std;

int main()

{

ifstream in("INVNTRY"); // input

if(!in)

{

cout << "Cannot open INVENTORY file.\n";

return 1;

23

}

char item[20];

float cost;

in >> item >> cost;

cout << item << " " << cost << "\n";

in >> item >> cost;

cout << item << " " << cost << "\n";

in >> item >> cost;

cout << item << " " << cost << "\n";

in.close();

ofstream out;

out.open("INVNTRY");// output, normal file

if(!out)

{

cout << "Cannot open INVENTORY file.\n";

return 1;

}

out << "Radios " << 39.95 << endl;

out << "Toasters " << 19.95 << endl;

out << "Mixers " << 24.80 << endl;

out.close();

return 0;

}

Output:

Radios 39.95

Toasters 19.95

Mixers 24.8

Unformatted and Binary I/O

There will be times when you need to store unformatted (raw) binary data, not text. When

performing binary operations on a file , openshould use ios::binary mode specifier

 get()
get() will read a character

General form: istream &get(char &ch);

reads a single character and puts that value in ch. It returns a reference to the stream

Overloading of get()

The get() function is overloaded in several different ways.

 Prototypes:
istream &get(char *buf, streamsize num);

reads characters into the array pointed to by buf until either num-1

istream &get(char *buf, streamsize num, char delim);

reads characters into the array pointed to by buf until either num-1 characters have been read,

the character specified by delim has been found, or the end of the file has been encountered.

int get();

returns the next character from the stream

 put()
put() will write a character.

24

General form: ostream &put(char ch);

writes ch to the stream and returns a reference to the stream.

 read() and write()

Used to read and write blocks of binary data.

Prototypes:

istream &read(char *buf, streamsize num);

reads num characters from the invoking stream and puts them in the buffer pointed to by buf.

ostream &write(const char *buf, streamsize num);

writes num characters to the invoking stream from the buffer pointed to by buf.

 getline()

It also performs input. It is a member of each input stream class.

Prototypes:

istream &getline(char *buf, streamsize num);

reads characters into the array pointed to by buf until either num-1

istream &getline(char *buf, streamsize num, char delim);

reads characters into the array pointed to by buf until either num−1 characters have been read,

the character specified by delim has been found

 Detecting EOF

You can detect when the end of the file is reached by using the member function eof()

Prototype: bool eof();

It returns true when the end of the file has been reached; otherwise it returns false.

 ignore() Function

You can use the ignore() member function to read and discard characters from the input stream.

Prototype:

istream &ignore(streamsize num=1, int_type delim=EOF);

It reads and discards characters until either num characters have been ignored (1 by default) or

the character specified by delim is encountered (EOF by default).

 peek()
You can obtain the next character in the input stream without removing it from that stream by

using peek().

Prototype: int_type peek();

It returns the next character in the stream or EOF if the end of the file is encountered.

 putback()
You can return the last character read from a stream to that stream by using putback().

Prototype : istream &putback(char c);

where c is the last character read.

 flush()
We can force the information to be physically written to disk before the buffer is full by calling

flush().

Prototype: ostream &flush();

Random Access

You perform random access by using the seekg() and seekp().

 seekg()

The seekg() function moves the associated file's current get pointer offset number

25

of characters from the specified origin, which must be one of these three values:

ios::beg Beginning-of-file

ios::cur Current location

ios::end End-of-file

Prototype: istream &seekg(off_type offset, seekdir origin);

 seekp()

The seekp() function moves the associated file's current put pointer offset number of

characters from the specified origin

Prototype: ostream &seekp(off_type offset, seekdir origin);

Obtaining the Current File Position

You can determine the current position of each file pointer by using these functions:

Prototypes: pos_type tellg();

 pos_type tellp();

Here, pos_type is a type defined by ios that is capable of holding the largest value that

either function can return.

You can use the values returned by tellg() and tellp() as arguments to the following forms of

seekg() and seekp(), respectively.

istream &seekg(pos_type pos);

ostream &seekp(pos_type pos);

Error handling during files operations

 We have been opening and using the files for reading and writing on the assumption that

everything is fine with the files. This may not be true always true.

 For instance, one of the following things may happen when dealing with the files,

1. A file which we are attempting to open for reading does not exists

2. The file name used for a new file may already exists

3. We may attempt an invalid operation such as reading past the EOF.

4. There may not be any space in the disk for storing more data.

5. We may use an invalid file name.

6. We may attempt to perform an operation when the file is not opened for that purpose.

We can handle these types of error situations in the following ways,

a. I/O Status

The C++ I/O system maintains status information about the outcome of each I/O operation. The

current state of the I/O system is held in an object of type iostate, which is an enumeration defined by

ios that includes the following members.

Name Meaning

ios::goodbit No error bits set

ios::eofbit 1 when end-of-file is encountered; 0 otherwise

ios::failbit 1 when a (possibly) nonfatal I/O error has occurred;0 otherwise

ios::badbit 1 when a fatal I/O error has occurred; 0 otherwise

There are two ways in which you can obtain I/O status information.

 Call the rdstate() function.

Prototype: iostate rdstate();

It returns the current status of the error flags.

 We can determine if an error has occurred is by using one or more of these functions:

bool bad(); The bad() function returns true if badbit is set.

bool eof(); returns true when end of the file has reached

bool fail(); The fail() returns true if failbit is set.

26

bool good(); The good() function returns true if there are no errors. Otherwise, it returns

false.

Clearing an Error

Once an error has occurred, it may need to be cleared before your program continues.

To do this, use the clear() function.

Prototype: void clear(iostate flags=ios::goodbit);

If flags is goodbit (as it is by default), all error flags are cleared. Otherwise, set flags as you

desire.

Formatted I/O.

The C++ I/O system allows you to format I/O operations. There are two related but

conceptually different ways that you can format data.

1. Directly access members of the ios class.(flags and functions in ios class)

2. Special functions called manipulators

Formatting Using the ios Members

Each stream has associated with it a set of format flags that control the way information is

formatted.

a. Flags

The ios class declares a bitmask enumeration called fmtflags in which the following values are

defined.

 When the skipws flag is set, leading white-space characters (spaces, tabs, and newlines) are

discarded when performing input on a stream. When skipws is cleared, white-space characters

are not discarded.

 When the left flag is set, output is left justified.

 When right is set, output is right justified.

 When the internal flag is set, a numeric value is padded to fill a field by inserting spaces

between any sign or base character.

 oct flag causes output to be displayed in octal.

 Setting the hex flag causes output to be displayed in hexadecimal.

 To return output to decimal, set the dec flag.

 Setting showbase causes the base of numeric values to be shown. For example, if the conversion

base is hexadecimal, the value 1F will be displayed as 0x1F.

 By default, when scientific notation is displayed, the e is in lowercase. Also, when a hexadecimal

value is displayed, the x is in lowercase. When uppercase is set, these characters are displayed

in uppercase.

 Setting showpos causes a leading plus sign to be displayed before positive values.

 Setting showpoint causes a decimal point and trailing zeros to be displayed for all floating-point

output—whether needed or not.

 By setting the scientific flag, floating-point numeric values are displayed using scientific

notation. When fixed is set, floating-point values are displayed using normal notation. When

neither flag is set, the compiler chooses an appropriate method.

 When unitbuf is set, the buffer is flushed after each insertion operation.

 When boolalpha is set, Booleans can be input or output using the keywords true and false.

 Since it is common to refer to the oct, dec, and hex fields, they can be collectively referred to as

basefield.

 Similarly, the left, right, and internal fields can be referred to as adjustfield.

 Finally, the scientific and fixed fields can be referenced as floatfield.

Setting the Format Flags

To set a flag, use the setf() function. This function is a member of ios.

27

Common form: fmtflags setf(fmtflags flags);

This function returns the previous settings of the format flags and turns on those flags

specified by flags.

Example: stream.setf(ios::showpos);

stream is the stream you wish to affect.

NOTE: The format flags are defined within the ios class, you must access their values by

using ios and the scope resolution operator.

Clearing Format Flags

The complement of setf() is unsetf(). This member function of ios is used to clear one

or more format flags.

General form: void unsetf(fmtflags flags);

The flags specified by flags are cleared.

Overloaded Form of setf()

There is an overloaded form of setf() .

General form: fmtflags setf(fmtflags flags1, fmtflags flags2);

In this version, only the flags specified by flags2 are affected. the most common use of the

two-parameter form of setf() is when setting the number base, justification, and format flags.

Program:

#include <iostream>

using namespace std;

int main ()

{

 cout.setf (ios::uppercase | ios::scientific);

 cout << 100.12; // displays 1.001200E+02

 cout.unsetf (ios::uppercase); // clear uppercase

 cout << " \n" << 100.12 << endl; // displays 1.001200e+02

 //OVERLOADED FORM OF setf

 cout.setf (ios::showpoint | ios::showpos, ios::showpoint);

 cout << 100.0<<endl; // displays 100.000, not +100.000

 //TWO PARAMETER FORM of setf

 cout.setf(ios::hex, ios::basefield);

 cout << 100; // this displays 64

 return 0;

}

Output:

1.001200E+02

1.001200e+02

1.000000e+02

64

Setting All Flags

The flags() function has a second form that allows you to set all format flags associated with

a stream.

Prototype: fmtflags flags(fmtflags f);

When you use this version, the bit pattern found in f is used to set the format flags associated

with the stream. Thus, all format flags are affected. The function returns the previous settings.

28

Example: cout.flags(f);

Program:

#include <iostream>

using namespace std;

void showflags();

int main()

{

// show default condition of format flags

showflags();

// showpos, showbase, oct, right are on, others off

ios::fmtflags f = ios::showpos | ios::showbase | ios::oct | ios::right;

cout.flags(f); // set all flags

showflags();

return 0;

}

// This function displays the status of the format flags.

void showflags()

{

ios::fmtflags f;

long i;

f = cout.flags(); // get flag settings

// check each flag

for(i=0x4000; i; i = i >> 1)

if(i & f) cout << "1 ";

else cout << "0 ";

cout << " \n";

}

Output:

0 0 1 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 1 0 1 0 1 1 0 0 0 0 0 0

b. Functions

There are three member functions defined by ios.

 width()
By default, when a value is output, it occupies only as much space as the number of

characters it takes to display it. However, you can specify a minimum field width by using the width()

function.

Prototype; streamsize width(streamsize w);

Here, w becomes the field width, and the previous field width is returned. In some

implementations, the field width must be set before each output. If it isn't, the default field width is

used. The streamsize type is defined as some form of integer by the compiler.

After you set a minimum field width, when a value uses less than the specified width, the

field will be padded with the current fill character (space, by default) to reach the field width. If the

size of the value exceeds the minimum field width, the field will be overrun. No values are truncated.

 precision()
When outputting floating-point values, you can determine the number of digits of precision by

using the precision() function.

Prototype: streamsize precision(streamsize p);

29

The precision is set to p, and the old value is returned. The default precision is 6. In some

implementations, the precision must be set before each floating-point output. If it is not, then the

default precision will be used.

 fill()
By default, when a field needs to be filled, it is filled with spaces. You can specify the fill

character by using the fill() function.

Prototype: char fill(char ch);

After a call to fill(), ch becomes the new fill character, and the old one is returned.

Overloaded forms of width(), precision(), and fill()

There are overloaded forms of width(), precision(), and fill() that obtain but do not change

the current setting. These forms are shown here:

char fill();

streamsize width();

streamsize precision();

Program:

#include <iostream>

using namespace std;

int main ()

{

 cout.precision (4);

 cout.width (10);

 cout << 10.12345 << "\n"; // displays 10.12

 cout.fill ('*');

 cout.width (10);

 cout << 10.12345 << "\n"; // displays *****10.12

// field width applies to strings, too

 cout.width (10);

 cout << "Hi!" << "\n"; // displays *******Hi!

 cout.width (10);

 cout.setf (ios::left); // left justify

 cout << 10.12345; // displays 10.12*****

 return 0;

}

Output:

 10.12

*****10.12

*******Hi!

10.12*****

Using Manipulators to Format I/O

The second way you can alter the format parameters of a stream is through the use of special

functions called manipulators that can be included in an I/O expression. many of the I/O manipulators

parallel member functions of the ios class.

30

31

To access manipulators that take parameters (such as setw()), you must include <iomanip>

in your program.

Program:

#include <iostream>

#include <iomanip>

using namespace std;

int main ()

{

 cout << hex << 100 << endl;

 cout << setfill ('?') << setw (10) << 2343.0;

 return 0;

}

Output:

64

??????2343

32

Advantage

The main advantage of using manipulators instead of

the ios member functions is that they often allow more compact code to be written.

You can use the setiosflags() manipulator to directly set the various format flags

related to a stream.

Program:

#include <iostream>

#include <iomanip>

using namespace std;

int main ()

{

 cout << setiosflags (ios::showpos);

 cout << setiosflags (ios::showbase);

 cout << 123 << " " << hex << 123;

 return 0;

}

+123 0x7b

