
1 
 

UNIT-3 

INTERPROCESS COMMUNICATION MECHANISMS 

Cooperating processes 

 Processes executing concurrently in the operating system may be either independent 

processes or cooperating processes.  

Independent Process: A process is independent if it cannot affect or be affected by the other 

processes executing in the system. Any process that does not share data with any other 

process is independent.  

Cooperating Process:  A process is cooperating if it can affect or be affected by the other 

processes executing in the system. Clearly, any process that shares data with other processes 

is a cooperating process. 

 

Reasons for providing cooperation 

 There are several reasons for providing an environment that allows process 

cooperation: 

 Information sharing. Since several users may be interested in the same piece of 

information (for instance, a shared file), we must provide an environment to allow 

concurrent access to such information. 

 Computation speedup. If we want a particular task to run faster, we must break it into 

subtasks, each of which will be executing in parallel with the others. Notice that such a 

speedup can be achieved only if the computer has multiple processing cores. 

 Modularity. We may want to construct the system in a modular fashion, dividing the 

system functions into separate processes or threads,  

 Convenience. Even an individual user may work on many tasks at the same time. For 

instance, a user may be editing, listening to music, and compiling in parallel. 

 

IPC between processes on a single computer system, IPC between processes 

on different systems 

 Cooperating processes require an inter-process communication (IPC) mechanism 

that will allow them to exchange data and information. 

The following are the different forms of IPC mechanisms, 

 Pipes 

 FIFOs 

 Message Queues 

 Shared memory 

 Sockets 

 Steams 

 The first 4 are usually restricted to IPC between processes on the same host. The final 

two are the only support IPC between processes on different hosts. 

 

Pipes 

Definition: A pipe acts as a conduit or channel allowing two processes to communicate. 

Pipes are the oldest form of IPC 

Common types of pipes 
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Two common types of pipes used on both UNIX and Windows systems:  

 Ordinary pipes or Pipes 

 Named pipes or FIFOs 

 

Ordinary pipes or Pipes 

 Ordinary pipes allow two processes to communicate in standard producer– consumer 

fashion: the producer writes to one end of the pipe (the write-end) and the consumer reads 

from the other end (the read-end).  

 Ordinary pipes are unidirectional, allowing only one-way communication. If two-way 

communication is required, two pipes must be used, with each pipe sending data in a 

different direction. 

 On UNIX systems, A pipe is created by calling the pipe function 

General Form: int pipe(int fd[2]); 

 Two file descriptors are returned through the fd argument: fd[0] is open for reading, 

and fd[1] is open for writing. The output of fd[1] is the input for fd[0]. 

 Two ways to picture a half-duplex pipe 

 

 A pipe in a single process is next to useless. 

 The process that calls pipe then calls fork, creating an IPC channel from the parent to the 

child, or vice versa. 

 

 What happens after the fork depends on which direction of data flow we want.  

a) For a pipe from the parent to the child, the parent closes the read end of the pipe (fd[0]), 

and the child closes the write end (fd[1]). 
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b) For a pipe from the child to the parent, the parent closes fd[1], and the child closes 

fd[0]. 

 

 When one end of a pipe is closed, two rules apply.  

a) If we read from a pipe whose write end has been closed, read returns 0 to indicate an 

end of file after all the data has been read. 

b) If we write to a pipe whose read end has been closed, the signal SIGPIPE is generated 

which is either ignored or catched. PIPE_BUF specifies the kernel’s pipe buffer size. 

 Ordinary pipes on Windows systems are termed anonymous pipes. They employ parent–

child relationships between the communicating processes. In addition, reading and writing 

to the pipe can be accomplished with the ordinary ReadFile () and WriteFile () functions. 

The Windows API for creating pipes is the CreatePipe() function. 

 Ordinary pipes provide a simple mechanism for allowing a pair of processes to 

communicate. However, ordinary pipes exist only while the processes are communicating 

with one another. On both UNIX and Windows systems, once the processes have finished 

communicating and have terminated, the ordinary pipe ceases to exist. 

 

Named Pipes or FIFOs 

 Named pipes are referred to as FIFOs in UNIX systems. 

 Both UNIX and Windows systems support named pipes. 

 Named pipes provide a much more powerful communication tool.  

 Communication can be bidirectional 

 Unnamed pipes can be used only between related processes when a common ancestor 

has created the pipe. With FIFOs, however, unrelated processes can exchange data. 

 Creating a FIFO is similar to creating a file. 

 General Form: int mkfifo(const char *path, mode_t mode); 

 Once we have used mkfifo to create a FIFO, we open it using open. Normal file I/O 

functions(close, read,write,unlink etc) all work with FIFOs. 

 There are two uses for FIFOs. 
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a) Duplication of Output stream 

b) Client server communication 

 Using FIFOs to Duplicate Output Streams 

 FIFOs can be used to duplicate an output stream and can be used for nonlinear 

connections. 

 
  With a FIFO and the UNIX program tee(1), we can accomplish this procedure without 

using a temporary file. (The tee program copies its standard input to both its standard output 

and the file named on its command line.) 

  mkfifo fifo1  

  prog3 < fifo1 &  

  prog1 < infile | tee fifo1 | prog2  

 We create the FIFO and then start prog3 in the background, reading from the FIFO. We 

then start prog1 and use tee to send its input to both the FIFO and prog2. 

 

 Client–Server Communication Using a FIFO 

  Another use for FIFOs is to send data between a client and a server. If we have a 

server that is contacted by numerous clients, each client can write its request to a well-known 

FIFO that the server creates. 

 
  The problem in using FIFOs for this type of client–server communication is how to 

send replies back from the server to each client. A single FIFO can’t be used, as the clients 

would never know when to read their response versus responses for other clients. One 



5 
 

solution is for each client to send its process ID with the request. The server then creates a 

unique FIFO for each client, using a pathname based on the client’s process ID. 

 

 Although FIFOs allow bidirectional communication, only half-duplex transmission is 

permitted. If data must travel in both directions, two FIFOs are typically used. 

Additionally, the communicating processes must reside on the same machine. If inter 

machine communication is required, sockets must be used. 

 Named pipes on Windows systems provide a richer communication mechanism than 

their UNIX counterparts.  

 Full-duplex communication is allowed, and the communicating processes may reside on 

either the same or different machines.  

 Named pipes are created with the CreateNamedPipe () function and a client can connect 

to a named pipe using ConnectNamedPipe ().  

 Communication over the named pipe can be accomplished using the ReadFile () and 

WriteFile () functions. 

 

Message Queues 

 A message queue is a linked list of messages stored within the kernel and identified by a 

message queue identifier. 

 Each queue has the following msqid_ds structure associated with it:  

struct msqid_ds 

 { 

 struct ipc_perm msg_perm;    /* defines permissions */  

msgqnum_t msg_qnum;    /* # of messages on queue */  

msglen_t msg_qbytes;     /* max # of bytes on queue */  

pid_t msg_lspid;     /* pid of last msgsnd() */ 

 pid_t msg_lrpid;     /* pid of last msgrcv() */  

time_t msg_stime;     /* last-msgsnd() time */  

time_t msg_rtime;     /* last-msgrcv() time */  

time_t msg_ctime;     /* last-change time */ 

 . 

 . 

 . 
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 };  

 This structure defines the current status of the queue. 

 msgget  

  The first function normally called is msgget to either open an existing queue or create 

a new queue. 

 General Form: int msgget(key_t key, int flag); 

  Key is converted into identifier of the process and used to decide whether a new 

queue is created or an existing queue is referenced.  

  When a new queue is created, the following members of the msqid_ds structure are 

initialized. 

 The mode member of this structure is set to the corresponding permission bits of flag.  

 msg_qnum, msg_lspid, msg_lrpid, msg_stime, and msg_rtime are all set to 0.  

 msg_ctime is set to the current time.  

 msg_qbytes is set to the system limit.  

 

  On success, msgget returns the non-negative queue ID. This value is then used with 

the other three message queue functions. 

 msgsnd 

  Data is placed onto a message queue by calling msgsnd. 

 General Form: int msgsnd(int msqid, const void *ptr, size_t nbytes, int flag); 

  Each message is composed of a positive long integer type field, a non-negative length 

(nbytes), and the actual data bytes (corresponding to the length).  Messages are always placed 

at the end of the queue.  

  The ptr argument points to a long integer that contains the positive integer message 

type, and it is immediately followed by the message data. 

 

Message structure:  

struct mymesg 

 { 

 long mtype;    /* positive message type */  

char mtext[512];   /* message data, of length nbytes */  

}; 

 The ptr argument is then a pointer to a mymesg structure. The message type can be 

used by the receiver to fetch messages in an order other than first in, first out. 

  

 A flag value of IPC_NOWAIT can be specified, this causes msgsnd to return an error 

message when the queue is full. 

  

 When msgsnd returns successfully, the msqid_ds structure associated with the 

message queue is updated to indicate the process ID that made the call (msg_lspid), the time 

that the call was made (msg_stime), and that one more message is on the queue (msg_qnum). 

 msgrcv 

  Messages are retrieved from a queue by msgrcv. 

 General Form:   ssize_t msgrcv(int msqid, void *ptr, size_t nbytes, long type, int flag); 
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  the ptr argument points to a long integer (where the message type of the returned 

message is stored) followed by a data buffer for the actual message data. nbytes specifies the 

size of the data buffer.  

  If the returned message is larger than nbytes and the MSG_NOERROR bit in flag is 

set, the message is truncated. 

 The type argument lets us specify which message we want.  

type == 0   The first message on the queue is returned.  

type >0  The first message on the queue whose message type equals type is  

   returned.  

type <0   The first message on the queue whose message type is the lowest value 

   less than or equal to the absolute value of type is returned. 

type= nonzero Used to read the messages in an order other than first in, first out such  

  as using priority 

 

  We can specify a flag value of IPC_NOWAIT to make the operation nonblocking, If 

IPC_NOWAIT is not specified, the operation blocks until a message of the specified type is 

available, the queue is removed from the system (−1 is returned with errno set to EIDRM), or 

a signal is caught and the signal handler returns 

 

  When msgrcv succeeds, the kernel updates the msqid_ds structure associated with the 

message queue to indicate the caller’s process ID (msg_lrpid), the time of the call 

(msg_rtime), and that one less message is on the queue (msg_qnum). 

 msgctl 

  The msgctl function performs various operations on a queue. 

 General Form:  int msgctl(int msqid, int cmd, struct msqid_ds *buf ); 

 The cmd argument specifies the command to be performed on the queue specified by msqid.  

IPC_STAT   Fetch the msqid_ds structure for this queue, storing it in the structure 

   pointed to by buf.  

IPC_SET  Copy the following fields from the structure pointed to by buf to the 

   msqid_ds structure associated with this queue: msg_perm.uid,  

   msg_perm.gid, msg_perm.mode, and msg_qbytes. 

IPC_RMID  Remove the message queue from the system and any data still on the 

   queue. This removal is immediate. 

 

Shared memory 

 Shared memory allows two or more processes to share a given region of memory.  

 This is the fastest form of IPC, because the data does not need to be copied between the 

client and the server.  

 The only trick in using shared memory is synchronizing access to a given region among 

multiple processes. If the server is placing data into a shared memory region, the client 

shouldn’t try to access the data until the server is done. Often, semaphores are used to 

synchronize shared memory access. 
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 The kernel maintains a structure with at least the following members for each shared 

memory segment: 

struct shmid_ds  

{  

struct ipc_perm shm_perm;    /* defines permissions */  

size_t shm_segsz;     /* size of segment in bytes */  

pid_t shm_lpid;     /* pid of last shmop() */  

pid_t shm_cpid;     /* pid of creator */  

shmatt_t shm_nattch;     /* number of current attaches */  

time_t shm_atime;     /* last-attach time */  

time_t shm_dtime;     /* last-detach time */ 

 time_t shm_ctime;     /* last-change time */  

. 

 . 

 . 

 }; 

 shmget 

  The first function called is usually shmget, to obtain a shared memory identifier 

 General Form: int shmget(key_t key, size_t size, int flag); 

  Key is converted into an identifier and whether a new segment is created or an 

existing segment is referenced.  

 

  When a new segment is created, the following members of the shmid_ds structure are 

initialized.  

 The ipc_perm structure is initialized . The mode member of this structure is set to the 

corresponding permission bits of flag. 

 shm_lpid, shm_nattch, shm_atime, and shm_dtime are all set to 0.  

 shm_ctime is set to the current time.  

 shm_segsz is set to the size requested.  

  The size parameter is the size of the shared memory segment in bytes. 

 shmctl 

  The shmctl function is the catchall for various shared memory operations. 

 General Form: int shmctl(int shmid, int cmd, struct shmid_ds *buf ); 

  The cmd argument specifies one of the following five commands to be performed, on 

the segment specified by shmid.  

IPC_STAT   Fetch the shmid_ds structure for this segment, storing it in the structure 

   pointed to by buf.  
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IPC_SET   Set the following three fields from the structure pointed to by buf in 

   the shmid_ds structure associated with this shared memory segment: 

   shm_perm.uid, shm_perm.gid, and shm_perm.mode. 

IPC_RMID   Remove the shared memory segment set from the system. 

 

 Two additional commands are provided by Linux and Solaris, but are not part of the 

Single UNIX Specification.  

SHM_LOCK   Lock the shared memory segment in memory. This command can be 

   executed only  by the superuser. 

SHM_UNLOCK Unlock the shared memory segment. This command can be executed 

   only by the superuser 

 shmat 

  Once a shared memory segment has been created, a process attaches it to its address 

space by calling shmat. 

 General Form:     void *shmat(int shmid, const void *addr, int flag); 

  The address in the calling process at which the segment is attached depends on the 

addr argument and whether the SHM_RND bit is specified in flag.  

 If addr is 0, the segment is attached at the first available address selected by the 

kernel. This is the recommended technique.  

 If addr is nonzero and SHM_RND is not specified, the segment is attached at the 

address given by addr.  

 If addr is nonzero and SHM_RND is specified, the segment is attached at the address 

given by (addr − (addr modulus SHMLBA)). The SHM_RND command stands for 

‘‘round.’’ SHMLBA stands for ‘‘low boundary address multiple’’ and is always a 

power of 2. 

 

  The value returned by shmat is the address at which the segment is attached, or −1 if 

an error occurred. 

   If shmat succeeds, the kernel will increment the shm_nattch counter in the shmid_ds 

structure associated with the shared memory segment.  

 shmdt 

  When we’re done with a shared memory segment, we call shmdt to detach it. This 

does not remove the identifier and its associated data structure from the system. The identifier 

remains in existence until some process (often a server) specifically removes it by calling 

shmctl with a command of IPC_RMID. 

 General Form:     int shmdt(const void *addr); 

  The addr argument is the value that was returned by a previous call to shmat. If 

successful, shmdt will decrement the shm_nattch counter in the associated shmid_ds 

structure. 
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PROCESS MANAGEMENT AND SYNCHRONIZATION 
Race Condition 

Definition: A situation where several processes access and manipulate the same data 

concurrently and the outcome of the execution depends on the particular order in which the 

access takes place, is called a race condition.  

 To guard against the race condition we need to ensure that only one process at a time 

can be manipulating the variable counter. To make such a guarantee, we require that the 

processes be synchronized in some way. 

 

The Critical Section Problem 

 Consider a system consisting of n processes {P0, P1, ..., Pn−1}. Each process has a 

segment of code, called a critical section or region, in which the process may be changing 

common variables, updating a table, writing a file, and so on.  

 The important feature of the system is that, when one process is executing in its 

critical section, no other process is allowed to execute in its critical section. That is, no two 

processes are executing in their critical sections at the same time.  

 The critical-section problem is to design a protocol that the processes can use to 

cooperate. Each process must request permission to enter its critical section. The section of 

code implementing this request is the entry section. The critical section may be followed by 

an exit section. The remaining code is the remainder section. 

 A solution to the critical-section problem must satisfy the following three 

requirements: 

1. Mutual exclusion. If process Pi is executing in its critical section, then no other 

processes can be executing in their critical sections. 

2. Progress. If no process is executing in its critical section and some processes wish to 

enter their critical sections, then only those processes that are not executing in their 

remainder sections can participate in deciding which will enter its critical section next, 

and this selection cannot be postponed indefinitely. 

3. Bounded waiting. There exists a bound, or limit, on the number of times that other 

processes are allowed to enter their critical sections after a process has made a request to 

enter its critical section and before that request is granted. 

General structure of process Pi   

 

 

 

Synchronization Hardware 

 Software-based solutions such as Peterson’s does not guaranteed to work on modern 

computer architectures. The following are several more solutions to the critical-section 
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problem using techniques ranging from hardware to software-based on the premise of 

locking —that is, protecting critical regions through the use of locks. 

 

Single Processor Systems: Disabling of Interrupts 

 The critical-section problem could be solved simply in a single-processor 

environment if we could prevent interrupts from occurring while a shared variable was being 

modified. In this way, we could be sure that the current sequence of instructions would be 

allowed to execute in order without preemption. 

 No other instructions would be run, so no unexpected modifications could be made to 

the shared variable. This is often the approach taken by nonpreemptive kernels. 

   

  Disable Interrupts 

   Critical section 

  Enable Interrupts 

   Remainder section 

 

Multi Processor Systems: Special hardware instructions 

 Disabling interrupts on a multiprocessor can be time consuming, since the message is 

passed to all the processors. This message passing delays entry into each critical section, and 

system efficiency decreases.  

 Many modern computer systems therefore provide special hardware instructions like 

“test _and _set” and “Compare _and_Swap” that allow us either to test and modify the 

content of a word or to swap the contents of two words atomically—that is, as one 

uninterruptible unit. 

1. Test _and _Set 

 The important characteristic of this instruction is that it is executed atomically. 

 Thus, if two test and set () instructions are executed simultaneously (each on a 

different CPU), they will be executed sequentially in some arbitrary order. 

 If the machine supports the test and set () instruction, then we can implement mutual 

exclusion by declaring a boolean variable lock, initialized to false. 

Definition of the test_and _set() instruction: 

boolean test_and_set (boolean *target) 

{ 

  boolean rv = *target; 

 *target = TRUE; 

 return rv: 

} 

Mutual-exclusion implementation with test _and _set () 

do 

{ 

 while (test_and_set (&lock)) 

   ; /* do nothing */ 

 /* critical section */ 

 lock = false; 

 /* remainder section */ 
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} while (true); 

 

2. Compare _and_Swap 

 The compare and swap () instruction, in contrast to the test and set () instruction, 

operates on three operands.  

 The operand value is set to new value only if the expression (*value == expected) is 

true. Regardless, compare and swap () always returns the original value of the 

variable value. 

 Definition of compare _and_swap 

int compare _and_swap(int *value, int expected, int new_value)  

{  

         int temp = *value;  

         if (*value == expected)  

                *value = new_value;  

         return temp;  

     }  

 Mutual-exclusion implementation with compare _and_swap 

      do 

     { 

         while (compare_and_swap(&lock, 0, 1) != 0)  

            ; /* do nothing */  

                 /* critical section */  

       lock = 0;  

          /* remainder section */  

      } while (true);  

 

 Although these algorithms satisfy the mutual-exclusion requirement, they do not 

satisfy the bounded-waiting requirement. The following is another algorithm using the test 

and set () instruction that satisfies all the critical-section requirements. 

do 

{ 

       waiting[i]=true; 

       key=true; 

      while (waiting[i] && key)  

           key = test_and_set (&lock);  

          waiting[i] = false;  

                 /* critical section */  

          j = (i + 1) % n;  

         while ((j != i) && !waiting[j])  

                j = (j + 1) % n;  

          if (j == i)  

                lock = false;  

         else  

              waiting[j] = false;  



13 
 

                  /* remainder section */  

} while (true);  

 

Semaphores 

 Hardware based solutions to critical section problems are complicated, so we use a 

more robust software tool called Semaphore. 

Definition: A semaphore S is an integer variable that, apart from initialization, is accessed 

only through two standard atomic operations: wait () and signal (). 

Definition of the wait () operation 

 

Wait(S) 

{  

    while (S <= 0) 

       ; // busy wait 

    S--; 

} 

Definition of the signal () operation  

Signal(S)  

{  

    S++; 

} 

 

1. Semaphore Usage 

        Operating systems often distinguish between counting and binary semaphores. 

a. Counting Semaphore 

 The value of a counting semaphore can range over an unrestricted domain. 

 Counting semaphores can be used to control access to a given resource consisting 

of a finite number of instances. The semaphore is initialized to the number of 

resources available.  

 Each process that wishes to use a resource performs a wait () operation on the 

semaphore (thereby decrementing the count).  

 When a process releases a resource, it performs a signal () operation 

(incrementing the count). When the count for the semaphore goes to 0, all 

resources are being used. After that, processes that wish to use a resource will 

block until the count becomes greater than 0. 

b. Binary Semaphore 

 The value of a binary semaphore can range only between 0 and 1. 

 Example: Consider two concurrently running processes: P1 with a statement S1 

and P2 with a statement S2. Suppose we require that S2 be executed only after S1 

has completed. We can implement this scheme readily by letting P1 and P2 share 

a common semaphore synch, initialized to 0.  

        In process P1, we insert the statements 

                           S1; 

                            signal (synch); 

       In process P2, we insert the statements 
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                           wait (synch); 

                           S2; 

 Because synch is initialized to 0, P2 will execute S2 only after P1 has invoked signal 

(synch), which is after statement S1 has been executed. 

 

2. Semaphore Implementation 

 The previous definition of wait () and signal () has a problem of busy waiting which 

wastes CPU cycles. To overcome this, we will modify the definition of wait () and signal (). 

Wait () 

 When a process executes the wait () operation and finds that the semaphore value is not 

positive, it must wait.  

 However, rather than engaging in busy waiting, the process can block itself.  

 The block operation places a process into a waiting queue associated with the 

semaphore, and the state of the process is switched to the waiting state.  

 Then control is transferred to the CPU scheduler, which selects another process to 

execute. 

 

Signal () 

 A process that is blocked, waiting on a semaphore S, should be restarted when some 

other process executes a signal () operation. 

 The process is restarted by a wakeup () operation, which changes the process from the 

waiting state to the ready state.  

 The process is then placed in the ready queue. 

Defining a semaphore 

typedef struct 

{  

   int value;  

   struct process *list;  

} semaphore;  

 

wait () semaphore operation can be defined as, 

wait (semaphore *S)  

{  

    S->value--;  

    if(S->value<0) 

   { 

       add this process to S->list;  

       block ();  

    }  

} 

 

signal () semaphore operation can be defined as, 

signal (semaphore *S)  

{  

    S->value++;  
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    if(S->value<=0) 

   { 

       remove a process P from S->list;  

       wakeup (P);  

   }  

} 

  

3. Deadlocks and Starvation 

 The implementation of a semaphore with a waiting queue may result in a situation 

where two or more processes are waiting indefinitely for an event that can be caused only by 

one of the waiting processes. The event in question is the execution of a signal () operation. 

When such a state is reached, these processes are said to be deadlocked. 

Example: consider a system consisting of two processes, P0 and P1, each accessing two 

semaphores, S and Q, set to the value 1: 

 
 Suppose that P0 executes wait(S) and then P1 executes wait (Q).When P0 executes 

wait (Q), it must wait until P1 executes signal (Q). Similarly, when P1 executes wait(S), it 

must wait until P0 executes signal(S). Since these signal () operations cannot be executed, P0 

and P1 are deadlocked. 

 Another problem related to deadlocks is indefinite blocking or starvation, a situation 

in which processes wait indefinitely within the semaphore. Indefinite blocking may occur if 

we remove processes from the list associated with a semaphore in LIFO (last-in, first-out) 

order. 

 

Classic Problems of Synchronization 

1. The Bounded-Buffer Problem 

The producer and consumer processes share the following data structures: 

  int n; 

  semaphore mutex = 1; 

  semaphore empty = n; 

 semaphore full = 0 

 We assume that the pool consists of n buffers, each capable of holding one item. The 

mutex semaphore provides mutual exclusion for accesses to the buffer pool and is initialized 

to the value 1. The empty and full semaphores count the number of empty and full buffers. 

The semaphore empty is initialized to the value n; the semaphore full is initialized to the 

value 0. 

The structure of the producer process 

     do  

    {  

          ... 

        /* produce an item in next_produced */  
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          ...  

        wait (empty);  

        wait (mutex);  

           ... 

        /* add next produced to the buffer */  

           ...  

        signal (mutex);  

        signal (full);  

     } while (true); 

 

The structure of the consumer process 

     do  

    {  

        wait (full);  

        wait (mutex);  

           ... 

        /* remove an item from buffer to next_consumed */  

           ...  

        signal (mutex);  

        signal (empty);  

           ... 

        /* consume the item in next consumed */  

           ... 

     } while (true);  

 

2. The Readers–Writers Problem 

  Suppose that a database is to be shared among several concurrent processes. 

Some of these processes may want only to read the database, whereas others may want to 

update (that is, to read and write) the database. We distinguish between these two types 

of processes by referring to the former as readers and to the latter as writers. Obviously, 

if two readers access the shared data simultaneously, no adverse effects will result. 

However, if a writer and some other process (either a reader or a writer) access the 

database simultaneously, problems may ensue. 

  To ensure that these difficulties do not arise, we require that the writers have 

exclusive access to the shared database while writing to the database. This 

synchronization problem is referred to as the readers–writers problem. 

Variations in readers–writers problem 

 The readers–writers problem has several variations, all involving priorities.  

 The simplest one, referred to as the first readers–writers problem, requires that no reader 

be kept waiting unless a writer has already obtained permission to use the shared object. 

In other words, no reader should wait for other readers to finish simply because a writer 

is waiting. In this writers may starve. 
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 The second readers –writer’s problem requires that, once a writer is ready, that writer 

perform its write as soon as possible. In other words, if a writer is waiting to access the 

object, no new readers may start reading. In this readers may starve. 

 

Solution to the first readers–writers problem 

Data structures: 

 semaphore rw mutex = 1; 

 semaphore mutex = 1; 

 int read count = 0; 

 The semaphores mutex and rw mutex are initialized to 1; read count is initialized to 0. 

The semaphore rw mutex is common to both reader and writer processes. The mutex 

semaphore is used to ensure mutual exclusion when the variable read count is updated. The 

read count variable keeps track of how many processes are currently reading the object. The 

semaphore rw mutex functions as a mutual exclusion semaphore for the writers. It is also 

used by the first or last reader that enters or exits the critical section. It is not used by readers 

who enter or exit while other readers are in their critical sections. 

The structure of a writer process 

         do 

        { 

            wait (rw_mutex);  

               ... 

               /* writing is performed */  

               ...  

           signal(rw_mutex);  

       } while (true); 

 

The structure of a reader process  

       do 

      { 

           wait(mutex); 

           read_count++; 

           if (read_count == 1)  

              wait(rw_mutex);  

           signal(mutex);  

               ... 

           /* reading is performed */  

               ...  

           wait(mutex); 

           readcount--; 

           if (read_count == 0)  

           signal(rw_mutex);  

           signal(mutex);  

       } while (true); 
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Reader–Writer Locks 

 The readers–writers problem and its solutions have been generalized to provide 

reader–writer locks on some systems. Acquiring a reader–writer lock requires specifying the 

mode of the lock: either read or write access. When a process wishes only to read shared 

data, it requests the reader–writer lock in read mode. A process wishing to modify the shared 

data must request the lock in write mode. Multiple processes are permitted to concurrently 

acquire a reader–writer lock in read mode, but only one process may acquire the lock for 

writing, as exclusive access is required for writers. 

 

Reader–writer locks are most useful in the following situations: 

 In applications where it is easy to identify which processes only read shared data and 

which processes only write shared data. 

 In applications that have more readers than writers. 

 

3. The Dining-Philosophers Problem 

 Consider five philosophers who spend their lives thinking and eating. The 

philosophers share a circular table surrounded by five chairs, each belonging to one 

philosopher. In the centre of the table is a bowl of rice, and the table is laid with five single 

chopsticks. When a philosopher thinks, she does not interact with her colleagues. From time 

to time, a philosopher gets hungry and tries to pick up the two chopsticks that are closest to 

her (the chopsticks that are between her and her left and right neighbours). A philosopher 

may pick up only one chopstick at a time. Obviously, she cannot pick up a chopstick that is 

already in the hand of a neighbour. When a hungry philosopher has both her chopsticks at the 

same time, she eats without releasing the chopsticks. When she is finished eating, she puts 

down both chopsticks and starts thinking again. 

 
Solution 

 One simple solution is to represent each chopstick with a semaphore. A philosopher 

tries to grab a chopstick by executing a wait () operation on that semaphore. She releases her 

chopsticks by executing the signal () operation on the appropriate semaphores. Thus, the 

shared data are 

 semaphore chopstick [5]; 

where all the elements of chopstick are initialized to 1. 

The structure of Philosopher i: 

do 

 {  

    wait (chopstick[i]); 

 wait (chopStick [(i + 1) % 5]); 
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             //  eat for a while 

    signal (chopstick[i] ); 

         signal (chopstick[ (i + 1) % 5] ); 

  

                 //  think for a while 

} while (TRUE); 

 

 Although this solution guarantees that no two neighbours are eating simultaneously, it 

nevertheless must be rejected because it could create a deadlock. Suppose that all five 

philosophers become hungry at the same time and each grabs her left chopstick. All the 

elements of chopstick will now be equal to 0. When each philosopher tries to grab her right 

chopstick, she will be delayed forever. 

Several possible remedies to the deadlock problem are replaced by: 

 Allow at most four philosophers to be sitting simultaneously at the table. 

 Allow a philosopher to pick up her chopsticks only if both chopsticks are available (to 

do this, she must pick them up in a critical section). 

 Use an asymmetric solution—that is, an odd-numbered philosopher picks up first her 

left chopstick and then her right chopstick, whereas an even numbered philosopher 

picks up her right chopstick and then her left chopstick. 

 

Monitors 

 Although semaphores provide a convenient and effective mechanism for process 

synchronization, using them incorrectly can result in errors such as following, 

 Suppose that a process interchanges the order in which the wait() and signal() operations 

on the semaphore mutex are executed, resulting in the following execution: 

signal (mutex); 

... 

critical section 

... 

wait (mutex); 

 In this situation, several processes may be executing in their critical sections 

simultaneously, violating the mutual-exclusion requirement. This error may be discovered 

only if several processes are simultaneously active in their critical sections. 

 Suppose that a process replaces signal (mutex) with wait (mutex). That is, it executes 

wait (mutex); 

... 

critical section 

... 

wait (mutex); 

 In this case, a deadlock will occur. 

 Suppose that a process omits the wait (mutex), or the signal (mutex), or both. In this 

case, either mutual exclusion is violated or a deadlock will occur. 
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 To deal with such errors, researchers have developed one fundamental high-level 

synchronization construct—the monitor type. 

 

1. Monitor Usage 

 A monitor type is an ADT that includes a set of programmer defined operations that 

are provided with mutual exclusion within the monitor. The monitor type also declares the 

variables whose values define the state of an instance of that type, along with the bodies of 

functions that operate on those variables. 

Monitor  monitorname 

{ /* shared variable declarations */ 

function P1 ( . . . ) { . . . 

} 

function P2 ( . . . ) { . . . 

} 

. 

. 

. 

function Pn ( . . . ) { . . . 

} 

initialization code ( . . . ) { . . . 

} 

} 

 The monitor construct ensures that only one process at a time is active within the 

monitor. Consequently, the programmer does not need to code this synchronization constraint 

explicitly. 

 
Condition Variables: The monitor construct is not sufficiently powerful for modelling some 

synchronization schemes. For this purpose, we need to define additional synchronization 

mechanisms. These mechanisms are provided by the condition construct, 

                                                        condition x, y; 

 The only operations that can be invoked on a condition variable are wait () and signal 

(). The operation 

                                 x.wait (); 

means that the process invoking this operation is suspended until another process invokes 

                                 x.signal (); 
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The x.signal () operation resumes exactly one suspended process. If no process is suspended, 

then the signal () operation has no effect. 

 

2. Dining-Philosophers Solution Using Monitors 

 Monitor concepts presents a deadlock-free solution to the dining-philosophers 

problem. This solution imposes the restriction that a philosopher may pick up her chopsticks 

only if both of them are available. 

 The following are the data structure: 

  enum {THINKING, HUNGRY, EATING} state [5]; 

 Philosopher i can set the variable state[i] = EATING only if her two neighbours are 

not eating: (state[(i+4) % 5] != EATING) and(state[(i+1) % 5] != EATING). 

 We also need to declare: condition self [5]; 

 This allows philosopher i to delay herself when she is hungry but is unable to obtain 

the chopsticks she needs. 

monitor DiningPhilosophers 

{  

 enum {THINKING, HUNGRY, EATING} state [5]; 

 condition self [5]; 

 void pickup (int i)  

 {  

  state[i] = HUNGRY; 

  test (i); 

  if (state[i]! = EATING) 

  self[i].wait (); 

 } 

 void putdown (int i)  

 { 

   state[i] = THINKING; 

  test ((i + 4) % 5); 

  test ((i + 1) % 5); 

 } 

 void test (int i)  

 { 

   if ((state [(i + 4) % 5]! = EATING) && (state[i] == HUNGRY) && (state [(i 

+ 1) % 5]! =    EATING))  

  {  

   state[i] = EATING; 

   self[i].signal (); 

  } 

 } 

 initialization code ()  

 { 

   for (int i = 0; i < 5; i++) 

  state[i] = THINKING; 

 } 
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} 

 

3. Implementing a Monitor Using Semaphores 

Variables 

The following are the variables, 

semaphore mutex=1;   

  For each monitor, a semaphore mutex (initialized to 1) is provided. A process must 

execute wait (mutex) before entering the monitor and must execute signal (mutex) after 

leaving the monitor. 

semaphore next=0;  

 Since a signalling process must wait until the resumed process either leaves or waits, 

an additional semaphore, next, is introduced, The signalling processes can use next to 

suspend themselves   

 int next_count = 0; 

 An integer variable next count is also provided to count the number of processes 

suspended on next. 

 

Procedure 

Each procedure F  will be replaced by, 

 wait (mutex); 

 ... 

  body of F 

 ... 

 if (next _count > 0) 

  signal (next); 

 else 

  signal (mutex); 

Mutual exclusion within a monitor is ensured. 

 

Condition Variables 

For each condition x, we introduce a semaphore x _sem and an integer variable x _count, 

both initialized to 0.  

The operation x.wait () can now be implemented as, 

 x_count++; 

 if (next_count > 0) 

  signal (next); 

 else 

  signal (mutex); 

 wait (x_sem); 

 x_count--; 

 

The operation x.signal () can be implemented as, 

  

 if (x_count > 0) 

  { 
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  next_count++; 

  signal (x_sem); 

  wait (next); 

  next_count--; 

 } 

 

4. Resuming Processes within a Monitor 

 If several processes are suspended on condition x, and an x.signal () operation is 

executed by some process, then we have to determine which of the suspended processes 

should be resumed next. 

First-Come, First-Served (FCFS) 

 One simple solution is to use a first-come, first-served (FCFS) ordering, so that the 

process that has been waiting the longest is resumed first. This is a simple scheduling scheme 

but not adequate. 

Conditional-Wait 

 This construct has the form 

  x.wait(c); 

 where c is an integer expression that is evaluated when the wait () operation is 

executed. The value of c, which is called a priority number, is then stored with the name of 

the process that is  

suspended. When x.signal () is executed, the process with the smallest priority number is 

resumed next. 

ResourceAllocator monitor 

 It controls the allocation of a single resource among competing processes. Each 

process, when requesting an allocation of this resource, specifies the maximum time it plans 

to use the resource. The monitor allocates the resource to the process that has the shortest 

time-allocation request. A process that needs to access the resource in question must observe 

the following sequence: 

  R.acquire(t); 

   ... 

   access the resource; 

   ... 

  R.release(); 

 where R is an instance of type ResourceAllocator. 

Monitor to allocate a single resource 

 monitor ResourceAllocator 

 {  

  boolean busy; 

  condition x; 

  void acquire(int time)  

  { 

    if (busy) 

   x.wait(time); 

   busy = true; 

  } 
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  void release() 

   {  

   busy = false; 

   x.signal(); 

  } 

  initialization code() 

   {  

    busy = false; 

  } 

 } 

Problems 

The following problems can occur: 

 A process might access a resource without first gaining access permission to the 

resource. 

 A process might never release a resource once it has been granted access to the 

resource. 

 A process might attempt to release a resource that it never requested. 

 A process might request the same resource twice (without first releasing the resource). 

 One possible solution is to include the resource access operations within the 

ResourceAllocator monitor. 

 

 


