
1

UNIT-V

EXCEPTION HANDILING

INDRODUCTION

Common types of Errors

 The common types of errors are logic errors and syntactic errors.

Logic Errors: These occur due to poor understanding of the problem and solution procedure.

Examples: Assigning a value to the wrong variable, multiplying 2 numbers instead of adding

them etc.

Syntactic Errors: These occur due to poor understanding of the language itself.

Examples: Spelling mistakes, missing out quotes or brackets or semicolon etc.

 Apart from these two, one more type of errors is Exception.

Definition of Exception: Exceptions are run time errors or unusual conditions that a program

may encounter while executing.

Examples: Division by zero, access to an array outside of its bounds, running out of memory or

disk space.

Exception Handling

 It is a C++ built in language feature that allows us to manage run time errors in an orderly

fashion. Using exception handling, your program can automatically invoke an error-handling

routine when an error occurs.

BENEFITS OF EXCEPTION HANDLING

1. Automation: it automates much of the error-handling code that previously had to be coded

"by hand" in any large program.

2. Separation of Error Handling code from Normal Code: In traditional error handling

codes, there are always if else conditions to handle errors. These conditions and the code to

handle errors get mixed up with the normal flow. This makes the code less readable and

maintainable. With try catch blocks, the code for error handling becomes separate from the

normal flow.

3. Functions can handle any exceptions they choose: A function can throw many exceptions,

but may choose to handle some of them.

4. Grouping of Error Types: In C++, both basic types and objects can be thrown as exception.

We can group or categorize them according to types.

5. Handles the occurring of error and allows normal execution of the program.

EXCEPTION HANDLING FUNDAMENTALS

(THE TRY BLOCK, CATCHING AN EXCDEPTION, THROWING AN EXCCEPTION)

C++ exception handling is built upon three keywords: try, catch, and throw

 The program statements that you want to monitor for exceptions are contained in a try block.

 If an exception (i.e., an error) occurs within the try block, it is thrown using throw

 When an exception is thrown, it is caught by its corresponding catch statement, which

processes the exception. There can be more than one catch statement associated with a try.

Which catch statement is used is determined by the type of the exception.

2

General form of try and catch

 try {

// try block

}

catch (type1 arg)

{

// catch block

}

catch (type2 arg)

 {

// catch block

 }

catch (type3 arg)

 {

// catch block

 }

 . . .

catch (typeN arg)

{

// catch block

 }

General form of the throw

throw exception;

Program:

// A simple exception handling example.

#include <iostream>

using namespace std;

int main ()

{

 cout << "Start\n";

 try

 { // start a try block

 cout << "Inside try block\n";

 throw 100; // throw an error

 cout << "This will not execute";

 }

 catch (int i)

 { // catch an error

 cout << "Caught an exception -- value is: ";

 cout << i << "\n";

 }

 cout << "End";

 return 0;

3

}

Output:

Start

Inside try block

Caught an exception -- value is: 100

End

Abnormal Termination

The type of the exception must match the type specified in a catch statement. Usually, the

code within a catch statement attempts to remedy an error by taking appropriate action. If the

error can be fixed, execution will continue with the statements following the catch. However,

often an error cannot be fixed i.e. throw an exception for which there is no applicable catch

statement, an abnormal program termination may occur. Throwing an unhandled exception

causes the standard library function terminate () to be invoked. By default, terminate () calls

abort() to stop your program.

Program:

// This example will not work.

#include <iostream>

using namespace std;

int main ()

{

 cout << "Start\n";

 try

 { // start a try block

 cout << "Inside try block\n";

 throw 100; // throw an error

 cout << "This will not execute";

 }

 catch (double i)

 { // won't work for an int exception

 cout << "Caught an exception -- value is: ";

 cout << i << "\n";

 }

 cout << "End";

 return 0;

}

Output:

Start

Inside try block

terminate called after throwing an instance of 'int'

Aborted (core dumped)

4

Throwing an exception from outside the try block

An exception can be thrown from outside the try block as long as it is thrown by a

function that is called from within try block.

Program:

/* Throwing an exception from a function outside the try block. */

#include <iostream>

using namespace std;

void

Xtest (int test)

{

 cout << "Inside Xtest, test is: " << test << "\n";

 if (test)

 throw test;

}

int main ()

{

 cout << "Start\n";

 try

 { // start a try block

 cout << "Inside try block\n";

 Xtest (0);

 Xtest (1);

 Xtest (2);

 }

 catch (int i)

 { // catch an error

 cout << "Caught an exception -- value is: ";

 cout << i << "\n";

 }

 cout << "End";

 return 0;

}

Output:

Start

Inside try block

Inside Xtest, test is: 0

Inside Xtest, test is: 1

Caught an exception -- value is: 1

End

Localize a try/catch to a function

A try block can be localized to a function. When this is the case, each time the function is

entered, the exception handling relative to that function is reset.

5

Program:

#include <iostream>

using namespace std;

// Localize a try/catch to a function.

void

Xhandler (int test)

{

 try

 {

 if (test)

 throw test;

 }

 catch (int i)

 {

 cout << "Caught Exception #: " << i << '\n';

 }

}

int main ()

{

 cout << "Start\n";

 Xhandler (1);

 Xhandler (2);

 Xhandler (0);

 Xhandler (3);

 cout << "End";

 return 0;

}

Output:

Start

Caught Exception #: 1

Caught Exception #: 2

Caught Exception #: 3

End

Catch statements when no exception is thrown

The code associated with a catch statement will be executed only if it catches an

exception. Otherwise, execution simply bypasses the catch altogether. When no exception is

thrown, the catch statement does not execute.

Program:

#include <iostream>

using namespace std;

int main ()

{

6

 cout << "Start\n";

 try

 { // start a try block

 cout << "Inside try block\n";

 cout << "Still inside try block\n";

 }

 catch (int i)

 { // catch an error

 cout << "Caught an exception -- value is: ";

 cout << i << "\n";

 }

 cout << "End";

 return 0;

}

Output:

Start

Inside try block

Still inside try block

End

Using multiple catch Statements

There can be more than one catch associated with a try. However, each catch must catch

a different type of exception. Which catch statement is used is determined by the type of the

exception.

Program:

#include <iostream>

using namespace std;

// Different types of exceptions can be caught.

void

Xhandler (int test)

{

 try

 {

 if (test)

 throw test;

 else

 throw "Value is zero";

 }

 catch (int i)

 {

 cout << "Caught Exception #: " << i << '\n';

 }

 catch (const char *str)

 {

7

 cout << "Caught a string: ";

 cout << str << '\n';

 }

}

int main ()

{

 cout << "Start\n";

 Xhandler (1);

 Xhandler (2);

 Xhandler (0);

 Xhandler (3);

 cout << "End";

 return 0;

}

Output:

Start

Caught Exception #: 1

Caught Exception #: 2

Caught a string: Value is zero

Caught Exception #: 3

End

CATCHING ALL EXCEPTIONS

 Using multiple catch statements we can write a separate catch statements for each type.

But this is a complicated task. In these circumstances we want an exception handler to catch all

exceptions instead of just a certain type.

General form:

catch(...)

{

// process all exceptions

}

Here, the ellipsis matches any type of data.

Program:

// This example catches all exceptions.

#include <iostream>

using namespace std;

void

Xhandler (int test)

{

 try

 {

 if (test == 0)

8

 throw test; // throw int

 if (test == 1)

 throw 'a'; // throw char

 if (test == 2)

 throw 123.23; // throw double

 }

 catch (...)

 { // catch all exceptions

 cout << "Caught One!\n";

 }

}

int main ()

{

 cout << "Start\n";

 Xhandler (0);

 Xhandler (1);

 Xhandler (2);

 cout << "End";

 return 0;

}

Output:

Start

Caught One!

Caught One!

Caught One!

End

One very good use for catch (...) is as the last catch of a cluster of catches which catch all

exceptions that you don't want to handle explicitly. Also, by catching all exceptions, you prevent

an unhandled exception from causing an abnormal program termination.

RETHROWING AN EXCEPTION

If you wish to rethrow an expression from within an exception handler, you may do so by

calling throw, by itself, with no exception.

Reason: It allows multiple handlers access to the exception. For example, perhaps one

exception handler manages one aspect of an exception and a second handler copes with another.

An exception can only be rethrown from within a catch block (or from any function called from

within that block). When you rethrow an exception, it will not be recaught by the same catch

statement. It will propagate outward to the next catch statement.

Program:

// Example of "rethrowing" an exception.

#include <iostream>

using namespace std;

9

void Xhandler ()

{

 try

 {

 throw "hello"; // throw a char *

 }

 catch (const char *)

 { // catch a char *

 cout << "Caught char * inside Xhandler\n";

 throw; // rethrow char * out of function

 }

}

int main ()

{

 cout << "Start\n";

 try

 {

 Xhandler ();

 }

 catch (const char *)

 {

 cout << "Caught char * inside main\n";

 }

 cout << "End";

 return 0;

}

Output:

Start

Caught char * inside Xhandler

Caught char * inside main

End

EXCEPTION SPECICATION (RESTRICTING EXCEPTIONS)

You can restrict the type of exceptions that a function can throw outside of itself i.e. we

are restricting a function to throw only certain specified exceptions .To accomplish these

restrictions, we must add a throw clause to a function definition.

General form

ret-type func-name(arg-list) throw(type-list)

{

// ...

}

only those data types contained in the comma-separated type-list may be thrown by the

function. If you don't want a function to be able to throw any exceptions, then use an empty list.

10

Attempting to throw an exception that is not supported by a function will cause the standard

library function unexpected () to be called. By default, this causes abort() to be called, which

causes abnormal program termination.

Program:

// Restricting function throw types.

#include <iostream>

using namespace std;

// This function can only throw ints, chars, and doubles.

void Xhandler (int test)

throw (int, char, double)

{

 if (test == 0)

 throw test; // throw int

 if (test == 1)

 throw 'a'; // throw char

 if (test == 2)

 throw 123.23; // throw double

}

int main ()

{

 cout << "start\n";

 try

 {

 Xhandler (0); // also, try passing 1 and 2 to Xhandler()

 }

 catch (int i)

 {

 cout << "Caught an integer\n";

 }

 catch (char c)

 {

 cout << "Caught char\n";

 }

 catch (double d)

 {

 cout << "Caught double\n";

 }

 cout << "end";

 return 0;

}

Output:

start

Caught an integer

11

end

A function can be restricted only in what types of exceptions it throws back to the try

block that called it. That is, a try block within a function may throw any type of exception so

long as it is caught within that function.The restriction applies only when throwing an exception

outside of the function.

// This function can throw NO exceptions!

void Xhandler(int test) throw()

{

/* The following statements no longer work. Instead,

they will cause an abnormal program termination. */

if(test==0) throw test;

if(test==1) throw 'a';

if(test==2) throw 123.23;

}

STACK UNWINDING

 Stack unwinding is a process of calling all destructors for all automatic objects

constructed at run time when an exception is thrown. The objects are destroyed in the reverse

order of their formation.

 When an exception is thrown, the runtime mechanism first searches for an appropriate

matching handler (catch) in the current scope. If no such handler exists, control is transferred

from the current scope to a higher block in the calling chain or in outward manner. - Iteratively,

it continues until an appropriate handler has been found. At this point, the stack has been

unwound and all the local objects that were constructed on the path from a try block to a throw

expression have been destroyed. - The run-time environment invokes destructors for all

automatic objects constructed after execution entered the try block. This process of destroying

automatic variables on the way to an exception handler is called stack unwinding.

Program:

#include <iostream>

#include <string>

using namespace std;

class MyClass

{

private:

 string name;

public:

 MyClass (string s):name (s)

 {

 }

 ~MyClass ()

12

 {

 cout << "Destroying " << name << endl;

 }

};

void fa ();

void fb ();

void fc ();

void fd ();

int main ()

{

 try

 {

 MyClass mainObj ("M");

 fa ();

 cout << "Mission accomplished!\n";

 }

 catch (const char *e)

 {

 cout << "exception: " << e << endl;

 cout << "Mission impossible!\n";

 }

 return 0;

}

void fa ()

{

 MyClass a ("A");

 fb ();

 cout << "return from fa()\n";

 return;

}

void fb ()

{

 MyClass b ("B");

 fc ();

 cout << "return from fb()\n";

 return;

}

void fc ()

{

 MyClass c ("C");

 fd ();

13

 cout << "return from fc()\n";

 return;

}

void fd ()

{

 MyClass d ("D");

 // throw "in fd(), something weird happened.";

 cout << "return from fd()\n";

 return;

}

Output:

return from fd()

Destroying D

return from fc()

Destroying C

return from fb()

Destroying B

return from fa()

Destroying A

Mission accomplished!

Destroying M

EXCEPTION OBJECT

 The exception object holds the error information about the exception that had occurred.

The information includes the type errors i.e. logic errors or run time error and state of the

program when the error occurred.

 An exception object is created as soon as exception occurs and it is passed to the

corresponding catch block as a parameter. The catch block contains the code to catch the

occurred exception.

An exception can be of any type, including class types that you create. Actually, in real-

world programs, most exceptions will be class types rather than built-in types. Perhaps the most

common reason that you will want to define a class type for an exception is to create an object

that describes the error that occurred. This information can be used by the exception handler to

help it process the error.

General Form:

try

{

Throw exception object;

}

catch(Exception &exceptionobject)

{

14

…

}

 When a throw expression is evaluated, an exception object is initialized from the value of

the expression. The exception object which is thrown gets its type from the static type of the

throw expression.

 Inside a catch block, the name initialized with the caught exception object is initialized

with this exception object

 The exception object is available only in catch block. You cannot use the exception object

outside the catch block.

Program:

#include <iostream>

#include <cstring>

using namespace std;

class MyException

{

public:

 char str_what[80];

 int what;

 MyException ()

 {

 *str_what = 0;

 what = 0;

 }

 MyException (char *s, int e)

 {

 strcpy (str_what, s);

 what = e;

 }

};

int main ()

{

 int i;

 try

 {

 cout << "Enter a positive number: ";

 cin >> i;

 if (i < 0)

 throw MyException ("Not Positive", i);

 }

 catch (MyException e)

 { // catch an error

 cout << e.str_what << ": ";

 cout << e.what << "\n";

15

 }

 return 0;

}

Output:

Enter a positive number: -1

Not Positive: -1

