
1

UNIT-1

INTRODUCTION

SOFTWARE TESTING:

Software testing is a process of identifying defects in software and checking whether

the software meets specified requirements or not.

Defect:

The variation between the actual results and expected results is known as defect.

If a developer finds an issue and corrects it by himself in the development phase then

it’s called a defect.

Bug:

If testers find any mismatch in the application/system in testing phase then they call it

as Bug.

Error:

We can’t compile or run a program due to coding mistake in a program. If a developer

unable to successfully compile or run a program then they call it as an error.

Failure:

Once the product is deployed and customers find any issues then they call the product

as a failure product. After release, if an end user finds an issue then that particular issue

is called as failure.

The Purpose of Testing

MYTH: Good programmers write code without bugs. (It’s wrong!!!)

History says that even well written programs still have 1-3 bugs per hundred statements.

Productivity and Quality in Software:

 Productivity is measured by the sum of the costs of the material, the rework, and the

discarded components, and the cost of quality assurance and testing.

 There is a tradeoff between quality assurance costs and manufacturing costs: If

sufficient time is not spent in quality assurance, the reject rate will be high and so

will be the net cost. If inspection is good and all errors are caught as they occur,

inspection costs will dominate, and again the net cost will suffer.

 The biggest part of software cost is the cost of bugs: the cost of detecting them, the

cost of correcting them, the cost of designing tests that discover them, and the cost

of running those tests.

 Testing and Test Design are parts of quality assurance should also focus on bug

prevention. A prevented bug is better than a detected and corrected bug.

www.Jntufastupdates.com

2

Phases in a tester's mental life:

Phases in a tester's mental life can be categorized into the following 5 phases:

1. Phase 0: (Until 1956: Debugging Oriented) There is no difference between

testing and debugging.

2. Phase 1: (1957-1978: Demonstration Oriented) the purpose of testing here is to

show that software works. This failed because the probability of showing that

software works 'decreases' as testing increases. I.e. the more you test, the more likely

you will find a bug.

3. Phase 2: (1979-1982: Destruction Oriented) the purpose of testing is to show

that software doesn’t work. This also failed because the software will never get

released as you will find one bug or the other. Also, a bug corrected may also lead to

another bug. 4. Phase 3: (1983-1987: Evaluation Oriented) the purpose of testing is

not to prove anything but to reduce the perceived risk of not working to an acceptable

value

(Statistical Quality Control). The product is released when the confidence on that

product is high enough. (Note: This is applied to large software products with

millions of code and years of use.)

5. Phase 4: (1988-2000: Prevention Oriented) Testability is the factor considered

here. One reason is to reduce the labor of testing. Other reason is to check the testable

and non-testable code. Testable code has fewer bugs than the code that's hard to test.

Identifying the testing techniques to test the code is the main key here.

Test Design:

We know that the software code must be designed and tested, but many appear to be

unaware that tests themselves must be designed and tested. Tests should be properly

designed and tested before applying it to the actual code.

Testing isn’t everything:

There are approaches other than testing to create better software. Methods other than

testing include:

1. Inspection Methods: Methods like walkthroughs, desk checking, formal inspections

and code reading appear to be as effective as testing but the bugs caught don’t

completely overlap.

2. Design Style: While designing the software itself, adopting stylistic objectives such

as testability, openness and clarity can do much to prevent bugs.

3. Static Analysis Methods: Includes formal analysis of source code during

compilation. In earlier days, it is a routine job of the programmer to do that. Now, the

compilers have taken over that job.
www.Jntufastupdates.com

3

4. Languages: The source language can help reduce certain kinds of bugs.

Programmers find new bugs while using new languages.

5. Development Methodologies and Development Environment: The development

process and the environment in which that methodology is embedded can prevent many

kinds of bugs.

Dichotomies:

Testing Versus Debugging:

Testing Debugging

The purpose of testing is to find bugs and

errors.

The purpose of debugging is to correct

those bugs found during testing.

Testing is done by tester. Debugging is done by programmer or

developer.

It can be automated. It can’t be automated.

Testing starts with known conditions, uses

predefined procedures and has predictable

outcomes.

Debugging starts from possibly unknown

initial conditions and the end cannot be

predicted except statistically.

Testing can and should be planned,

designed and scheduled.

Procedure and duration of debugging

cannot be so constrained.

Much testing can be done without design

knowledge.

Debugging is impossible without detailed

design knowledge.

Testing can often be done by an outsider. Debugging must be done by an insider.

Functional testing and Structural Testing

Functional Testing Structural Testing

Functional testing basically concern about

results but not the processing

Structural testing is basically concern both

the results and process

Functional testing is also called as black

box testing.

Functional testing also called as white box

testing

Functional testing takes the user point of

view, bother about functionality and

features and not the program’s

implementation.

Structural testing does look at the

implementation details. Things such as

programming style, control method,

source language, database design, and

coding details dominate structural testing.
www.Jntufastupdates.com

4

Functional testing can detect all bugs but

would take infinite time to do so.

Structural tests are inherently finite but

cannot detect all errors even if completely

executed.

Programming and implementation

knowledge is not required to perform

functional testing

Programming and the implementation

knowledge is required to perform

structural testing

Verification and Validation

Verification Validation

As per IEEE STD-610: The Process of

evaluating software to determine whether

product of a given development phase

satisfy the conditions imposed at begging

phase

As per IEEE STD-610: The process of

evaluating the software during or at end

of development process to determine

whether satisfies specified requirements.

In the process, to ensure whether we are

developing product accordingly or not

It is the process to validate the product

which we developed is right or not

In simple words, verification is verifying

the documents

In simple words, it is to validate the actual

expected output of software

Activities involved are inspection reviews

and the walkthrough

Activities involved in this process is

testing software applications

It is low level activity It is high level activity

It is done by QA Team It is done by testing team

Builder and Buyer

Builder Buyer

Builder builds the software according to

requirements of buyer

Buyer receives the required software

Builder requires complete knowledge

about programming

Buyer does not require any programming

knowledge

Builder is accountable to Buyer Buyer is not accountable to anyone

Builder ensures or concern about results

and structure

Buyer concerns only about results

Builder is known as Programmer/Designer Buyer is known as client

www.Jntufastupdates.com

5

 Designer Versus Tester: Test designer is the person who designs the tests whereas

the tester is the one actually tests the code. During functional testing, the designer

and tester are probably different persons. During unit testing, the tester and the

programmer merge into one person. Tests designed and executed by the software

designers are by nature biased towards structural consideration and therefore suffer

the limitations of structural testing.

 Modularity versus Efficiency: A module is a discrete, well-defined, small

component of a system. Smaller the modules, difficult to integrate; larger the

modules, difficult to understand. Both tests and systems can be modular. Testing

can and should likewise be organized into modular components. Small, independent

test cases can be designed to test independent modules.

 Small versus Large: Programming in large means constructing programs that

consists of many components written by many different programmers.

Programming in the small is what we do for ourselves in the privacy of our own

offices. Qualitative and Quantitative changes occur with size and so must testing

methods and quality criteria.

MODEL FOR TESTING:

Figure 1.1: A Model for Testing

Above figure is a model of testing process. It includes three models: A model of the

environment, a model of the program and a model of the expected bugs.

 ENVIRONMENT:

o A Program's environment is the hardware and software required to make it run.

For online systems, the environment may include communication lines, other

systems, terminals and operators.

www.Jntufastupdates.com

6

o The environment also includes all programs that interact with and are used to

create the program under test - such as OS, linkage editor, loader, compiler,

utility routines.

o Because the hardware and firmware are stable, it is not smart to blame the

environment for bugs.

 PROGRAM:

o Most programs are too complicated to understand in detail.

o The concept of the program is to be simplified in order to test it.

o If simple model of the program doesn’t explain the unexpected behavior, we

may have to modify that model to include more facts and details. And if that

fails, we may have to modify the program.

 BUGS:

 Bugs are more insidious (deceiving but harmful) than ever we expect them to be.

 An unexpected test result may lead us to change our notion of what a bug is and

our model of bugs.

 Some optimistic notions that many programmers or testers have about bugs are

usually unable to test effectively and unable to justify the dirty tests most

programs need.

OPTIMISTIC NOTIONS ABOUT BUGS:

1. Benign Bug Hypothesis: The belief that bugs are nice, tame and logical.

(Benign: Not Dangerous)

2. Bug Locality Hypothesis: The belief that a bug discovered with in a component

effects only that component's behavior.

3. Control Bug Dominance: The belief those errors in the control structures (if,

switch etc) of programs dominate the bugs.

4. Code / Data Separation: The belief that bugs respect the separation of code and

data.

5. Lingua Salvator Est: The belief that the language syntax and semantics (e.g.

Structured Coding, Strong typing, etc) eliminates most bugs.

6. Corrections Abide: The mistaken belief that a corrected bug remains corrected.

7. Silver Bullets: The mistaken belief that X (Language, Design method,

representation, environment) grants immunity from bugs.

8. Sadism Suffices: The common belief (especially by independent tester) that a

sadistic streak, low cunning, and intuition are sufficient to eliminate most bugs.
Tough bugs need methodology and techniques.

www.Jntufastupdates.com

7

9. Angelic Testers: The belief that testers are better at test design than

programmers is at code design.

 TESTS:

o Tests are formal procedures, Inputs must be prepared, Outcomes should predicted,

tests should be documented, commands need to be executed, and results are to be

observed. All these errors are subjected to error

o We do three distinct kinds of testing on a typical software system. They are:

1. Unit / Component Testing: A Unit is the smallest testable piece of software that

can be compiled, assembled, linked, loaded etc. Unit Testing is the testing we do

to show that the unit does not satisfy its functional specification or that its

implementation structure does not match the intended design structure.

A Component is an integrated aggregate of one or more units. Component

Testing is the testing we do to show that the component does not satisfy its

functional specification or that its implementation structure does not match the

intended design structure.

2. Integration Testing: Integration is the process by which components are

aggregated to create larger components. Integration Testing is testing done to

show that even though the components were individually satisfactory (after

passing component testing), checks the combination of components are incorrect

or inconsistent.

3. System Testing: A System is a big component. System Testing is aimed at

revealing bugs that cannot be attributed to components. It includes testing for

performance, security, accountability, configuration sensitivity, startup and

recovery.

IS COMPLETE TESTING POSSIBLE?

o If the objective of the testing were to prove that a program is free of bugs, then testing

not only would be practically impossible, but also would be theoretically impossible.

o Three different approaches can be used to demonstrate that a program is correct.

They are:

1. Functional Testing:

 Every program operates on a finite number of inputs. A complete functional test

would consist of subjecting the program to all possible input streams.

 For each input the routine either accepts the stream and produces a correct outcome

or accepts the stream and produces an incorrect outcome, or rejects the stream and

tells us that it did so.
www.Jntufastupdates.com

8

 For example, a 10 character input string has 280 possible input streams and

corresponding outcomes, so complete functional testing in this sense is

IMPRACTICAL.

 But even theoretically, we can't execute a purely functional test this way because

we don't know the length of the string to which the system is responding.

2. Structural Testing:

 The design should have enough tests to ensure that every path through the routine

is exercised at least once. Right off that is impossible because some loops might

never terminate.

 The number of paths through a small routine can be awesome because each loop

multiplies the path count by the number of times through the loop.

 A small routine can have millions or billions of paths, so total Path Testing is

usually IMPRACTICAL.

3. Formal Proofs of Correctness:

 Formal proofs of correctness rely on a combination of functional and structural

concepts.

 Requirements are stated in a formal language (e.g. Mathematics) and each program

statement is examined and used in a step of an inductive proof that the routine will

produce the correct outcome for all possible input sequences.

 The IMPRACTICAL thing here is that such proofs are very expensive and have

been applied only to numerical routines or to formal proofs for crucial software

such as system’s security kernel or portions of compilers.

o Each approach leads to the conclusion that complete testing, in the sense of a proof is

neither theoretically nor practically possible.

 THEORITICAL BARRIERS OF COMPLETE TESTING:

o "We can never be sure that the specifications are correct"

o "No verification system can verify every correct program"

o "We can never be certain that a verification system is correct"

CONSEQUENCES OF BUGS:

 IMPORTANCE OF BUGS: The importance of bugs depends on frequency,

correction cost, installation cost, and consequences.

1. Frequency: How often does that kind of bug occur? Pay more attention to the more

frequent bug types.

2. Correction Cost: What does it cost to correct the bug after it is found? The cost is

the sum of 2 factors: (1) the cost of discovery (2) the cost of correction. These costs
www.Jntufastupdates.com

9

go up dramatically later in the development cycle when the bug is discovered.

Correction cost also depends on system size.

3. Installation Cost: Installation cost depends on the number of installations: small for

a single user program but more for distributed systems. Fixing one bug and

distributing the fix could exceed the entire system's development cost.

4. Consequences: What are the consequences of the bug? Bug consequences can

range from mild to catastrophic.

A reasonable metric for bug importance is

Importance= ($) = Frequency * (Correction cost + Installation cost +

Consequential cost)

 CONSEQUENCES OF BUGS: The consequences of a bug can be measure in terms

of human rather than machine. Some consequences of a bug are:

1. Mild: The symptoms of the bug offend us aesthetically (gently); a misspelled output

or a misaligned printout.

2. Moderate: Outputs are misleading or redundant. The bug impacts the system's

performance.

3. Annoying: The system's behavior because of the bug is dehumanizing. E.g. Names

are truncated orarbitarly modified.

4. Disturbing: It refuses to handle legitimate (authorized / legal) transactions. The

ATM won’t give you money. My credit card is declared invalid.

5. Serious: It loses track of its transactions. Not just the transaction itself but the fact

that the transaction occurred. Accountability is lost.

6. Very Serious: The bug causes the system to do the wrong transactions. Instead of

losing your paycheck, the system credits it to another account or converts deposits

to withdrawals.

7. Extreme: The problems aren't limited to a few users or few transaction types. They

are frequent and arbitrary instead of sporadic infrequent) or for unusual cases.

8. Intolerable: Long term unrecoverable corruption of the database occurs and the

corruption is not easily discovered. Serious consideration is given to shutting the

system down.

9. Catastrophic: The decision to shut down is taken out of our hands because the

system fails.

10. Infectious: What can be worse than a failed system? One that corrupt other systems

even though it doesn’t fall in itself ; that erodes the social physical environment;

that melts nuclear reactors and starts war.
www.Jntufastupdates.com

10

TAXONOMY OF BUGS:

 There is no universally correct way categorize bugs. The taxonomy is not rigid.

 A given bug can be put into one or another category depending on its history and

the programmer's state of mind.

 The major categories are: (1) Requirements, Features and Functionality Bugs (2)

Structural Bugs (3) Data Bugs (4) Coding Bugs (5) Interface, Integration and

System Bugs (6) Test and Test Design Bugs.

I. REQUIREMENTS, FEATURES AND FUNCTIONALITY BUGS:

Various categories in Requirements, Features and Functionality bugs include:

1. Requirements and Specifications Bugs:

 Requirements and specifications developed from them can be incomplete

ambiguous, or self-contradictory. They can be misunderstood or impossible to

understand.

 The specifications that don't have flaws in them may change while the design is

in progress. The features are added, modified and deleted.

 Requirements, especially, as expressed in specifications are a major source of

expensive bugs.

2. Feature Bugs:

 Specification problems usually create corresponding feature problems.

 A feature can be wrong, missing, or superfluous (serving no useful purpose). A

missing feature or case is easier to detect and correct. A wrong feature could

have deep design implications.

 Removing the features might complicate the software, consume more resources,

and foster more bugs.

3. Feature Interaction Bugs:

 Providing correct, clear, implementable and testable feature specifications is not

enough.

 Features usually come in groups or related features. The features of each group

and the interaction of features within the group are usually well tested.

 The problem is unpredictable interactions between feature groups or even

between individual features. For example, your telephone is provided with call

holding and call forwarding. The interactions between these two features may

have bugs.

www.Jntufastupdates.com

11

4. Specification and Feature Bug Remedies:

 Most feature bugs are rooted in human to human communication problems.

One solution is to use high-level, formal specification languages or systems.

 Such languages and systems provide short term support but in the long run, do

not solve the problem.

 Short term Support: Specification languages facilitate formalization of

requirements and inconsistency and ambiguity analysis.

 Long term Support: Assume that we have a great specification language and

that can be used to create unambiguous, complete specifications with

unambiguous complete tests and consistent test criteria.

 The specification problem has been shifted to a higher level but not eliminated.

Testing Techniques for functional bugs: Most functional test techniques- that is

those techniques which are based on a behavioral description of software, such as

transaction flow testing, syntax testing, domain testing, logic testing and state

testing are useful in testing functional bugs.

II. STRUCTURAL BUGS:

Various categories in Structural bugs include:

1. Control and Sequence Bugs:

 Control and sequence bugs include paths left out, unreachable code, improper

nesting of loops, loop-back or loop termination criteria incorrect, missing

process steps, duplicated processing, unnecessary processing, rampaging,

GOTO's, ill-conceived (not properly planned) switches, spaghetti code, and

worst of all, pachinko code.

 One reason for control flow bugs is that this area is amenable (supportive) to

theoretical treatment.

 Most of the control flow bugs are easily tested and caught in unit testing.

 Another reason for control flow bugs is that use of old code especially ALP &

COBOL code are dominated by control flow bugs.

 Control and sequence bugs at all levels are caught by testing, especially

structural testing, more specifically path testing combined with a bottom line

functional test based on a specification.

2. Logic Bugs:

 Bugs in logic, especially those related to misunderstanding how case statements

and logic operators behave singly and combinations

www.Jntufastupdates.com

12

 Also includes evaluation of boolean expressions in deeply nested IF-THEN-

ELSE constructs.

 If the bugs are parts of logical (i.e. boolean) processing not related to control

flow, they are characterized as processing bugs.

 If the bugs are parts of a logical expression (i.e. control-flow statement) which

is used to direct the control flow, then they are categorized as control-flow bugs.

3. Processing Bugs:

 Processing bugs include arithmetic bugs, algebraic, mathematical function

evaluation, algorithm selection and general processing.

 Examples of Processing bugs include: Incorrect conversion from one data

representation to other, ignoring overflow, improper use of greater-than-or-

equal etc

 Although these bugs are frequent (12%), they tend to be caught in good unit

testing.

4. Initialization Bugs:

 Initialization bugs are common. Initialization bugs can be improper and

superfluous.

 Superfluous bugs are generally less harmful but can affect performance.

 Typical initialization bugs include: Forgetting to initialize the variables before

first use, assuming that they are initialized elsewhere, initializing to the wrong

format, representation or type etc

 Explicit declaration of all variables, as in Pascal, can reduce some initialization

problems.

5. Data-Flow Bugs and Anomalies:

 Most initialization bugs are special case of data flow anomalies.

 A data flow anomaly occurs where there is a path along which we expect to do

something unreasonable with data, such as using an uninitialized variable,

attempting to use a variable before it exists, modifying and then not storing or

using the result, or initializing twice without an intermediate use.

III. DATA BUGS:

 Data bugs include all bugs that arise from the specification of data objects, their

formats, the number of such objects, and their initial values.

 Data Bugs are at least as common as bugs in code, but they are often treated as if

they didn’t exist at all.

www.Jntufastupdates.com

13

 Code migrates data: Software is evolving towards programs in which more and

more of the control and processing functions are stored in tables.

 Because of this, there is an increasing awareness that bugs in code are only half

the battle and the data problems should be given equal attention.

Dynamic Data vs Static data:

 Dynamic data are transitory. Whatever their purpose their lifetime is relatively

short, typically the processing time of one transaction. A storage object may be

used to hold dynamic data of different types, with different formats, attributes

and residues.

 Dynamic data bugs are due to leftover garbage in a shared resource. This can be

handled in one of the three ways: (1) Clean up after the use by the user (2)

Common Cleanup by the resource manager (3) No Clean up

 Static Data are fixed in form and content. They appear in the source code or

database directly or indirectly, for example a number, a string of characters, or a

bit pattern.

 Compile time processing will solve the bugs caused by static data.

Information, parameter, and control: Static or dynamic data can serve in one of

three roles, or in combination of roles: as a parameter, for control, or for

information.

Content, Structure and Attributes: Content can be an actual bit pattern, character

string, or number put into a data structure. Content is a pure bit pattern and has

no meaning unless it is interpreted by a hardware or software processor. All data

bugs result in the corruption or misinterpretation of content. Structure relates to

the size, shape and numbers that describe the data object, that is memory

location used to store the content. (e.g. A two dimensional

array). Attributes relates to the specification meaning that is the semantics

associated with the contents of a data object. (e.g. an integer, an alphanumeric

string, a subroutine). The severity and subtlety of bugs increases as we go from

content to attributes because the things get less formal in that direction.

IV. CODING BUGS:

Coding errors of all kinds can create any of the other kind of bugs.

 Syntax errors are generally not important in the scheme of things if the source
language translator has adequate syntax checking.

 If a program has many syntax errors, then we should expect many logic and coding
bugs. www.Jntufastupdates.com

14

The documentation bugs are also considered as coding bugs which may mislead the

maintenance programmers.

V. INTERFACE, INTEGRATION, AND SYSTEM BUGS:

Various categories of bugs in Interface, Integration, and System Bugs are:

1. External Interfaces:

 The external interfaces are the means used to communicate with the world.

 These include devices, actuators, sensors, input terminals, printers, and

communication lines.

 The primary design criterion for an interface with outside world should be

robustness.

 All external interfaces, human or machine should employ a protocol. The

protocol may be wrong or incorrectly implemented.

 Other external interface bugs are: invalid timing or sequence assumptions

related to external signals

 Misunderstanding external input or output formats.

 Insufficient tolerance to bad input data.

2. Internal Interfaces:

 Internal interfaces are in principle not different from external interfaces but

they are more controlled.

 A best example for internal interfaces are communicating routines.

 The external environment is fixed and the system must adapt to it but the

internal environment, which consists of interfaces with other components, can

be negotiated.

 Internal interfaces have the same problem as external interfaces.

3. Hardware Architecture:

 Bugs related to hardware architecture originate mostly from misunderstanding

how the hardware works.

 Examples of hardware architecture bugs: address generation error, I/O device

operation / instruction error, waiting too long for a response, incorrect interrupt

handling etc.

 The remedy for hardware architecture and interface problems is two fold: (1)

Good Programming and Testing (2) Centralization of hardware interface

software in programs written by hardware interface specialists.

www.Jntufastupdates.com

15

4. Operating System Bugs:

 Program bugs related to the operating system are a combination of hardware

architecture and interface bugs mostly caused by a misunderstanding of what it

is the operating system does.

 Use operating system interface specialists, and use explicit interface modules

or macros for all operating system calls.

 This approach may not eliminate the bugs but at least will localize them and

make testing easier.

5. Software Architecture:

 Software architecture bugs are the kind that called - interactive.

 Routines can pass unit and integration testing without revealing such bugs.

 Many of them depend on load, and their symptoms emerge only when the

system is stressed.

 Sample for such bugs: Assumption that there will be no interrupts, Failure to

block or un block interrupts, Assumption that memory and registers were

initialized or not initialized etc

 Careful integration of modules and subjecting the final system to a stress test

are effective methods for these bugs.

6. Control and Sequence Bugs (Systems Level):

 These bugs include: Ignored timing, Assuming that events occur in a specified

sequence, Working on data before all the data have arrived from disc, Waiting

for an impossible combination of prerequisites, Missing, wrong, redundant or

superfluous process steps.

 The remedy for these bugs is highly structured sequence control.

 Specialize, internal, sequence control mechanisms are helpful.

7. Resource Management Problems:

 Memory is subdivided into dynamically allocated resources such as buffer

blocks, queue blocks, task control blocks, and overlay buffers.

 External mass storage units such as discs, are subdivided into memory resource

pools.

 Some resource management and usage bugs: Required resource not obtained,

Wrong resource used, Resource is already in use, Resource dead lock etc

 Resource Management Remedies: A design remedy that prevents bugs is

always preferable to a test method that discovers them.

www.Jntufastupdates.com

16

 The design remedy in resource management is to keep the resource structure

simple: the fewest different kinds of resources, the fewest pools, and no private

resource management.

8. Integration Bugs:

 Integration bugs are bugs having to do with the integration of, and with the

interfaces between, working and tested components.

 These bugs results from inconsistencies or incompatibilities between

components.

 The communication methods include data structures, call sequences, registers,

semaphores, and communication links and protocols results in integration bugs.

 The integration bugs do not constitute a big bug category (9%) they are

expensive category because they are usually caught late in the game and

because they force changes in several components and/or data structures.

9. System Bugs:

 System bugs covering all kinds of bugs that cannot be ascribed to a component

or to their simple interactions, but result from the totality of interactions

between many components such as programs, data, hardware, and the operating

systems.

 There can be no meaningful system testing until there has been thorough

component and integration testing.

 System bugs are infrequent (1.7%) but very important because they are often

found only after the system has been fielded.

VI. TEST AND TEST DESIGN BUGS:

 Testing: testers have no immunity to bugs. Tests require complicated scenarios
and databases.

 They require code or the equivalent to execute and consequently they can have
bugs.

 Test criteria: if the specification is correct, it is correctly interpreted and
implemented, and a proper test has been designed; but the criterion by which
the software's behavior is judged may be incorrect or impossible. So, a proper
test criteria has to be designed. The more complicated the criteria, the likelier
they are to have bugs.

VII. Remedies: The remedies of test bugs are:

1. Test Debugging: The first remedy for test bugs is testing and debugging the
tests. Test debugging, when compared to program debugging, is easier

www.Jntufastupdates.com

17

because tests, when properly designed are simpler than programs and do not

have to make concessions to efficiency.

2. Test Quality Assurance: Programmers have the right to ask how quality in

independent testing is monitored.

3. Test Execution Automation: The history of software bug removal and

prevention is indistinguishable from the history of programming automation

aids. Assemblers, loaders, compilers are developed to reduce the incidence of

programming and operation errors. Test execution bugs are virtually

eliminated by various test execution automation tools.

4. Test Design Automation: Just as much of software development has been

automated, much test design can be and has been automated. For a given

productivity rate, automation reduces the bug count - be it for software or be

it for tests.

www.Jntufastupdates.com

18

FLOW GRAPHS AND PATH TESTING

BASICS OF PATH TESTING:

 Path Testing:

o Path Testing is the name given to a family of test techniques based on judiciously

(wisely) selecting a set of test paths through the program.

o If the set of paths are properly chosen then we have achieved some measure of test

thoroughness. For example, pick enough paths to assure that every source statement

has been executed at least once.

o Path testing techniques are the oldest of all structural test techniques.

o Path testing is most applicable to new software for unit testing. It is a structural

technique.

o It requires complete knowledge of the program's structure.

o It is most often used by programmers to unit test their own code.

o The effectiveness of path testing rapidly deteriorates as the size of the software

aggregate under test increases.

 The Bug Assumption:

o The bug assumption for the path testing strategies is that something has gone wrong

with the software that makes it take a different path than intended.

o As an example "GOTO X" where "GOTO Y" had been intended.

 Control Flow Graphs:

o The control flow graph is a graphical representation of a program's control structure.

It uses the elements named process blocks, decisions, and junctions.

o The flow graph is similar to the earlier flowchart, with which it is not to be confused.

o Flow Graph Elements: A flow graph contains four different types of elements.

(1) Process Block (2) Decisions (3) Junctions (4) Case Statements

1. Process Block:

 A process block is a sequence of program statements uninterrupted by either

decisions or junctions.

 It is a sequence of statements such that if any one of statement of the block is

executed, then all statements thereof are executed.

 Formally, a process block is a piece of straight line code of one statement or

hundreds of statements.

A process has one entry and one exit. It can consist of a single statement or

instruction, a sequence of statements or instructions, a single entry/exit

subroutine, a macro or function call, or a sequence of these.
www.Jntufastupdates.com

19

2. Decisions:

 A decision is a program point at which the control flow can diverge.

 Conditional branch and conditional skip instructions are examples of decisions.

 Most of the decisions are two-way but some are three way branches in control

flow.

3. Case Statements:

 A case statement is a multi-way branch or decisions.

 Examples of case statement are a jump table in assembly language, and the ‘C’

switch case statement.

 From the point of view of test design, there are no differences between Decisions

and Case Statements

4. Junctions:

 A junction is a point in the program where the control flow can merge.

 Examples of junctions are: the target of a jump or skip instruction in ALP, a label

that is a target of GOTO.

www.Jntufastupdates.com

20

Control Flow Graphs Vs Flowcharts:

o A program's flow chart resembles a control flow graph.

o In flow graphs, we don't show the details of what is in a process block.

o In flow charts every part of the process block is drawn.

o The flowchart focuses on process steps, where as the flow graph focuses on

control flow of the program.

o The act of drawing a control flow graph is a useful tool that can help us clarify the

control flow and data flow issues.

Notational Evolution:

The control flow graph is simplified representation of the program's structure. The

notation changes made in creation of control flow graphs:

o The process boxes weren't really needed. There is an implied process on every

line joining junctions and decisions.

o We don't need to know the specifics of the decisions, just the fact that there is a

branch.

o The specific target label names aren't important-just the fact that they exist. So we

can replace them by simple numbers.

o To understand this, we will go through an example (Figure 1.6) written in a C like

programming language called Programming Design Language (PDL). The

program's corresponding flowchart (Figure 1.6) and flow graph (Figure 1.7) were

also provided below for better understanding.

o The first step in translating the program to a flowchart is shown in Figure 1.6,

where we have the typical one-for-one classical flowchart. Note that complexity

has increased, clarity has decreased, and that we had to add auxiliary labels

(LOOP, XX, and YY), which have no actual program counterpart. In Figure 1.7

we merged the process steps and replaced them with the single process box.

o We now have a control flow graph. But this representation is still too busy. We

simplify the notation further to achieve Figure , where for the first time we can

really see what the control flow looks like.

www.Jntufastupdates.com

22

The final transformation is shown in Figure , where we've dropped the node

numbers to achieve an even simpler representation. The way to work with control flow

graphs is to use the simplest possible representation - that is, no more information than

you need to correlate back to the source program or PDL.

PATH TESTING - PATHS, NODES AND LINKS:

Path: A path through a program is a sequence of instructions or statements that starts at

an entry, junction, or decision and ends at another, or possibly the same junction,

decision, or exit.

o A path may go through several junctions, processes, or decisions, one or

more times.

o Paths consist of segments.

o The segment is a link - a single process that lies between two nodes.

o A path segment is succession of consecutive links that belongs to some

path.

o The length of path measured by the number of links in it and not by the

number of the instructions or statements executed along that path.

o The name of a path is the name of the nodes along the path.

FUNDAMENTAL PATH SELECTION CRITERIA:
• There are many paths between the entry and exit of a typical routine.

• Every decision doubles the number of potential paths. And every loop multiplies

the number of potential paths by the number of different iteration values possible

for the loop.

Defining complete testing:

1. Exercise every path from entry to exit.

2. Exercise every statement or instruction at least once.

3. Exercise every branch and case statement, in each direction at least once.

If prescription 1 is followed then 2 and 3 are automatically followed. But it is

impractical for most routines. It can be done for the routines that have no loops, in

which it is equivalent to 2 and 3 prescriptions.

EXAMPLE: Here is the correct version.

www.Jntufastupdates.com

23

For X negative, the output is X + A, while for X greater than or equal to zero, the output

is X + 2A. Following prescription 2 and executing every statement, but not every

branch, would not reveal the bug in the following incorrect version:

A negative value produces the correct answer. Every statement can be executed, but if

the test cases do not force each branch to be taken, the bug can remain hidden. The next

example uses a test based on executing each branch but does not force the execution of

all statements:

The hidden loop around label 100 is not revealed by tests based on prescription 3 alone

because no test forces the execution of statement 100 and the following GOTO

statement. Furthermore, label 100 is not flagged by the compiler as an unreferenced

label and the subsequent GOTO does not refer to an undefined label.

• A Static Analysis (that is, an analysis based on examining the source code or

structure) cannot determine whether a piece of code is or is not reachable. There

could be subroutine calls with parameters that are subroutine labels, or in the above

example there could be a GOTO that targeted label 100 but could never achieve a

value that would send the program to that label.

• Only a Dynamic Analysis (that is, an analysis based on the code's behavior while

running - which is to say, to all intents and purposes, testing) can determine whether

code is reachable or not and therefore distinguish between the ideal structure we

think we have and the actual, buggy structure.

www.Jntufastupdates.com

24

PATH TESTING CRITERIA:

• Any testing strategy based on paths must at least both exercise every instruction and

take branches in all directions.

• A set of tests that does this is not complete in an absolute sense, but it is complete in

the sense that anything less must leave something untested.

• So we have explored three different testing criteria or strategies out of a potentially

infinite family of strategies.

i. Path Testing (Pinf):

1. Execute all possible control flow paths through the program: typically, this is

restricted to all possible entry/exit paths through the program.

2. If we achieve this prescription, we are said to have achieved 100% path

coverage. This is the strongest criterion in the path testing strategy family: it is

generally impossible to achieve.

ii. Statement Testing (P1):

1. Execute all statements in the program at least once under some test. If we do

enough tests to achieve this, we are said to have achieved 100% statement

coverage.

2. An alternate equivalent characterization is to say that we have achieved 100%

node coverage. We denote this by C1.

3. This is the weakest criterion in the family: testing less than this for new software

is unconscionable (unprincipled or cannot be accepted) and should be

criminalized.

iii. Branch Testing (P2):

1. Execute enough tests to assure that every branch alternative has been exercised at

least once under some test.

2. If we do enough tests to achieve this prescription, then we have achieved 100%

branch coverage.

3. An alternative characterization is to say that we have achieved 100% link

coverage.

4. For structured software, branch testing and therefore branch coverage strictly

includes statement coverage.

5. We denote branch coverage by C2.

www.Jntufastupdates.com

25

Commonsense and Strategies:

 Branch and statement coverage are accepted today as the minimum mandatory

testing requirement.

 The question "why not use a judicious sampling of paths?, what is wrong with

leaving some code, untested?" is ineffectual in the view of common sense and

experience since: (1.) Not testing a piece of a code leaves a residue of bugs in the

program in proportion to the size of the untested code and the probability of bugs.

(2.) The high probability paths are always thoroughly tested if only to

demonstrate that the system works properly.

 Which paths to be tested? You must pick enough paths to achieve C1+C2. The

question of what is the fewest number of such paths is interesting to the designer

of test tools that help automate the path testing, but it is not crucial to the

pragmatic (practical) design of tests. It is better to make many simple paths than a

few complicated paths.

Path Selection Example:

Figure 2.9: An example flow graph to explain path selection

Practical Suggestions in Path Testing:

1. Draw the control flow graph on a single sheet of paper.

2. Make several copies - as many as you will need for coverage (C1+C2) and

several more.

3. Use a yellow highlighting marker to trace paths. Copy the paths onto master

sheets.

4. Continue tracing paths until all lines on the master sheet are covered, indicating
www.Jntufastupdates.com

26

that you appear to have achieved C1+C2.

5. As you trace the paths, create a table that shows the paths, the coverage status of

each process, and each decision.

6. The above paths lead to the following table considering Figure 2.9:

7. After you have traced a covering path set on the master sheet and filled in the table

for every path, check the following:

1. Does every decision have a YES and a NO in its column? (C2)

2. Has every case of all case statements been marked? (C2)

3. Is every three - way branch (less, equal, greater) covered? (C2)

4. Is every link (process) covered at least once? (C1)

8. Revised Path Selection Rules:

 Pick the simplest, functionally sensible entry/exit path.

 Pick additional paths as small variation from previous paths. Pick paths that do

not have loops rather than paths that do. Favor short paths that make sense over

paths that don't.

 Pick additional paths that have no obvious functional meaning only if it's

necessary to provide coverage.

 Be comfortable with your chosen paths. Play your hunches (guesses) and give

your intuition free reign as long as you achieve C1+C2.

 Don't follow rules slavishly (blindly) - except for coverage.

LOOPS:

Cases for a single loop: A Single loop can be covered with two cases: Looping and Not

looping. But, experience shows that many loop-related bugs are not discovered by

C1+C2. Bugs hide themselves in corners and congregate at boundaries - in the cases of

loops, at or around the minimum or maximum number of times the loop can be iterated.

The minimum number of iterations is often zero, but it need not be.

www.Jntufastupdates.com

27

CASE 1: Single loop, Zero minimum, N maximum, No excluded values

1. Try bypassing the loop (zero iterations). If you can't, you either have a bug, or zero

is not the minimum and you have the wrong case.

2. Could the loop-control variable be negative? Could it appear to specify a negative

number of iterations? What happens to such a value?

3. One pass through the loop.

4. Two passes through the loop.

5. A typical number of iterations, unless covered by a previous test.

6. One less than the maximum number of iterations.

7. The maximum number of iterations.

8. Attempt one more than the maximum number of iterations. What prevents the

loop-control variable from having this value? What will happen with this value if it

is forced?

CASE 2: Single loop, Non-zero minimum, No excluded values

1. Try one less than the expected minimum. What happens if the loop control

variable's value is less than the minimum? What prevents the value from being less

than the minimum?

2. The minimum number of iterations.

3. One more than the minimum number of iterations.

4. Once, unless covered by a previous test.

5. Twice, unless covered by a previous test.

6. A typical value.

7. One less than the maximum value.

8. The maximum number of iterations.

9. Attempt one more than the maximum number of iterations.

CASE 3: Single loops with excluded values

 Treat single loops with excluded values as two sets of tests consisting of loops

without excluded values, such as case 1 and 2 above.

 Example, the total range of the loop control variable was 1 to 20, but that values 7,

8,9,10 were excluded. The two sets of tests are 1-6 and 11-20.

 The test cases to attempt would be 0,1,2,4,6,7 for the first range and

10,11,15,19,20,21 for the second range.

www.Jntufastupdates.com

28

Kinds of Loops:

There are only three kinds of loops with respect to path testing:

 Nested Loops:

The number of tests to be performed on nested loops will be the exponent of the tests

performed on single loops. As we cannot always afford to test all combinations of

nested loops' iterations values. Here's a tactic used to discard some of these values:

1. Start at the inner most loop. Set all the outer loops to their minimum values.

2. Test the minimum, minimum+1, typical, maximum-1, and maximum for the

innermost loop, while holding the outer loops at their minimum iteration

parameter values. Expand the tests as required for out of range and excluded

values.

3. If you've done the outmost loop, GOTO step 5, else move out one loop and set it

up as in step 2 with all other loops set to typical values.

4. Continue outward in this manner until all loops have been covered.

5. Do all the cases for all loops in the nest simultaneously.

 Concatenated Loops:

• Concatenated loops fall between single and nested loops with respect to test

cases. Two loops are concatenated if it's possible to reach one after exiting the

other while still on a path from entrance to exit.

• If the loops cannot be on the same path, then they are not concatenated and can be

treated as individual loops.

 Horrible Loops:

• A horrible loop is a combination of nested loops, the use of code that jumps into

and out of loops, intersecting loops, hidden loops, and cross connected loops.

• Makes iteration value selection for test cases an awesome and ugly task, which is

another reason such structures should be avoided.

www.Jntufastupdates.com

29

Figure 2.10: Example of Loop types

Loop Testing Time:

Any kind of loop can lead to long testing time, especially if all the extreme value

cases are to attempted (Max-1, Max, Max+1).

 This situation is obviously worse for nested and dependent concatenated loops.

 Consider nested loops in which testing the combination of extreme values lead to

long test times. Several options to deal with:

 Prove that the combined extreme cases are hypothetically possible, they are not

possible in the real world

www.Jntufastupdates.com

30

 Put in limits or checks that prevent the combined extreme cases. Then you have to

test the software that implements such safety measures.

PREDICATES, PATH PREDICATES AND ACHIEVABLE PATHS:

PREDICATE: The logical function evaluated at a decision is called Predicate. The

direction taken at a decision depends on the value of decision variable. Some examples

are: A>0, x+y>=90.......

PATH PREDICATE: A predicate associated with a path is called a Path Predicate. For

example, "x is greater than zero", "x+y>=90", "w is either negative or equal to 10 is

true" is a sequence of predicates whose truth values will cause the routine to take a

specific path.

MULTIWAY BRANCHES:

 The path taken through a multiway branch such as a computed GOTO's, case

statement, or jump tables cannot be directly expressed in TRUE/FALSE terms.

 Although, it is possible to describe such alternatives by using multi valued logic, an

expedient (practical approach) is to express multiway branches as an equivalent set

of if..then..else statements.

 For example a three way case statement can be written as: If case=1 DO A1 ELSE

(IF Case=2 DO A2 ELSE DO A3 ENDIF)ENDIF.

INPUTS:

 In testing, the word input is not restricted to direct inputs, such as variables in a

subroutine call, but includes all data objects referenced by the routine whose values

are fixed prior to entering it.

 For example, inputs in a calling sequence, objects in a data structure, values left in

registers, or any combination of object types.

 The input for a particular test is mapped as a one dimensional array called as an

Input Vector.

PREDICATE INTERPRETATION:

 The simplest predicate depends only on input variables.

 For example if x1,x2 are inputs, the predicate might be x1+x2>=7, given the values

of x1 and x2 the direction taken through the decision is based on the predicate is

determined at input time and does not depend on processing.

 Another example, assume a predicate x1+y>=0 that along a path prior to reaching

this predicate we had the assignment statement y=x2+7. although our predicate

depends on processing, we can substitute the symbolic expression for y to obtain an

www.Jntufastupdates.com

31

equivalent predicate x1+x2+7>=0.

 The act of symbolic substitution of operations along the path in order to express the

predicate solely in terms of the input vector is called predicate interpretation.

 Sometimes the interpretation may depend on the path;

 The path predicates are the specific form of the predicates of the decisions along the

selected path after interpretation.

INDEPENDENCE OF VARIABLES AND PREDICATES:

 The path predicates take on truth values based on the values of input variables,

either directly or indirectly.

 If a variable's value does not change as a result of processing, that variable is

independent of the processing.

 If the variable's value can change as a result of the processing, the variable is

process dependent.

 A predicate whose truth value can change as a result of the processing is said to be

process dependent and one whose truth value does not change as a result of the

processing is process independent.

 Process dependence of a predicate does not always follow from dependence of the

input variables on which that predicate is based.

CORRELATION OF VARIABLES AND PREDICATES:

• Two variables are correlated if every combination of their values cannot be

independently specified.

• Variables whose values can be specified independently without restriction are called

uncorrelated.

• A pair of predicates whose outcomes depend on one or more variables in common

are said to be correlated predicates.

• For example, the predicate X==Y is followed by another predicate X+Y == 8. If we

select X and Y values to satisfy the first predicate, we might have forced the 2nd

predicate's truth value to change.

 Every path through a routine is achievable only if all the predicates in that routine

are uncorrelated.

www.Jntufastupdates.com

32

PATH PREDICATE EXPRESSIONS:

 A path predicate expression is a set of boolean expressions, all of which must be

satisfied to achieve the selected path.

 Example:

X1+3X2+17>=0 X3=17

X4-X1>=14X2

 Any set of input values that satisfy all of the conditions of the path predicate

expression will force the routine to the path.

 Sometimes a predicate can have an OR in it.

 Example:

A: X5 > 0

B: X1 + 3X2 + 17>= 0

 C: X3 = 17

 D: X4 - X1 >= 14X2

E: X6 < 0

 B: X1 + 3X2 + 17>= 0

 C: X3 = 17

 D: X4 - X1 >= 14X2

 Boolean algebra notation to denote the boolean expression:

ABCD+EBCD=(A+E)BCD

PREDICATE COVERAGE:

 Compound Predicate: Predicates of the form A OR B, A AND B and more

complicated Boolean expressions are called as compound predicates.

 Sometimes even a simple predicate becomes compound after interpretation.

Example: the predicate if (x=17) whose opposite branch is if x.NE.17 which is

equivalent to x>17. Or. X<17.

 Predicate coverage is being the achieving of all possible combinations of truth

values corresponding to the selected path have been explored under some test.

 As achieving the desired direction at a given decision could still hide bugs in the

associated predicates

TESTING BLINDNESS:

 Testing Blindness is a pathological (harmful) situation in which the desired path is

achieved for the wrong reason.

 There are three types of Testing Blindness:

1. Assignment Blindness

2. Equality Blindness

3. Self Blindness
www.Jntufastupdates.com

33

 Assignment Blindness:

o Assignment blindness occurs when the buggy predicate appears to work correctly

because the specific value chosen for an assignment statement works with both the

correct and incorrect predicate.

o For Example:

Correct Buggy

X = 7

........

if Y > 0

then ...

X = 7

........

if X+Y > 0

then ...

o If the test case sets Y=1 the desired path is taken in either case, but there is still a

bug.

 Equality Blindness:

o Equality blindness occurs when the path selected by a prior predicate results in a

value that works both for the correct and buggy predicate. For Example:

Correct Buggy

if Y = 2 then

........

if X+Y > 3

then ...

if Y = 2

then

........

if X > 1

then ...

o The first predicate if y=2 forces the rest of the path, so that for any positive value of

x. the path taken at the second predicate will be the same for the correct and buggy

version.

 Self Blindness:

o Self blindness occurs when the buggy predicate is a multiple of the correct predicate

and as a result is indistinguishable along that path. For Example:

Correct Buggy

X = A

........

if X-1 > 0

then ...

X = A

........

if X+A-2 > 0

then ...

1. The assignment (x=a) makes the predicates multiples of each other, so the

direction taken is the same for the correct and buggy version.

www.Jntufastupdates.com

34

PATH SENSITIZING:

o Review: achievable and unachievable paths:

1. We want to select and test enough paths to achieve a satisfactory notion of test

completeness such as C1+C2.

2. Extract the programs control flow graph and select a set of tentative covering paths.

3. For any path in that set, interpret the predicates along the path as needed to express

them in terms of the input vector. In general individual predicates are compound or

may become compound as a result of interpretation.

4. Trace the path through, multiplying the individual compound predicates to achieve

a boolean expression such as

(A+BC) (D+E) (FGH) (IJ) (K) (l) (L).

5. Multiply out the expression to achieve a sum of products form:

ADFGHIJKL+AEFGHIJKL+BCDFGHIJKL+BCEFGHIJKL

6. Each product term denotes a set of inequalities that if solved will yield an input

vector that will drive the routine along the designated path.

7. Solve any one of the inequality sets for the chosen path and you have found a set of

input values for the path.

8. If you can find a solution, then the path is achievable.

9. If you can’t find a solution to any of the sets of inequalities, the path is un

achievable.

10. The act of finding a set of solutions to the path predicate expression is called

PATH SENSITIZATION.

o HEURISTIC PROCEDURES FOR SENSITIZING PATHS:

1. This is a workable approach, instead of selecting the paths without considering how

to sensitize, attempt to choose a covering path set that is easy to sensitize and pick

hard to sensitize paths only as you must to achieve coverage.

2. Identify all variables that affect the decision.

3. Classify the predicates as dependent or independent.

4. Start the path selection with un correlated, independent predicates.

5. If coverage has not been achieved using independent uncorrelated predicates,

extend the path set using correlated predicates.

6. If coverage has not been achieved extend the cases to those that involve dependent

predicates.

7. Last, use correlated, dependent predicates.

www.Jntufastupdates.com

35

PATH INSTRUMENTATION:

1. Path instrumentation is what we have to do to confirm that the outcome was

achieved by the intended path.

2. Co-incidental Correctness: The coincidental correctness stands for achieving the

desired outcome for wrong reason.

Figure 2.11: Coincidental Correctness

The above figure is an example of a routine that, for the (unfortunately) chosen input

value (X = 16), yields the same outcome (Y = 2) no matter which case we select.

Therefore, the tests chosen this way will not tell us whether we have achieved

coverage. For example, the five cases could be totally jumbled and still the outcome

would be the same. Path Instrumentation is what we have to do to confirm that the

outcome was achieved by the intended path.

 The types of instrumentation methods include:

1. Interpretive Trace Program:

o An interpretive trace program is one that executes every statement in order and

records the intermediate values of all calculations, the statement labels traversed etc.

o If we run the tested routine under a trace, then we have all the information we need to

confirm the outcome and, furthermore, to confirm that it was achieved by the intended

path.

o The trouble with traces is that they give us far more information than we need. In fact,

the typical trace program provides so much information that confirming the path from

its massive output dump is more work than simulating the computer by hand to

confirm the path.

www.Jntufastupdates.com

36

2. Traversal Marker or Link Marker:

o A simple and effective form of instrumentation is called a traversal marker or link

marker.

o Name every link by a lower case letter.

o Instrument the links so that the link's name is recorded when the link is executed.

o The succession of letters produced in going from the routine's entry to its exit should,

if there are no bugs, exactly correspond to the path name.

Figure 2.12: Single Link Marker Instrumentation

o Why Single Link Markers aren't enough: Unfortunately, a single link marker may

not do the trick because links can be chewed by open bugs.

Figure 2.13: Why Single Link Markers aren't enough.

We intended to traverse the ikm path, but because of a rampaging GOTO in the

middle of the m link, we go to process B. If coincidental correctness is against us,

the outcomes will be the same and we won't know about the bug.

 Two Link Marker Method:

The solution to the problem of single link marker method is to implement two

markers per link: one at the beginning of each link and on at the end.

The two link markers now specify the path name and confirm both the beginning

and end of the link.

www.Jntufastupdates.com

37

Figure 2.14: Double Link Marker Instrumentation

Link Counter: A less disruptive (and less informative) instrumentation method is

based on counters. Instead of a unique link name to be pushed into a string when

the link is traversed, we simply increment a link counter. We now confirm that the

path length is as expected. The same problem that led us to double link markers

also leads us to double link counters.

www.Jntufastupdates.com

	Bug:
	Error:
	Failure:
	MODEL FOR TESTING:
	Figure 1.1: A Model for Testing
	CONSEQUENCES OF BUGS:
	TAXONOMY OF BUGS:

	BASICS OF PATH TESTING:
	 The Bug Assumption:
	 Control Flow Graphs:
	1. Process Block:
	2. Decisions:
	3. Case Statements:
	4. Junctions:
	Notational Evolution:
	FUNDAMENTAL PATH SELECTION CRITERIA:
	EXAMPLE: Here is the correct version.
	PATH TESTING CRITERIA:
	i. Path Testing (Pinf):
	ii. Statement Testing (P1):
	iii. Branch Testing (P2):
	Commonsense and Strategies:
	Path Selection Example:
	8. Revised Path Selection Rules:
	LOOPS:
	CASE 1: Single loop, Zero minimum, N maximum, No excluded values
	CASE 2: Single loop, Non-zero minimum, No excluded values
	CASE 3: Single loops with excluded values

	 Nested Loops:
	 Concatenated Loops:
	 Horrible Loops:
	Figure 2.10: Example of Loop types
	PREDICATES, PATH PREDICATES AND ACHIEVABLE PATHS:
	MULTIWAY BRANCHES:
	INPUTS:
	PREDICATE INTERPRETATION:
	INDEPENDENCE OF VARIABLES AND PREDICATES:
	CORRELATION OF VARIABLES AND PREDICATES:
	PATH PREDICATE EXPRESSIONS:
	ABCD+EBCD=(A+E)BCD
	TESTING BLINDNESS:
	 Assignment Blindness:
	 Equality Blindness:
	 Self Blindness:
	PATH SENSITIZING:
	(A+BC) (D+E) (FGH) (IJ) (K) (l) (L).
	ADFGHIJKL+AEFGHIJKL+BCDFGHIJKL+BCEFGHIJKL
	o HEURISTIC PROCEDURES FOR SENSITIZING PATHS:
	PATH INSTRUMENTATION:
	Figure 2.11: Coincidental Correctness
	1. Interpretive Trace Program:
	2. Traversal Marker or Link Marker:
	Figure 2.13: Why Single Link Markers aren't enough.
	 Two Link Marker Method:
	Figure 2.14: Double Link Marker Instrumentation

