Java Package

A java package is a group of similar types of classes,

interfaces and sub-packages.

java Javapackage
Package in java can be categorized in two form, built-in

package and user-defined package.

There are many built-in packages such as java, lang, awt,

javax, swing, net, io, util, sql etc.

lang Subpackage

of java

Advantage of Java Package

util awt
1) Java package is used to categorize the classes and
interfaces so that they can be easily maintained.

3) Java package removes naming collision.

Definig a Package in java
We use the - keyword to create or define a package in java programming language.

Syntax

package packageName:

Run the program use the following command.
Example

Jjava myPackage.DefiningPackage

package myPackage,
public class DefiningPackage
public static void main(Stringl] args

System.out . printin(*This class belongs to myPackage. (2 When we use IDE like Eclipse, Netbeans,

efc. the package structure is created automatically.

Now, save the above code in a file DefiningPackage java,
and compile it using the following command.

Javac -d . DefiningPackage,java

Access protection

In java, the access modifiers define the accessibility of the class and its members. For example. private

members are accessible within the same class members only. Java has four access modifiers, and they are

default, private, protected, and public.

In java, the package is a container of classes, sub-classes, interfaces, and sub-packages. The class acts as a

container of data and methods. So, the access modifier decides the accessibility of class members across the

different packages.
Access control for members of class and interface in java

Accessibility | | Same Package | Other Package
Child class Non-child class | Child class Non-child class

Access — Location| Same Class
Specifier S

Public
Protected
Default

Private

Importing Packages

In java, the import keyword used to import built-in and user-defined packages. When a package has

imported, we can refer to all the classes of that package using their name directly.

The import statement must be after the package statement, and before any other statement.

Importing specific class

Using an importing statement, we can import a specific class. The following syntax is employed to import a

specific class.

Syntax

import packageName ClassName;

Importing all the classes

Using an importing statement, we can import all the classes of a package. To import all the classes of the

package, we use " symbol. The following syntax is employed to import all the classes of a package.

Syntax

import packageName *;

Defining an interface

In Java, an interface is similar to a class, but it contains abstract methods and static final variables only. The

interface in Java is another mechanism to achieve abstraction.

Interface fields are public, static and final by default,

; : — and the methods are public and abstract.
Defining an interface in java

Syntax: . | . .
interface Printable{ Interface Printable{
int MIN=5; il public static final int MIN=5;
interface <interface_name> { void print(); & anlp"e A public abstract void print()
} }
// declare constant fields Printable java Printable.class
// declare methods that abstract
// by default.

Implementing an Interface in java

In Java, an interface Is implemented by a class. The class that implements an interface must provide code for

all the methods defined in the interface, otherwise, it must be defined as an abstract class.

The class uses a keyword implements to implement an interface. A class can implement any number of
Interfaces. When a class wants to implement more than one interface, we use the implements keyword is

followed by a comma-separated list of the interfaces implemented by the class.

Syntax

class className implements InterfaceNamel

boby-of-the-class

Let's look at an example code to define a class that implements an interface.

interface Human |

void learn(String str)
void work();

Int duration = 10

|

class Programmer implements Human|
public void learn(String str) |
System.out println(*Learn using * + str),
|
public void work() |
System.out . printin(*Develop applications”);

public class HumanTest |

public static void main(Stringli args) |
Programmer trainee = new Programmer();
trainee.learn(‘coding");
traineeworkl),

|

In the above code defines an interface Human that contains
two abstract methods learn(), work() and one

constant duration. The class Programmer implements the
Interface. As it iImplementing the Human interface it
must provide the body of all the methods those defined

In the Human interface.

Nested Interfaces in java

In java, an interface may be defined inside another interface, and also inside a class. The interface that defined

inside another interface or a class is konwn as nested interface. The nested interface is also refered as inner

interface.

The nested interface cannot be accessed directly. We can only access the nested interface by using outer

interface or outer class name followed by dot(.), followed by the nested interface name.

Nested interface inside another interface

The nested Interface that defined Iinside

OuterInterface.lnnerinterface .

interface OuterInterfacel
void outerMethod):

interface Innerinterfacel
void innerMethod():;

|

class OnlyOuter implements OQuterinterfacel
public void outerMethod() |
System.out.println(*This is Outerinterface method");

another interface must be accessed as

class Onlylnner implements Outerinterface.Innerinterfacel
public void innerMethod() |
System.out.println(*This is Innerinterface method");

}

public class NestedInterfaceExample |

public static void main(Stringll args) |
OnlyOQuter obj_1 = new OnlyOuter(),
Onlylnner obj_2 = new Onlylnner(),

obj_1.outerMethod(),
obj_2innerMethod();

Extending an Interface in java

In java, an interface can extend another interface. When an interface wants to extend another interface, it uses
the keyword - The interface that extends another interface has its own members and all the
members defined in its parent interface too. The class which implements a child interface needs to provide

code for the methods defined in both child and parent interfaces, otherwise, it needs to be defined as abstract

class.

Let's look at an example code to illustrate extending an interface.

Example

Interface Parentinterfacel
void parentMethod),

Interface ChildIinterface extends Parentinterfacel
void childMethod():
|

class ImplementingClass implements Childinterfacel

public void childMethod() |
System.out printin("Child Interface method!!™);

public void parentMethod() {
System.out println(*Parent Interface mehtod!");

public class ExtendingAninterface |
public static void main(Stringll args) |

ImplementingClass obj = new ImplementingClass(),

obj.childMethod();
obj.parentMethod();

|
When we run the above program,

It produce the following output.

Child Interface method!!
Parent Interface mehtod!

