

UNIT – III
 Work Flows of the process: Software process workflows, Iteration workflows.

 Checkpoints of the process: Major mile stones, Minor Milestones, Periodic status assessments.

Iterative Process Planning: Work breakdown structures, planning guidelines, cost and schedule

estimating, Iteration planning process, Pragmatic planning.

Workflow of the process

SOFTWARE PROCESS WORKFLOWS

The term WORKFLOWS is used to mean a thread of cohesive and mostly sequential activities. Workflows are
mapped to product artifacts There are seven top-level workflows:

1. Management workflow: controlling the process and ensuring win conditions for all stakeholders

2. Environment workflow: automating the process and evolving the maintenance environment

3. Requirements workflow: analyzing the problem space and evolving the requirements artifacts

4. Design workflow: modeling the solution and evolving the architecture and design artifacts

5. Implementation workflow: programming the components and evolving the implementation and

deployment artifacts

6. Assessment workflow: assessing the trends in process and product quality

7. Deployment workflow: transitioning the end products to the user

Figure 8-1 illustrates the relative levels of effort expected across the phases in each of the top-level workflows.

Table 8-1 shows the allocation of artifacts and the emphasis of each workflow in each of the life-cycle
phases of inception, elaboration, construction, and transition.

ITERATION WORKFLOWS

Iteration consists of a loosely sequential set of activities in various proportions, depending on where the
iteration is located in the development cycle. Each iteration is defined in terms of a set of allocated usage
scenarios. An individual iteration's workflow, illustrated in Figure 8-2, generally includes the following
sequence:

 Management: iteration planning to determine the content of the release and develop the detailed
plan for the iteration; assignment of work packages, or tasks, to the development team

 Environment: evolving the software change order database to reflect all new baselines and
changes to existing baselines for all product, test, and environment components

 Requirements: analyzing the baseline plan, the baseline architecture, and the baseline
requirements set artifacts to fully elaborate the use cases to be demonstrated at the end of this
iteration and their evaluation criteria; updating any requirements set artifacts to reflect changes
necessitated by results of this iteration's engineering activities

 Design: evolving the baseline architecture and the baseline design set artifacts to elaborate fully
the design model and test model components necessary to demonstrate against the evaluation
criteria allocated to this iteration; updating design set artifacts to reflect changes necessitated by
the results of this iteration's engineering activities

 Implementation: developing or acquiring any new components, and enhancing or modifying any
existing components, to demonstrate the evaluation criteria allocated to this iteration; integrating
and testing all new and modified components with existing baselines (previous versions)

 Assessment: evaluating the results of the iteration, including compliance with the allocated
evaluation criteria and the quality of the current baselines; identifying any rework required and
determining whether it should be performed before deployment of this release or allocated to the
next release; assessing results to improve the basis of the subsequent iteration's plan

 Deployment: transitioning the release either to an external organization (such as a user,
independent verification and validation contractor, or regulatory agency) or to internal closure by
conducting a post-mortem so that lessons learned can be captured and reflected in the next
iteration

Iterations in the inception and elaboration phases focus on management. Requirements, and design
activities. Iterations in the construction phase focus on design, implementation, and assessment. Iterations
in the transition phase focus on assessment and deployment. Figure 8-3 shows the emphasis on different
activities across the life cycle. An iteration represents the state of the overall architecture and the complete
deliverable system. An increment represents the current progress that will be combined with the preceding
iteration to from the next iteration. Figure 8-4, an example of a simple development life cycle, illustrates
the differences between iterations and increments.

9. Checkpoints of the process

Three types of joint management reviews are conducted throughout the process:

1. Major milestones. These system wide events are held at the end of each development phase.
They provide visibility to system wide issues, synchronize the management and engineering
perspectives, and verify that the aims of the phase have been achieved.

2. Minor milestones. These iteration-focused events are conducted to review the content of an
iteration in detail and to authorize continued work.

3. Status assessments. These periodic events provide management with frequent and regular
insight into the progress being made.

Each of the four phases-inception, elaboration, construction, and transition consists of one or more iterations
and concludes with a major milestone when a planned technical capability is produced in demonstrable
form. An iteration represents a cycle of activities for which there is a well-defined intermediate result-a
minor milestone-captured with two artifacts: a release specification (the evaluation criteria and plan) and a
release description (the results). Major milestones at the end of each phase use formal, stakeholder-approved
evaluation criteria and release descriptions; minor milestones use informal, development-team-controlled
versions of these artifacts.
Figure 9-1 illustrates a typical sequence of project checkpoints for a relatively large project.

MAJOR MILESTONES

The four major milestones occur at the transition points between life-cycle phases. They can be used in
many different process models, including the conventional waterfall model. In an iterative model, the
major milestones are used to achieve concurrence among all stakeholders on the current state of the project.
Different stakeholders have very different concerns:

 Customers: schedule and budget estimates, feasibility, risk assessment, requirements
understanding, progress, product line compatibility

 Users: consistency with requirements and usage scenarios, potential for accommodating
growth, quality attributes

 Architects and systems engineers: product line compatibility, requirements changes, trade-off
analyses, completeness and consistency, balance among risk, quality, and usability

 Developers: sufficiency of requirements detail and usage scenario descriptions, . frameworks for
component selection or development, resolution of development risk, product line compatibility,
sufficiency of the development environment

 Maintainers: sufficiency of product and documentation artifacts, understandability, interoperability
with existing systems, sufficiency of maintenance environment

 Others: possibly many other perspectives by stakeholders such as regulatory agencies, independent
verification and validation contractors, venture capital investors, subcontractors, associate
contractors, and sales and marketing teams

Table 9-1 summarizes the balance of information across the major milestones.

 Life-Cycle Objectives Milestone
The life-cycle objectives milestone occurs at the end of the inception phase. The goal is to present to all
stakeholders a recommendation on how to proceed with development, including a plan, estimated cost and
schedule, and expected benefits and cost savings. A successfully completed life-cycle objectives milestone
will result in authorization from all stakeholders to proceed with the elaboration phase.

Life-Cycle Architecture Milestone
The life-cycle architecture milestone occurs at the end of the elaboration phase. The primary goal is to
demonstrate an executable architecture to all stakeholders. The baseline architecture consists of both a
human- readable representation (the architecture document) and a configuration-controlled set of software
components captured in the engineering artifacts. A successfully completed life-cycle architecture milestone
will result in authorization from the stakeholders to proceed with the construction phase.

The technical data listed in Figure 9-2 should have been reviewed by the time of the lifecycle architecture
milestone. Figure 9-3 provides default agendas for this milestone.

Initial Operational Capability Milestone
The initial operational capability milestone occurs late in the construction phase. The goals are to assess the
readiness of the software to begin the transition into customer/user sites and to authorize the start of
acceptance testing. Acceptance testing can be done incrementally across multiple iterations or can be
completed entirely during the transition phase is not necessarily the completion of the construction phase.
Product Release Milestone

The product release milestone occurs at the end of the transition phase. The goal is to assess the completion
of the software and its transition to the support organization, if any. The results of acceptance testing are
reviewed, and all open issues are addressed. Software quality metrics are reviewed to determine whether
quality is sufficient for transition to the support organization.

MINOR MILESTONES

For most iterations, which have a one-month to six-month duration, only two minor milestones are needed:
the iteration readiness review and the iteration assessment review.

 Iteration Readiness Review. This informal milestone is conducted at the start of each iteration to
review the detailed iteration plan and the evaluation criteria that have been allocated to this
iteration.

 Iteration Assessment Review. This informal milestone is conducted at the end of each iteration to
assess the degree to which the iteration achieved its objectives and satisfied its evaluation criteria,
to review iteration results, to review qualification test results (if part of the iteration), to
determine the amount of rework to be done, and to review the impact of the iteration results on
the plan for subsequent iterations.

The format and content of these minor milestones tend to be highly dependent on the project and the
organizational culture. Figure 9-4 identifies the various minor milestones to be considered when a project is
being planned.

PERIODIC STATUS ASSESSMENTS
Periodic status assessments are management reviews conducted at regular intervals (monthly,
quarterly) to address progress and quality indicators, ensure continuous attention to project
dynamics, and maintain open communications among all stakeholders.
Periodic status assessments serve as project snapshots. While the period may vary, the recurring event
forces the project history to be captured and documented. Status assessments provide the following:
 A mechanism for openly addressing, communicating, and resolving management issues,

technical issues, and project risks

 Objective data derived directly from on-going activities and evolving product configurations

 A mechanism for disseminating process, progress, quality trends, practices, and experience
information to and from all stakeholders in an open forum
Periodic status assessments are crucial for focusing continuous attention on the evolving health of

the project and its dynamic priorities. They force the software project manager to collect and review the
data periodically, force outside peer review, and encourage dissemination of best practices to and from
other stakeholders.

The default content of periodic status assessments should include the topics identified in Table 9-2.

Iterative process planning

A good work breakdown structure and its synchronization with the process framework are
critical factors in software project success. Development of a work breakdown structure
dependent on the project management style, organizational culture, customer preference,
financial constraints, and several other hard-to-define, project-specific parameters.
A WBS is simply a hierarchy of elements that decomposes the project plan into the discrete
work tasks. A WBS provides the following information structure:

 A delineation of all significant work

 A clear task decomposition for assignment of responsibilities

 A framework for scheduling, budgeting, and expenditure tracking

Many parameters can drive the decomposition of work into discrete tasks: product

subsystems, components, functions, organizational units, life-cycle phases, even geographies.

Most systems have a first-level decomposition by subsystem. Subsystems are then

decomposed into their components, one of which is typically the software.

CONVENTIONAL WBS ISSUES

Conventional work breakdown structures frequently suffer from three fundamental flaws.

1. They are prematurely structured around the product design.

2. They are prematurely decomposed, planned, and budgeted in either too much or
too little detail.

3. They are project-specific, and cross-project comparisons are usually difficult or
impossible.

Conventional work breakdown structures are prematurely structured around the product
design. Figure 10-1 shows a typical conventional WBS that has been structured primarily
around the subsystems of its product architecture, then further decomposed into the
components of each subsystem. A WBS is the architecture for the financial plan.

Conventional work breakdown structures are prematurely decomposed, planned, and
budgeted in either too little or too much detail. Large software projects tend to be over
planned and small projects tend to be under planned. The basic problem with planning too
much detail at the outset is that the detail does not evolve with the level of fidelity in the
plan.

Conventional work breakdown structures are project-specific, and cross-project comparisons

are usually difficult or impossible. With no standard WBS structure, it is extremely difficult
to compare plans, financial data, schedule data, organizational efficiencies, cost trends,
productivity trends, or quality trends across multiple project.

Figure 10-1 Conventional work breakdown structure, following the product

hierarchy

Management

System requirement and design

Subsystem 1

Component 11

Requirements

Design

Code

Test

Documentation

…(similar structures for other components)

Component 1N

Requirements

Design

Code

Test

Documentation

…(similar structures for other subsystems)

Subsystem M

Component M1

Requirements

Design

Code

Test

Documentation

…(similar structures for other components)

Component MN

Requirements

Design

Code

Test

Documentation

Integration and test

Test planning

Test procedure preparation

Testing

Test reports

Other support areas

Configuration control

Quality assurance

System administration

 EVOLUTIONARY WORK BREAKDOWN STRUCTURES

An evolutionary WBS should organize the planning elements around the process framework
rather than the product framework. The basic recommendation for the WBS is to organize
the hierarchy as follows:

 First-level WBS elements are the workflows (management, environment,
requirements, design, implementation, assessment, and deployment).

 Second-level elements are defined for each phase of the life cycle (inception,
elaboration, construction, and transition).

 Third-level elements are defined for the focus of activities that produce the artifacts
of each phase.

A default WBS consistent with the process framework (phases, workflows, and artifacts)
is shown in Figure 10-2. This recommended structure provides one example of how the
elements of the process framework can be integrated into a plan. It provides a
framework for estimating the costs and schedules of each element, allocating them
across a project organization, and tracking expenditures.

The structure shown is intended to be merely a starting point. It needs to be tailored to
the specifics of a project in many ways.

 Scale. Larger projects will have more levels and substructures.

 Organizational structure. Projects that include subcontractors or span multiple
organizational entities may introduce constraints that necessitate different WBS
allocations.

 Degree of custom development. Depending on the character of the project, there
can be very different emphases in the requirements, design, and implementation
workflows.

 Business context. Projects developing commercial products for delivery to a broad
customer base may require much more elaborate substructures for the deployment
element.

 Precedent experience. Very few projects start with a clean slate. Most of them are
developed as new generations of a legacy system (with a mature WBS) or in the
context of existing organizational standards (with preordained WBS expectations).

The WBS decomposes the character of the project and maps it to the life cycle, the
budget, and the personnel. Reviewing a WBS provides insight into the important
attributes, priorities, and structure of the project plan.
Another important attribute of a good WBS is that the planning fidelity inherent in each
element is commensurate with the current life-cycle phase and project state. Figure 10-3
illustrates this idea. One of the primary reasons for organizing the default WBS the way I
have is to allow for planning elements that range from planning packages (rough budgets that
are maintained as an estimate for future elaboration rather than being decomposed into
detail) through fully planned activity networks (with a well-defined budget and continuous
assessment of actual versus planned expenditures).

Figure 10-2 Default work breakdown structure

A Management

AA Inception phase management

AAA Business case development

AAB Elaboration phase release specifications

AAC Elaboration phase WBS specifications

AAD Software development plan

AAE Inception phase project control and status assessments

AB Elaboration phase management

ABA Construction phase release specifications

ABB Construction phase WBS baselining

ABC Elaboration phase project control and status assessments

AC Construction phase management

ACA Deployment phase planning

ACB Deployment phase WBS baselining

ACC Construction phase project control and status assessments

AD Transition phase management

ADA Next generation planning

ADB Transition phase project control and status assessments

B Environment

BA Inception phase environment specification

BB Elaboration phase environment baselining

BBA Development environment installation and administration

BBB Development environment integration and custom toolsmithing

BBC SCO database formulation

BC Construction phase environment maintenance

BCA Development environment installation and administration

BCB SCO database maintenance

BD Transition phase environment maintenance

BDA Development environment maintenance and administration

BDB SCO database maintenance

BDC Maintenance environment packaging and transition

C Requirements

CA Inception phase requirements development

CCA Vision specification

CAB Use case modeling

CB Elaboration phase requirements baselining

CBA Vision baselining

CBB Use case model baselining

CC Construction phase requirements maintenance

CD Transition phase requirements maintenance

D Design

DA Inception phase architecture prototyping

DB Elaboration phase architecture baselining

DBA Architecture design modeling

DBB Design demonstration planning and conduct

DBC Software architecture description

DC Construction phase design modeling

DCA Architecture design model maintenance

DCB Component design modeling

DD Transition phase design maintenance

E Implementation

EA Inception phase component prototyping

EB Elaboration phase component implementation

EBA Critical component coding demonstration integration

EC Construction phase component implementation

ECA Initial release(s) component coding and stand-alone testing

ECB Alpha release component coding and stand-alone testing

ECC Beta release component coding and stand-alone testing

ECD Component maintenance

F Assessment

FA Inception phase assessment

FB Elaboration phase assessment

FBA Test modeling

FBB Architecture test scenario implementation

FBC Demonstration assessment and release descriptions

FC Construction phase assessment

FCA Initial release assessment and release description

FCB Alpha release assessment and release description

FCC Beta release assessment and release description

FD Transition phase assessment

FDA Product release assessment and release description

G Deployment

GA Inception phase deployment planning

GB Elaboration phase deployment planning

GC Construction phase deployment

GCA User manual baselining

GD Transition phase deployment

GDA Product transition to user

PLANNING GUIDELINES

Software projects span a broad range of application domains. It is valuable but risky to make

specific planning recommendations independent of project context. Project-independent

planning advice is also risky. There is the risk that the guidelines may pe adopted blindly

without being adapted to specific project circumstances. Two simple planning guidelines

should be considered when a project plan is being initiated or assessed. The first guideline,

detailed in Table 10-1, prescribes a default allocation of costs among the first-level WBS

elements. The second guideline, detailed in Table 10-2, prescribes the allocation of effort and

schedule across the lifecycle phases.

10-1 Web budgeting defaults

First Level WBS Element Default Budget

Management 10%

Environment 10%

Requirement 10%

Design 15%

Implementation 25%

Assessment 25%

Deployment 5%

Total 100%

Table 10-2 Default distributions of effort and schedule by phase

Effort 5% 20% 65% 10%

Schedule 10% 30% 50% 10%

Domain Inception Elaboration Construction Transition

THE COST AND SCHEDULE ESTIMATING PROCESS

Project plans need to be derived from two perspectives. The first is a forward-looking, top-
down approach. It starts with an understanding of the general requirements and constraints,
derives a macro-level budget and schedule, then decomposes these elements into lower level
budgets and intermediate milestones. From this perspective, the following planning sequence
would occur:

1. The software project manager (and others) develops a characterization of the overall
size, process, environment, people, and quality required for the project.

2. A macro-level estimate of the total effort and schedule is developed using a
software cost estimation model.

3. The software project manager partitions the estimate for the effort into a top-level
WBS using guidelines such as those in Table 10-1.

4. At this point, subproject managers are given the responsibility for decomposing
each of the WBS elements into lower levels using their top-level allocation, staffing
profile, and major milestone dates as constraints.

The second perspective is a backward-looking, bottom-up approach. We start with the end in
mind, analyze the micro-level budgets and schedules, then sum all these elements into the
higher level budgets and intermediate milestones. This approach tends to define and
populate the WBS from the lowest levels upward. From this perspective, the following
planning sequence would occur:

1. The lowest level WBS elements are elaborated into detailed tasks

2. Estimates are combined and integrated into higher level budgets and milestones.

3. Comparisons are made with the top-down budgets and schedule milestones.

Milestone scheduling or budget allocation through top-down estimating tends to exaggerate
the project management biases and usually results in an overly optimistic plan. Bottom-up
estimates usually exaggerate the performer biases and result in an overly pessimistic plan.

These two planning approaches should be used together, in balance, throughout the life
cycle of the project. During the engineering stage, the top-down perspective will dominate
because there is usually not enough depth of understanding nor stability in the detailed task
sequences to perform credible bottom-up planning. During the production stage, there should
be enough precedent experience and planning fidelity that the bottom-up planning
perspective will dominate. Top-down approach should be well tuned to the project-specific
parameters, so it should be used more as a global assessment technique. Figure 10-4
illustrates this life-cycle planning balance.

Figure 10-4 Planning balance throughout the life cycle

Bottom up task level planning based on

metrics from previous iterations

Top down project level planning based on

microanalysis from previous projects

Engineering Stage Production Stage

Inception Elaboration Construction Transition
Feasibility iteration Architecture iteration Usable iteration Product

Releases

Engineering stage planning

emphasis

Production stage planning

emphasis

Macro level task estimation for
production stage artifacts

Micro level task estimation for
production stage artifacts

Micro level task estimation for
engineering artifacts

Macro level task estimation for
maintenance of engineering artifacts

Stakeholder concurrence Stakeholder concurrence

Coarse grained variance analysis of
actual vs planned expenditures

Fine grained variance analysis of actual
vs planned expenditures

Tuning the top down project

independent planning guidelines into

project specific planning guidelines

WBS definition and elaboration

 THE ITERATION PLANNING PROCESS
Planning is concerned with defining the actual sequence of intermediate results. An
evolutionary build plan is important because there are always adjustments in build content
and schedule as early conjecture evolves into well-understood project circumstances.
Iteration is used to mean a complete synchronization across the project, with a well-
orchestrated global assessment of the entire project baseline.
 Inception iterations. The early prototyping activities integrate the foundation

components of a candidate architecture and provide an executable framework for
elaborating the critical use cases of the system. This framework includes existing
components, commercial components, and custom prototypes sufficient to
demonstrate a candidate architecture and sufficient requirements understanding to
establish a credible business case, vision, and software development plan.

 Elaboration iterations. These iterations result in architecture, including a complete
framework and infrastructure for execution. Upon completion of the architecture
iteration, a few critical use cases should be demonstrable: (1) initializing the architecture,
(2) injecting a scenario to drive the worst-case data processing flow through the system
(for example, the peak transaction throughput or peak load scenario), and (3) injecting a
scenario to drive the worst-case control flow through the system (for example,
orchestrating the fault-tolerance use cases).

 Construction iterations. Most projects require at least two major construction iterations:
an alpha release and a beta release.

 Transition iterations. Most projects use a single iteration to transition a beta release into
the final product.

The general guideline is that most projects will use between four and nine iterations. The

typical project would have the following six-iteration profile:

 One iteration in inception: an architecture prototype

 Two iterations in elaboration: architecture prototype and architecture baseline

 Two iterations in construction: alpha and beta releases

 One iteration in transition: product release

A very large or unprecedented project with many stakeholders may require additional inception

iteration and two additional iterations in construction, for a total of nine iterations.

 PRAGMATIC PLANNING

Even though good planning is more dynamic in an iterative process, doing it accurately is far

easier. While executing iteration N of any phase, the software project manager must be monitoring

and controlling against a plan that was initiated in iteration N - 1 and must be planning iteration N

+ 1. The art of good project· management is to make trade-offs in the current iteration plan and the

next iteration plan based on objective results in the current iteration and previous iterations. Aside

from bad architectures and misunderstood requirements, inadequate planning (and subsequent bad

management) is one of the most common reasons for project failures. Conversely, the success of

every successful project can be attributed in part to good planning.
A project's plan is a definition of how the project requirements will be transformed into' a product
within the business constraints. It must be realistic, it must be current, it must be a team product, it
must be understood by the stakeholders, and it must be used. Plans are not just for managers. The
more open and visible the planning process and results, the more ownership there is among the
team members who need to execute it. Bad, closely held plans cause attrition. Good, open plans
can shape cultures and encourage teamwork.

Unit – Important Questions

1. Define Model-Based software architecture?

2. Explain various process workflows?

3. Define typical sequence of life cycle checkpoints?

4. Explain general status of plans, requirements and product across the major milestones.

5. Explain conventional and Evolutionary work break down structures?

6. Explain briefly planning balance throughout the life cycle?

	Workflow of the process
	SOFTWARE PROCESS WORKFLOWS
	ITERATION WORKFLOWS

	9. Checkpoints of the process
	MAJOR MILESTONES
	Life-Cycle Objectives Milestone
	Life-Cycle Architecture Milestone
	Initial Operational Capability Milestone
	MINOR MILESTONES
	PERIODIC STATUS ASSESSMENTS

	Iterative process planning
	CONVENTIONAL WBS ISSUES
	Management
	PLANNING GUIDELINES
	THE COST AND SCHEDULE ESTIMATING PROCESS
	Feasibility iteration Architecture iteration Usable iteration Product
	PRAGMATIC PLANNING
	Unit – Important Questions

