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UNIT - II 

Process and CPU Scheduling 

1. The Process 

Process Definition: 

 A process can be thought of as a program in execution. A process is the unit of work 

in most systems. 

 A process will need certain resources—such as CPU time, memory, files, and I/O 

devices to accomplish its task. These resources are allocated to the process either when it is 

created or while it is executing. 

 

Structure of a Process in Memory 

 A process is more than the program code, which is sometimes known as the text section. 

 It also includes the current activity, as represented by the value of the program counter 

and the contents of the processor’s registers.  

 A process generally also includes the process stack, which contains temporary data (such 

as function parameters, return addresses, and local variables). 

  A data section, which contains global variables. 

 A process may also include a heap, which is memory that is dynamically allocated 

during process run time. 

                                      
When a Program becomes Process? 

 A program is a passive entity, such as a file containing a list of instructions stored on 

disk (Often called as executable file). In contrast, a process is an active entity, with a 

program counter specifying the next instruction to execute and a set of associated resources. 

A program becomes a process when an executable file is loaded into memory.  

 Two common techniques for loading executable files are double-clicking an icon 

representing the executable file and entering the name of the executable file on the command 

line (as in prog.exe or a.out). 

 

If two processes are associated with the same program, are they same or different? (Or) 

Explain if you run same program twice, what section would be shared in memory? 

 Although two processes may be associated with the same program, they are 

nevertheless considered two separate execution sequences. For instance, several users may be 

running different copies of the mail program, or the same user may invoke many copies of 

the web browser program. Each of these is a separate process; and although the text sections 

are equivalent, the data, heap, and stack sections vary. It is also common to have a process 

that spawns many processes as it runs. 
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2. Process State 

 As a process executes, it changes state. The state of a process is defined in part by the 

current activity of that process.  

A process may be in one of the following states: 

 New: The process is being created. 

 Running:  Instructions are being executed. 

 Waiting:  The process is waiting for some event to occur (such as an I/O completion 

or reception of a signal). 

 Ready:  The process is waiting to be assigned to a processor. 

 Terminated:  The process has finished execution. 

 
 

3. Process Control Block 

 Each process is represented in the operating system by a Process Control Block 

(PCB) or Task Control Block. It contains many pieces of information associated with a 

specific process, including these: 

 Process state:  The state may be new, ready, running, and waiting, halted, and so on. 

 Program counter. The counter indicates the address of the next instruction to be 

executed for this process. 

 CPU registers. The registers vary in number and type, depending on the computer 

architecture. They include accumulators, index registers, stack pointers, and general-

purpose registers, plus any condition-code information. Along with the program counter, 

this state information must be saved when an interrupt occurs, to allow the process to be 

continued correctly afterward. 

 CPU-scheduling information. This information includes a process priority, pointers to 

scheduling queues, and any other scheduling parameters. 

 Memory-management information. This information may include such items as the 

value of the base and limit registers and the page tables, or the segment tables, depending 

on the memory system used by the operating system. 

 Accounting information. This information includes the amount of CPU and real time 

used, time limits, account numbers, job or process numbers, and so on. 

 I/O status information. This information includes the list of I/O devices allocated to the 

process, a list of open files, and so on. 
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Process Scheduling 

 The objective of multiprogramming is to have some process running at all times, to 

maximize CPU utilization.  

 The objective of time sharing is to switch the CPU among processes so frequently that 

users can interact with each program while it is running.  

 To meet these objectives, the process scheduler selects an available process (possibly 

from a set of several available processes) for program execution on the CPU. 

1. Scheduling Queues 

The following are the different queues available, 

a. Job Queue  

 As processes enter the system, they are put into a job queue, which consists of all 

  processes in the system. 

b. Ready Queue  

 The processes that are residing in main memory and are ready and waiting to 

execute are kept on a list called the ready queue. 

 This queue is generally stored as a linked list. A ready-queue header contains 

pointers to the first and final PCBs in the list. Each PCB includes a pointer field that 

points to the next PCB in the ready queue. 

 
c. Device Queue   

 The list of processes waiting for a particular I/O device is called a device queue.  

 Each device has its own device queue. 

Queuing-diagram representation of process scheduling 

 A common representation of process scheduling is a queuing diagram. Each 

rectangular box represents a queue. Two types of queues are present: the ready queue and a 
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set of device queues. The circles represent the resources that serve the queues, and the arrows 

indicate the flow of processes in the system. 

 A new process is initially put in the ready queue. It waits there until it is selected for 

execution, or dispatched. Once the process is allocated the CPU and is executing, one of 

several events could occur: 

 The process could issue an I/O request and then be placed in an I/O queue. 

 The process could create a new child process and wait for the child’s termination. 

 The process could be removed forcibly from the CPU, as a result of an interrupt, and 

be put back in the ready queue. 

 In the first two cases, the process eventually switches from the waiting state to the 

ready state and is then put back in the ready queue. A process continues this cycle until it 

terminates, at which time it is removed from all queues and has its PCB and resources 

deallocated. 

 

 

2. Schedulers 

Definition: A process migrates among the various scheduling queues throughout its lifetime. 

The operating system must select, for scheduling purposes, processes from these queues in 

some fashion. The selection process is carried out by the appropriate scheduler. 

Types of Schedulers 

a. Long-Term Scheduler or Job Scheduler 

 Often, in a batch system, more processes are submitted than can be executed 

immediately. These processes are spooled to a mass-storage device (typically a 

disk), where they are kept for later execution.  

 The long-term scheduler, or job scheduler, selects processes from this pool and 

loads them into memory for execution.  

 The long-term scheduler executes much less frequently; minutes may separate the 

creation of one new process and the next.  

 The long-term scheduler controls the degree of multiprogramming (the number of 

processes in memory). 

 If the degree of multiprogramming is stable, then the average rate of process creation 

must be equal to the average departure rate of processes leaving the system. Thus, 

the long-term scheduler may need to be invoked only when a process leaves the 

system.  

 Because of the longer interval between executions, the long-term scheduler can 

afford to take more time to decide which process should be selected for execution. 
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 It is important that the long-term scheduler select a good process mix of I/O-bound 

and CPU-bound processes. 

 On some systems, the long-term scheduler may be absent or minimal. 

 

b. Short-Term Scheduler, Or CPU Scheduler 

 The short-term scheduler, or CPU scheduler, selects from among the processes 

that are ready to execute and allocates the CPU to one of them. 

 The short-term scheduler must select a new process for the CPU frequently.  

 A process may execute for only a few milliseconds before waiting for an I/O 

request. Often, the short-term scheduler executes at least once every 100 

milliseconds.  

 Because of the short time between executions, the short-term scheduler must be fast.  

 

c. Medium-Term Scheduler  

 Some operating systems, such as time-sharing systems, may introduce an additional, 

intermediate level of scheduling.  

 The key idea behind a medium-term scheduler is that sometimes it can be 

advantageous to remove a process from memory (and from active contention for the 

CPU) and thus reduce the degree of multiprogramming.  

 Later, the process can be reintroduced into memory, and its execution can be 

continued where it left off. This scheme is called swapping. 

 The process is swapped out, and is later swapped in, by the medium-term scheduler. 

Swapping may be necessary to improve the process mix or because a change in 

memory requirements has overcommitted available memory, requiring memory to 

be freed up. 

 

 
 

3. Context Switch 

Definition: Switching the CPU to another process requires performing a state save of the 

current process and a state restore of a different process. This task is known as a context 

switch.  

 When a context switch occurs, the kernel saves the context of the old process in its 

PCB and loads the saved context of the new process scheduled to run.  

Overhead: Context-switch time is pure overhead, because the system does no useful work 

while switching.  
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Switching Speed: Switching speed varies from machine to machine, depending on the 

memory speed, the number of registers that must be copied, and the existence of special 

instructions (such as a single instruction to load or store all registers). A typical speed is a few 

milliseconds. 

Hardware Support: Context-switch times are highly dependent on hardware support.  A 

context switch here simply requires changing the pointer to the current register set. Of course, 

if there are more active processes than there are register sets, the system resorts to copying 

register data to and from memory, as before. Also, the more complex the operating system, 

the greater the amount of work that must be done during a context switch 

 

4. CPU–I/O Burst Cycle 

 The success of CPU scheduling depends on an observed property of processes: 

process execution consists of a cycle of CPU execution and I/O wait. Processes alternate 

between these two states. Process execution begins with a CPU burst. That is followed by an 

I/O burst, which is followed by another CPU burst, then another I/O burst, and so on. 

Eventually, the final CPU burst ends with a system request to terminate execution. 

 

 
Definition of Non Preemptive Scheduling 

 Under nonpreemptive scheduling, once the CPU has been allocated to a process, the 

process keeps the CPU until it releases the CPU either by terminating or by switching to the 

waiting state. This scheduling method was used by Microsoft Windows 3.x. 

Definition of Preemptive Scheduling 

 Under this, a running process may be replaced by higher priority process at any time. 

Used from Windows 95 to till now. Incurs the cost associated with access to shared data. It 

also affects the design of OS. 

 

Dispatcher 

 Another component involved in the CPU-scheduling function is the dispatcher. The 

dispatcher is the module that gives control of the CPU to the process selected by the short-

term scheduler. This function involves the following: 

 Switching context 

 Switching to user mode 
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 Jumping to the proper location in the user program to restart that program 

 The dispatcher should be as fast as possible, since it is invoked during every process 

switch.  

 

Dispatch Latency: The time it takes for the dispatcher to stop one process and start another 

running is known as the dispatch latency. 

 

Operations on processes (OR)   System call interface for process management-fork, exit, 

wait, waitpid, exec 

 The processes in most systems can execute concurrently, and they may be created and 

deleted dynamically. Thus, these systems must provide a mechanism for process creation and 

termination. 

a. Process Creation 

 During the course of execution, a process may create several new processes. The 

creating process is called a parent process, and the new processes are called the children of 

that process. Each of these new processes may in turn create other processes, forming a tree 

of processes. 

System Calls 

 fork() 

 Most operating systems (including UNIX, Linux, and Windows) identify processes 

according to a unique process identifier (or pid), which is typically an integer 

number. 

 A new process is created by the fork () system call. The new process consists of a 

copy of the address space of the original process.  

 This mechanism allows the parent process to communicate easily with its child 

process. Both processes (the parent and the child) continue execution at the 

instruction after the fork (), with one difference: the return code for the fork () is 

zero for the new (child) process, whereas the (nonzero) process identifier of the child 

is returned to the parent. 

 exec() 

 After a fork () system call, one of the two processes typically uses the exec () system 

call to replace the process’s memory space with a new program. 

 The exec () system call loads a binary file into memory and starts its execution. In this 

manner, the two processes are able to communicate and then go their separate ways. 

 

 wait() 

 The parent can then create more children; or, if it has nothing else to do while the 

child runs, it can issue a wait () system call to move itself off the ready queue until the 

termination of the child. Because the call to exec () overlays the process’s address 

space with a new program, the call to exec () does not return control unless an error 

occurs. 
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b. Process Termination 

 A process terminates when it finishes executing its final statement and asks the 

operating system to delete it by using the exit () system call. At that point, the process may 

return a status value (typically an integer) to its parent process (via the wait () system call). 

All the resources of the process—including physical and virtual memory, open files and I/O 

buffers—are deallocated by the operating system. 

 Termination can occur in other circumstances as well. A process can cause the 

termination of another process via an appropriate system call (for example, TerminateProcess 

() in Windows). Usually, such a system call can be invoked only by the parent of the process 

that is to be terminated. Otherwise, users could arbitrarily kill each other’s jobs.  

 
 

Threads 
Defining Thread 

             A thread is a basic unit of CPU utilization; it comprises a thread ID, a program 

counter, a register set, and a stack. It shares with other threads belonging to the same process 

its code section, data section, and other operating-system resources, such as open files and 

signals. 

 A traditional (or heavyweight) process has a single thread of control. If a process has 

multiple threads of control, it can perform more than one task at a time. 

 

 
 

Single Thread 

 A process is a program that performs a single thread of execution.  

 For example, when a process is running a word-processor program, a single thread of 

instructions is being executed. 

 This single thread of control allows the process to perform only one task at a time. The 

user cannot simultaneously type in characters and run the spell checker within the same 

process, for example.  
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Multi Thread 

 Most modern operating systems have extended the process concept to allow a process to 

have multiple threads of execution and thus to perform more than one task at a time.  

 This feature is especially beneficial on multicore systems, where multiple threads can run 

in parallel.  

 On a system that supports threads, the  PCB is expanded to include information for each 

thread. Other changes throughout the system are also needed to support threads. 

 

Multithreading Models 

 Support for threads may be provided either at the user level, for user threads, or by 

the kernel, for kernel threads. User threads are supported above the kernel and are managed 

without kernel support, whereas kernel threads are supported and managed directly by the 

operating system. Virtually all contemporary operating systems—including Windows, Linux, 

Mac OS X, and Solaris support kernel threads. 

 Ultimately, a relationship must exist between user threads and kernel threads. The 

following are the three common ways of establishing such a relationship: the many-to-one 

model, the one-to-one model, and the many-to many models. 

1. Many-to-One Model 

 The many-to-one model maps many user-level threads to one kernel thread. 

2. One-to-One Model 

 The one-to-one model maps each user thread to a kernel thread.  

3. Many-to-Many Model 

 It multiplexes many user-level threads to a smaller or equal number of kernel 

threads. 
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Scheduling Criteria 

 Different CPU-scheduling algorithms have different properties, and the choice of a 

particular algorithm may favour one class of processes over another. In choosing which 

algorithm to use in a particular situation, we must consider the properties of the various 

algorithms. 

 Many criteria have been suggested for comparing CPU-scheduling algorithms. Which 

characteristics are used for comparison can make a substantial difference in which algorithm 

is judged to be best. The criteria include the following: 

 CPU utilization. We want to keep the CPU as busy as possible. Conceptually, CPU 

utilization can range from 0 to 100 percent. In a real system, it should range from 40 

percent (for a lightly loaded system) to 90 percent (for a heavily loaded system). 

 Throughput. If the CPU is busy executing processes, then work is being done. One 

measure of work is the number of processes that are completed per time unit, called 

throughput. For long processes, this rate may be one process per hour; for short 

transactions, it may be ten processes per second. 

 Turnaround time. The interval from the time of submission of a process to the time of 

completion is the turnaround time. Turnaround time is the sum of the periods spent 

waiting to get into memory, waiting in the ready queue, executing on the CPU, and doing 

I/O. 

 Waiting time. The CPU-scheduling algorithm does not affect the amount of time during 

which a process executes or does I/O. It affects only the amount of time that a process 

spends waiting in the ready queue. Waiting time is the sum of the periods spent waiting 

in the ready queue. 

 Response time. In an interactive system, turnaround time may not be the best criterion. 

Thus, another measure is the time from the submission of a request until the first 

response is produced. This measure, called response time, is the time it takes to start 

responding, not the time it takes to output the response. The turnaround time is generally 

limited by the speed of the output device. 

  

 It is desirable to maximize CPU utilization and throughput and to minimize 

turnaround time, waiting time, and response time. 

 

Scheduling algorithms 

First-Come, First-Served Scheduling 

 First-Come, First-Served (FCFS) scheduling algorithm is the simplest CPU-scheduling 

algorithm.  

 With this scheme, the process that requests the CPU first is allocated the CPU first.  

 The implementation of the FCFS policy is easily managed with a FIFO queue. When a 

process enters the ready queue, its PCB is linked onto the tail of the queue. When the 

CPU is free, it is allocated to the process at the head of the queue. The running process is 

then removed from the queue.  

 There is a convoy effect as all the other processes wait for the one big process to get off 

the CPU. This effect results in lower CPU and device utilization than might be possible if 

the shorter processes were allowed to go first. 
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 FCFS scheduling algorithm is nonpreemptive. Once the CPU has been allocated to a 

process, that process keeps the CPU until it releases the CPU, either by terminating or by 

requesting I/O.  

 The FCFS algorithm is thus particularly troublesome for time-sharing systems, where it 

is important that each user get a share of the CPU at regular intervals. It would be 

disastrous to allow one process to keep the CPU for an extended period. 

Example: 

 

Shortest-Job-First Scheduling 

 This algorithm associates with each process the length of the process’s next CPU burst. 

When the CPU is available, it is assigned to the process that has the smallest next CPU 

burst. If the next CPU bursts of two processes are the same, FCFS scheduling is used to 

break the tie. 

 A more appropriate term for this scheduling method would be the shortest-next- CPU-

burst algorithm, because scheduling depends on the length of the next CPU burst of a 

process, rather than its total length. 

 The SJF scheduling algorithm is provably optimal, in that it gives the minimum average 

waiting time for a given set of processes.  

 Moving a short process before a long one decrease the waiting time of the short process 

more than it increases the waiting time of the long process. Consequently, the average 

waiting time decreases. 

 The real difficulty with the SJF algorithm knows the length of the next CPU request. For 

long-term (job) scheduling in a batch system, we can use the process time limit that a 

user specifies when he submits the job. With short-term scheduling, there is no way to 

know the length of the next CPU burst.  

 One approach to this problem is to try to approximate SJF scheduling. We may not know 

the length of the next CPU burst, but we may be able to predict its value. We expect that 

the next CPU burst will be similar in length to the previous ones. 

 The SJF algorithm can be either preemptive or nonpreemptive. The choice arises when a 

new process arrives at the ready queue while a previous process is still executing. The 

next CPU burst of the newly arrived process may be shorter than what is left of the 

currently executing process. 

 A preemptive SJF algorithm will preempt the currently executing process, whereas a 

nonpreemptive SJF algorithm will allow the currently running process to finish its CPU 

burst. 

 Preemptive SJF scheduling is sometimes called shortest-remaining-time-first 

scheduling. 

Example: 

 

Priority Scheduling 

 The SJF algorithm is a special case of the general priority-scheduling algorithm. 

 A priority is associated with each process, and the CPU is allocated to the process with 

the highest priority. Equal-priority processes are scheduled in FCFS order. 
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 An SJF algorithm is simply a priority algorithm where the priority (p) is the inverse of 

the (predicted) next CPU burst. The larger the CPU burst, the lower the priority, and vice 

versa. 

 Priorities are generally indicated by some fixed range of numbers, such as 0 to 7 or 0 to 

4,095.  

 However, there is no general agreement on whether 0 is the highest or lowest priority. 

Some systems use low numbers to represent low priority; others use low numbers for 

high priority. 

 Priorities can be defined either internally or externally. Internally defined priorities 

use some measurable quantity or quantities to compute the priority of a process. For 

example, time limits, memory requirements, the number of open files, and the ratio of 

average I/O burst to average CPU burst have been used in computing priorities. External 

priorities are set by criteria outside the operating system, such as the importance of the 

process, the type and amount of funds being paid for computer use, the department 

sponsoring the work, and other, often political, factors. 

 Priority scheduling can be either preemptive or nonpreemptive. When a process arrives 

at the ready queue, its priority is compared with the priority of the currently running 

process. A preemptive priority scheduling algorithm will preempt the CPU if the 

priority of the newly arrived process is higher than the priority of the currently running 

process. A nonpreemptive priority scheduling algorithm will simply put the new 

process at the head of the ready queue. 

 A major problem with priority scheduling algorithms is indefinite blocking, or 

starvation. A process that is ready to run but waiting for the CPU can be considered 

blocked. A priority scheduling algorithm can leave some low priority processes waiting 

indefinitely. In a heavily loaded computer system, a steady stream of higher-priority 

processes can prevent a low-priority process from ever getting the CPU. 

 A solution to the problem of in definite blockage of low-priority processes is aging. 

Aging involves gradually increasing the priority of processes that wait in the system for a 

long time. For example, if priorities range from 127 (low) to 0 (high), we could increase 

the priority of a waiting process by 1 every 15 minutes. 

Example: 

 

Round-Robin Scheduling 

 The round-robin (RR) scheduling algorithm is designed especially for timesharing 

systems. It is similar to FCFS scheduling, but preemption is added to enable the system 

to switch between processes.  

 A small unit of time, called a time quantum or time slice, is defined. A time quantum is 

generally from10 to 100 milliseconds in length.  

 The ready queue is treated as a circular queue. To implement RR scheduling, we again 

treat the ready queue as a FIFO queue of processes. New processes are added to the tail 

of the ready queue. The CPU scheduler picks the first process from the ready queue, sets 

a timer to interrupt after 1 time quantum, and dispatches the process. 

 One of two things will then happen. The process may have a CPU burst of less than 1 

time quantum. In this case, the process itself will release the CPU voluntarily. The 
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scheduler will then proceed to the next process in the ready queue. If the CPU burst of 

the currently running process is longer than 1 time quantum, the timer will go off and 

will cause an interrupt to the operating system. A context switch will be executed, and 

the process will be put at the tail of the ready queue. The CPU scheduler will then select 

the next process in the ready queue. 

 The average waiting time under the RR policy is often long. 

 The performance of the RR algorithm depends heavily on the size of the time quantum. 

At one extreme, if the time quantum is extremely large, the RR policy is the same as the 

FCFS policy. In contrast, if the time quantum is extremely small (say, 1 millisecond), the 

RR approach can result in a large number of context switches. It creates a processor 

sharing and creates an appearance that each of n processes has its own processor running 

at 1/n the speed of the real processor. 

Example: 

 

Multilevel Queue Scheduling 

 Another class of scheduling algorithms has been created for situations in which processes 

are easily classified into different groups. 

 A multilevel queue scheduling algorithm partitions the ready queue into several separate 

queues. The processes are permanently assigned to one queue, generally based on some 

property of the process, such as memory size, process priority, or process type. 

 Each queue has its own scheduling algorithm. For example, separate queues might be 

used for foreground and background processes. The foreground queue might be 

scheduled by an RR algorithm, while the background queue is scheduled by an FCFS 

algorithm. 

 In addition, there must be scheduling among the queues, which is commonly 

implemented as fixed-priority preemptive scheduling. For example, the foreground 

queue may have absolute priority over the background queue. 

 Consider the example of a multilevel queue scheduling algorithm with five queues, listed 

below in order of priority: 

1. System processes 

2. Interactive processes 

3. Interactive editing processes 

4. Batch processes 

5. Student processes 

 Each queue has absolute priority over lower-priority queues. No process in the batch 

queue, for example, could run unless the queues for system processes, interactive 

processes, and interactive editing processes were all empty.  

 If an interactive editing process entered the ready queue while a batch process was 

running, the batch process would be preempted. 

 Another possibility is to time-slice among the queues. Here, each queue gets a certain 

portion of the CPU time, which it can then schedule among its various processes. For 

instance, in the foreground–background queue example, the foreground queue can be 

given 80 percent of the CPU time for RR scheduling among its processes, while the 
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background queue receives 20 percent of the CPU to give to its processes on an FCFS 

basis. 

            
 

Multilevel Feedback Queue Scheduling 

 Normally, when the multilevel queue scheduling algorithm is used, processes are 

permanently assigned to a queue when they enter the system. If there are separate queues 

for foreground and background processes, for example, processes do not move from one 

queue to the other, since processes do not change their foreground or background nature.  

 This setup has the advantage of low scheduling overhead, but it is inflexible. 

 The multilevel feedback queue scheduling algorithm, in contrast, allows a process to 

move between queues.  

 The idea is to separate processes according to the characteristics of their CPU bursts. If a 

process uses too much CPU time, it will be moved to a lower-priority queue. This 

scheme leaves I/O-bound and interactive processes in the higher-priority queues. In 

addition, a process that waits too long in a lower-priority queue may be moved to a 

higher-priority queue. This form of aging prevents starvation. 

 A process entering the ready queue is put in queue 0. A process in queue 0 is given a 

time quantum of 8 milliseconds. If it does not finish within this time, it is moved to the 

tail of queue 1. If queue 0 is empty, the process at the head of queue 1 is given a quantum 

of 16 milliseconds. If it does not complete, it is preempted and is put into queue 2. 

Processes in queue 2 are run on an FCFS basis but are run only when queues 0 and 1 are 

empty. 

 

                            

              

 A multilevel feedback queue scheduler is defined by the following parameters: 

 The number of queues. 

 The scheduling algorithm for each queue. 
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 The method used to determine when to upgrade a process to a higher priority 

queue. 

 The method used to determine when to demote a process to a lower priority 

queue. 

 The method used to determine which queue a process will enter when that process 

needs service. 

 

Multiple- Processor Scheduling 

The following are the several concerns in multiprocessor scheduling, 

Approaches to Multiple-Processor Scheduling 

1. Asymmetric Multiprocessing 

 All scheduling decisions, I/O processing, and other system activities handled by a 

single processor—the master server. The other processors execute only user code. 

 This asymmetric multiprocessing is simple because only one processor accesses 

the system data structures, reducing the need for data sharing. 

2. Symmetric Multiprocessing (SMP), 

 A second approach uses symmetric multiprocessing (SMP), where each processor 

is self-scheduling. All processes may be in a common ready queue, or each 

processor may have its own private queue of ready processes. 

  Regardless, scheduling proceeds by having the scheduler for each processor 

examine the ready queue and select a process to execute.  

 If we have multiple processors trying to access and update a common data structure, 

the scheduler must be programmed carefully.  

 We must ensure that two separate processors do not choose to schedule the same 

process and that processes are not lost from the queue.  

 Virtually all modern operating systems support SMP, including Windows, Linux, & 

Mac OS X.  

 

Processor Affinity 

 Most SMP systems try to avoid migration of processes from one processor to another 

and instead attempt to keep a process running on the same processor. This is known as 

processor affinity—that is, a process has an affinity for the processor on which it is currently 

running. 

Processor affinity takes several forms, 

 Soft Affinity: The operating system will attempt to keep a process on a single 

processor, but it is possible for a process to migrate between processors. 

 Hard Affinity: It allows a process to specify a subset of processors on which it may 

run. The main-memory architecture of a system can affect processor affinity issues. 

Consider, non-uniform memory access (NUMA). The CPUs on a board can access the 

memory on that board faster than they can access memory on other boards in the 

system. 

 



16 
 

             
 

Load Balancing 

 Load balancing attempts to keep the workload evenly distributed across all 

processors in an SMP system. It is necessary only on systems where each processor has its 

own private queue of eligible processes to execute. 

There are two general approaches to load balancing: 

1. Push Migration  

 With push migration, a specific task periodically checks the load on each processor 

and—if it finds an imbalance—evenly distributes the load by moving (or pushing) 

processes from overloaded to idle or less-busy processors. 

 

2. Pull Migration 

 Pull migration occurs when an idle processor pulls a waiting task from a busy 

processor. Push and pull migration need not be mutually exclusive and are in fact 

often implemented in parallel on load-balancing systems. 

 


