
1

UNIT-3

INTERPROCESS COMMUNICATION MECHANISMS

Cooperating processes

 Processes executing concurrently in the operating system may be either independent

processes or cooperating processes.

Independent Process: A process is independent if it cannot affect or be affected by the other

processes executing in the system. Any process that does not share data with any other

process is independent.

Cooperating Process: A process is cooperating if it can affect or be affected by the other

processes executing in the system. Clearly, any process that shares data with other processes

is a cooperating process.

Reasons for providing cooperation

 There are several reasons for providing an environment that allows process

cooperation:

 Information sharing. Since several users may be interested in the same piece of

information (for instance, a shared file), we must provide an environment to allow

concurrent access to such information.

 Computation speedup. If we want a particular task to run faster, we must break it into

subtasks, each of which will be executing in parallel with the others. Notice that such a

speedup can be achieved only if the computer has multiple processing cores.

 Modularity. We may want to construct the system in a modular fashion, dividing the

system functions into separate processes or threads,

 Convenience. Even an individual user may work on many tasks at the same time. For

instance, a user may be editing, listening to music, and compiling in parallel.

IPC between processes on a single computer system, IPC between processes

on different systems

 Cooperating processes require an inter-process communication (IPC) mechanism

that will allow them to exchange data and information.

The following are the different forms of IPC mechanisms,

 Pipes

 FIFOs

 Message Queues

 Shared memory

 Sockets

 Steams

 The first 4 are usually restricted to IPC between processes on the same host. The final

two are the only support IPC between processes on different hosts.

Pipes

Definition: A pipe acts as a conduit or channel allowing two processes to communicate.

Pipes are the oldest form of IPC

Common types of pipes

2

Two common types of pipes used on both UNIX and Windows systems:

 Ordinary pipes or Pipes

 Named pipes or FIFOs

Ordinary pipes or Pipes

 Ordinary pipes allow two processes to communicate in standard producer– consumer

fashion: the producer writes to one end of the pipe (the write-end) and the consumer reads

from the other end (the read-end).

 Ordinary pipes are unidirectional, allowing only one-way communication. If two-way

communication is required, two pipes must be used, with each pipe sending data in a

different direction.

 On UNIX systems, A pipe is created by calling the pipe function

General Form: int pipe(int fd[2]);

 Two file descriptors are returned through the fd argument: fd[0] is open for reading,

and fd[1] is open for writing. The output of fd[1] is the input for fd[0].

 Two ways to picture a half-duplex pipe

 A pipe in a single process is next to useless.

 The process that calls pipe then calls fork, creating an IPC channel from the parent to the

child, or vice versa.

 What happens after the fork depends on which direction of data flow we want.

a) For a pipe from the parent to the child, the parent closes the read end of the pipe (fd[0]),

and the child closes the write end (fd[1]).

3

b) For a pipe from the child to the parent, the parent closes fd[1], and the child closes

fd[0].

 When one end of a pipe is closed, two rules apply.

a) If we read from a pipe whose write end has been closed, read returns 0 to indicate an

end of file after all the data has been read.

b) If we write to a pipe whose read end has been closed, the signal SIGPIPE is generated

which is either ignored or catched. PIPE_BUF specifies the kernel’s pipe buffer size.

 Ordinary pipes on Windows systems are termed anonymous pipes. They employ parent–

child relationships between the communicating processes. In addition, reading and writing

to the pipe can be accomplished with the ordinary ReadFile () and WriteFile () functions.

The Windows API for creating pipes is the CreatePipe() function.

 Ordinary pipes provide a simple mechanism for allowing a pair of processes to

communicate. However, ordinary pipes exist only while the processes are communicating

with one another. On both UNIX and Windows systems, once the processes have finished

communicating and have terminated, the ordinary pipe ceases to exist.

Named Pipes or FIFOs

 Named pipes are referred to as FIFOs in UNIX systems.

 Both UNIX and Windows systems support named pipes.

 Named pipes provide a much more powerful communication tool.

 Communication can be bidirectional

 Unnamed pipes can be used only between related processes when a common ancestor

has created the pipe. With FIFOs, however, unrelated processes can exchange data.

 Creating a FIFO is similar to creating a file.

 General Form: int mkfifo(const char *path, mode_t mode);

 Once we have used mkfifo to create a FIFO, we open it using open. Normal file I/O

functions(close, read,write,unlink etc) all work with FIFOs.

 There are two uses for FIFOs.

4

a) Duplication of Output stream

b) Client server communication

 Using FIFOs to Duplicate Output Streams

 FIFOs can be used to duplicate an output stream and can be used for nonlinear

connections.

 With a FIFO and the UNIX program tee(1), we can accomplish this procedure without

using a temporary file. (The tee program copies its standard input to both its standard output

and the file named on its command line.)

 mkfifo fifo1

 prog3 < fifo1 &

 prog1 < infile | tee fifo1 | prog2

 We create the FIFO and then start prog3 in the background, reading from the FIFO. We

then start prog1 and use tee to send its input to both the FIFO and prog2.

 Client–Server Communication Using a FIFO

 Another use for FIFOs is to send data between a client and a server. If we have a

server that is contacted by numerous clients, each client can write its request to a well-known

FIFO that the server creates.

 The problem in using FIFOs for this type of client–server communication is how to

send replies back from the server to each client. A single FIFO can’t be used, as the clients

would never know when to read their response versus responses for other clients. One

5

solution is for each client to send its process ID with the request. The server then creates a

unique FIFO for each client, using a pathname based on the client’s process ID.

 Although FIFOs allow bidirectional communication, only half-duplex transmission is

permitted. If data must travel in both directions, two FIFOs are typically used.

Additionally, the communicating processes must reside on the same machine. If inter

machine communication is required, sockets must be used.

 Named pipes on Windows systems provide a richer communication mechanism than

their UNIX counterparts.

 Full-duplex communication is allowed, and the communicating processes may reside on

either the same or different machines.

 Named pipes are created with the CreateNamedPipe () function and a client can connect

to a named pipe using ConnectNamedPipe ().

 Communication over the named pipe can be accomplished using the ReadFile () and

WriteFile () functions.

Message Queues

 A message queue is a linked list of messages stored within the kernel and identified by a

message queue identifier.

 Each queue has the following msqid_ds structure associated with it:

struct msqid_ds

 {

 struct ipc_perm msg_perm; /* defines permissions */

msgqnum_t msg_qnum; /* # of messages on queue */

msglen_t msg_qbytes; /* max # of bytes on queue */

pid_t msg_lspid; /* pid of last msgsnd() */

 pid_t msg_lrpid; /* pid of last msgrcv() */

time_t msg_stime; /* last-msgsnd() time */

time_t msg_rtime; /* last-msgrcv() time */

time_t msg_ctime; /* last-change time */

 .

 .

 .

6

 };

 This structure defines the current status of the queue.

 msgget

 The first function normally called is msgget to either open an existing queue or create

a new queue.

 General Form: int msgget(key_t key, int flag);

 Key is converted into identifier of the process and used to decide whether a new

queue is created or an existing queue is referenced.

 When a new queue is created, the following members of the msqid_ds structure are

initialized.

 The mode member of this structure is set to the corresponding permission bits of flag.

 msg_qnum, msg_lspid, msg_lrpid, msg_stime, and msg_rtime are all set to 0.

 msg_ctime is set to the current time.

 msg_qbytes is set to the system limit.

 On success, msgget returns the non-negative queue ID. This value is then used with

the other three message queue functions.

 msgsnd

 Data is placed onto a message queue by calling msgsnd.

 General Form: int msgsnd(int msqid, const void *ptr, size_t nbytes, int flag);

 Each message is composed of a positive long integer type field, a non-negative length

(nbytes), and the actual data bytes (corresponding to the length). Messages are always placed

at the end of the queue.

 The ptr argument points to a long integer that contains the positive integer message

type, and it is immediately followed by the message data.

Message structure:

struct mymesg

 {

 long mtype; /* positive message type */

char mtext[512]; /* message data, of length nbytes */

};

 The ptr argument is then a pointer to a mymesg structure. The message type can be

used by the receiver to fetch messages in an order other than first in, first out.

 A flag value of IPC_NOWAIT can be specified, this causes msgsnd to return an error

message when the queue is full.

 When msgsnd returns successfully, the msqid_ds structure associated with the

message queue is updated to indicate the process ID that made the call (msg_lspid), the time

that the call was made (msg_stime), and that one more message is on the queue (msg_qnum).

 msgrcv

 Messages are retrieved from a queue by msgrcv.

 General Form: ssize_t msgrcv(int msqid, void *ptr, size_t nbytes, long type, int flag);

7

 the ptr argument points to a long integer (where the message type of the returned

message is stored) followed by a data buffer for the actual message data. nbytes specifies the

size of the data buffer.

 If the returned message is larger than nbytes and the MSG_NOERROR bit in flag is

set, the message is truncated.

 The type argument lets us specify which message we want.

type == 0 The first message on the queue is returned.

type >0 The first message on the queue whose message type equals type is

 returned.

type <0 The first message on the queue whose message type is the lowest value

 less than or equal to the absolute value of type is returned.

type= nonzero Used to read the messages in an order other than first in, first out such

 as using priority

 We can specify a flag value of IPC_NOWAIT to make the operation nonblocking, If

IPC_NOWAIT is not specified, the operation blocks until a message of the specified type is

available, the queue is removed from the system (−1 is returned with errno set to EIDRM), or

a signal is caught and the signal handler returns

 When msgrcv succeeds, the kernel updates the msqid_ds structure associated with the

message queue to indicate the caller’s process ID (msg_lrpid), the time of the call

(msg_rtime), and that one less message is on the queue (msg_qnum).

 msgctl

 The msgctl function performs various operations on a queue.

 General Form: int msgctl(int msqid, int cmd, struct msqid_ds *buf);

 The cmd argument specifies the command to be performed on the queue specified by msqid.

IPC_STAT Fetch the msqid_ds structure for this queue, storing it in the structure

 pointed to by buf.

IPC_SET Copy the following fields from the structure pointed to by buf to the

 msqid_ds structure associated with this queue: msg_perm.uid,

 msg_perm.gid, msg_perm.mode, and msg_qbytes.

IPC_RMID Remove the message queue from the system and any data still on the

 queue. This removal is immediate.

Shared memory

 Shared memory allows two or more processes to share a given region of memory.

 This is the fastest form of IPC, because the data does not need to be copied between the

client and the server.

 The only trick in using shared memory is synchronizing access to a given region among

multiple processes. If the server is placing data into a shared memory region, the client

shouldn’t try to access the data until the server is done. Often, semaphores are used to

synchronize shared memory access.

8

 The kernel maintains a structure with at least the following members for each shared

memory segment:

struct shmid_ds

{

struct ipc_perm shm_perm; /* defines permissions */

size_t shm_segsz; /* size of segment in bytes */

pid_t shm_lpid; /* pid of last shmop() */

pid_t shm_cpid; /* pid of creator */

shmatt_t shm_nattch; /* number of current attaches */

time_t shm_atime; /* last-attach time */

time_t shm_dtime; /* last-detach time */

 time_t shm_ctime; /* last-change time */

.

 .

 .

 };

 shmget

 The first function called is usually shmget, to obtain a shared memory identifier

 General Form: int shmget(key_t key, size_t size, int flag);

 Key is converted into an identifier and whether a new segment is created or an

existing segment is referenced.

 When a new segment is created, the following members of the shmid_ds structure are

initialized.

 The ipc_perm structure is initialized . The mode member of this structure is set to the

corresponding permission bits of flag.

 shm_lpid, shm_nattch, shm_atime, and shm_dtime are all set to 0.

 shm_ctime is set to the current time.

 shm_segsz is set to the size requested.

 The size parameter is the size of the shared memory segment in bytes.

 shmctl

 The shmctl function is the catchall for various shared memory operations.

 General Form: int shmctl(int shmid, int cmd, struct shmid_ds *buf);

 The cmd argument specifies one of the following five commands to be performed, on

the segment specified by shmid.

IPC_STAT Fetch the shmid_ds structure for this segment, storing it in the structure

 pointed to by buf.

9

IPC_SET Set the following three fields from the structure pointed to by buf in

 the shmid_ds structure associated with this shared memory segment:

 shm_perm.uid, shm_perm.gid, and shm_perm.mode.

IPC_RMID Remove the shared memory segment set from the system.

 Two additional commands are provided by Linux and Solaris, but are not part of the

Single UNIX Specification.

SHM_LOCK Lock the shared memory segment in memory. This command can be

 executed only by the superuser.

SHM_UNLOCK Unlock the shared memory segment. This command can be executed

 only by the superuser

 shmat

 Once a shared memory segment has been created, a process attaches it to its address

space by calling shmat.

 General Form: void *shmat(int shmid, const void *addr, int flag);

 The address in the calling process at which the segment is attached depends on the

addr argument and whether the SHM_RND bit is specified in flag.

 If addr is 0, the segment is attached at the first available address selected by the

kernel. This is the recommended technique.

 If addr is nonzero and SHM_RND is not specified, the segment is attached at the

address given by addr.

 If addr is nonzero and SHM_RND is specified, the segment is attached at the address

given by (addr − (addr modulus SHMLBA)). The SHM_RND command stands for

‘‘round.’’ SHMLBA stands for ‘‘low boundary address multiple’’ and is always a

power of 2.

 The value returned by shmat is the address at which the segment is attached, or −1 if

an error occurred.

 If shmat succeeds, the kernel will increment the shm_nattch counter in the shmid_ds

structure associated with the shared memory segment.

 shmdt

 When we’re done with a shared memory segment, we call shmdt to detach it. This

does not remove the identifier and its associated data structure from the system. The identifier

remains in existence until some process (often a server) specifically removes it by calling

shmctl with a command of IPC_RMID.

 General Form: int shmdt(const void *addr);

 The addr argument is the value that was returned by a previous call to shmat. If

successful, shmdt will decrement the shm_nattch counter in the associated shmid_ds

structure.

10

PROCESS MANAGEMENT AND SYNCHRONIZATION
Race Condition

Definition: A situation where several processes access and manipulate the same data

concurrently and the outcome of the execution depends on the particular order in which the

access takes place, is called a race condition.

 To guard against the race condition we need to ensure that only one process at a time

can be manipulating the variable counter. To make such a guarantee, we require that the

processes be synchronized in some way.

The Critical Section Problem

 Consider a system consisting of n processes {P0, P1, ..., Pn−1}. Each process has a

segment of code, called a critical section or region, in which the process may be changing

common variables, updating a table, writing a file, and so on.

 The important feature of the system is that, when one process is executing in its

critical section, no other process is allowed to execute in its critical section. That is, no two

processes are executing in their critical sections at the same time.

 The critical-section problem is to design a protocol that the processes can use to

cooperate. Each process must request permission to enter its critical section. The section of

code implementing this request is the entry section. The critical section may be followed by

an exit section. The remaining code is the remainder section.

 A solution to the critical-section problem must satisfy the following three

requirements:

1. Mutual exclusion. If process Pi is executing in its critical section, then no other

processes can be executing in their critical sections.

2. Progress. If no process is executing in its critical section and some processes wish to

enter their critical sections, then only those processes that are not executing in their

remainder sections can participate in deciding which will enter its critical section next,

and this selection cannot be postponed indefinitely.

3. Bounded waiting. There exists a bound, or limit, on the number of times that other

processes are allowed to enter their critical sections after a process has made a request to

enter its critical section and before that request is granted.

General structure of process Pi

Synchronization Hardware

 Software-based solutions such as Peterson’s does not guaranteed to work on modern

computer architectures. The following are several more solutions to the critical-section

11

problem using techniques ranging from hardware to software-based on the premise of

locking —that is, protecting critical regions through the use of locks.

Single Processor Systems: Disabling of Interrupts

 The critical-section problem could be solved simply in a single-processor

environment if we could prevent interrupts from occurring while a shared variable was being

modified. In this way, we could be sure that the current sequence of instructions would be

allowed to execute in order without preemption.

 No other instructions would be run, so no unexpected modifications could be made to

the shared variable. This is often the approach taken by nonpreemptive kernels.

 Disable Interrupts

 Critical section

 Enable Interrupts

 Remainder section

Multi Processor Systems: Special hardware instructions

 Disabling interrupts on a multiprocessor can be time consuming, since the message is

passed to all the processors. This message passing delays entry into each critical section, and

system efficiency decreases.

 Many modern computer systems therefore provide special hardware instructions like

“test _and _set” and “Compare _and_Swap” that allow us either to test and modify the

content of a word or to swap the contents of two words atomically—that is, as one

uninterruptible unit.

1. Test _and _Set

 The important characteristic of this instruction is that it is executed atomically.

 Thus, if two test and set () instructions are executed simultaneously (each on a

different CPU), they will be executed sequentially in some arbitrary order.

 If the machine supports the test and set () instruction, then we can implement mutual

exclusion by declaring a boolean variable lock, initialized to false.

Definition of the test_and _set() instruction:

boolean test_and_set (boolean *target)

{

 boolean rv = *target;

 *target = TRUE;

 return rv:

}

Mutual-exclusion implementation with test _and _set ()

do

{

 while (test_and_set (&lock))

 ; /* do nothing */

 /* critical section */

 lock = false;

 /* remainder section */

12

} while (true);

2. Compare _and_Swap

 The compare and swap () instruction, in contrast to the test and set () instruction,

operates on three operands.

 The operand value is set to new value only if the expression (*value == expected) is

true. Regardless, compare and swap () always returns the original value of the

variable value.

 Definition of compare _and_swap

int compare _and_swap(int *value, int expected, int new_value)

{

 int temp = *value;

 if (*value == expected)

 *value = new_value;

 return temp;

 }

 Mutual-exclusion implementation with compare _and_swap

 do

 {

 while (compare_and_swap(&lock, 0, 1) != 0)

 ; /* do nothing */

 /* critical section */

 lock = 0;

 /* remainder section */

 } while (true);

 Although these algorithms satisfy the mutual-exclusion requirement, they do not

satisfy the bounded-waiting requirement. The following is another algorithm using the test

and set () instruction that satisfies all the critical-section requirements.

do

{

 waiting[i]=true;

 key=true;

 while (waiting[i] && key)

 key = test_and_set (&lock);

 waiting[i] = false;

 /* critical section */

 j = (i + 1) % n;

 while ((j != i) && !waiting[j])

 j = (j + 1) % n;

 if (j == i)

 lock = false;

 else

 waiting[j] = false;

13

 /* remainder section */

} while (true);

Semaphores

 Hardware based solutions to critical section problems are complicated, so we use a

more robust software tool called Semaphore.

Definition: A semaphore S is an integer variable that, apart from initialization, is accessed

only through two standard atomic operations: wait () and signal ().

Definition of the wait () operation

Wait(S)

{

 while (S <= 0)

 ; // busy wait

 S--;

}

Definition of the signal () operation

Signal(S)

{

 S++;

}

1. Semaphore Usage

 Operating systems often distinguish between counting and binary semaphores.

a. Counting Semaphore

 The value of a counting semaphore can range over an unrestricted domain.

 Counting semaphores can be used to control access to a given resource consisting

of a finite number of instances. The semaphore is initialized to the number of

resources available.

 Each process that wishes to use a resource performs a wait () operation on the

semaphore (thereby decrementing the count).

 When a process releases a resource, it performs a signal () operation

(incrementing the count). When the count for the semaphore goes to 0, all

resources are being used. After that, processes that wish to use a resource will

block until the count becomes greater than 0.

b. Binary Semaphore

 The value of a binary semaphore can range only between 0 and 1.

 Example: Consider two concurrently running processes: P1 with a statement S1

and P2 with a statement S2. Suppose we require that S2 be executed only after S1

has completed. We can implement this scheme readily by letting P1 and P2 share

a common semaphore synch, initialized to 0.

 In process P1, we insert the statements

 S1;

 signal (synch);

 In process P2, we insert the statements

14

 wait (synch);

 S2;

 Because synch is initialized to 0, P2 will execute S2 only after P1 has invoked signal

(synch), which is after statement S1 has been executed.

2. Semaphore Implementation

 The previous definition of wait () and signal () has a problem of busy waiting which

wastes CPU cycles. To overcome this, we will modify the definition of wait () and signal ().

Wait ()

 When a process executes the wait () operation and finds that the semaphore value is not

positive, it must wait.

 However, rather than engaging in busy waiting, the process can block itself.

 The block operation places a process into a waiting queue associated with the

semaphore, and the state of the process is switched to the waiting state.

 Then control is transferred to the CPU scheduler, which selects another process to

execute.

Signal ()

 A process that is blocked, waiting on a semaphore S, should be restarted when some

other process executes a signal () operation.

 The process is restarted by a wakeup () operation, which changes the process from the

waiting state to the ready state.

 The process is then placed in the ready queue.

Defining a semaphore

typedef struct

{

 int value;

 struct process *list;

} semaphore;

wait () semaphore operation can be defined as,

wait (semaphore *S)

{

 S->value--;

 if(S->value<0)

 {

 add this process to S->list;

 block ();

 }

}

signal () semaphore operation can be defined as,

signal (semaphore *S)

{

 S->value++;

15

 if(S->value<=0)

 {

 remove a process P from S->list;

 wakeup (P);

 }

}

3. Deadlocks and Starvation

 The implementation of a semaphore with a waiting queue may result in a situation

where two or more processes are waiting indefinitely for an event that can be caused only by

one of the waiting processes. The event in question is the execution of a signal () operation.

When such a state is reached, these processes are said to be deadlocked.

Example: consider a system consisting of two processes, P0 and P1, each accessing two

semaphores, S and Q, set to the value 1:

 Suppose that P0 executes wait(S) and then P1 executes wait (Q).When P0 executes

wait (Q), it must wait until P1 executes signal (Q). Similarly, when P1 executes wait(S), it

must wait until P0 executes signal(S). Since these signal () operations cannot be executed, P0

and P1 are deadlocked.

 Another problem related to deadlocks is indefinite blocking or starvation, a situation

in which processes wait indefinitely within the semaphore. Indefinite blocking may occur if

we remove processes from the list associated with a semaphore in LIFO (last-in, first-out)

order.

Classic Problems of Synchronization

1. The Bounded-Buffer Problem

The producer and consumer processes share the following data structures:

 int n;

 semaphore mutex = 1;

 semaphore empty = n;

 semaphore full = 0

 We assume that the pool consists of n buffers, each capable of holding one item. The

mutex semaphore provides mutual exclusion for accesses to the buffer pool and is initialized

to the value 1. The empty and full semaphores count the number of empty and full buffers.

The semaphore empty is initialized to the value n; the semaphore full is initialized to the

value 0.

The structure of the producer process

 do

 {

 ...

 /* produce an item in next_produced */

16

 ...

 wait (empty);

 wait (mutex);

 ...

 /* add next produced to the buffer */

 ...

 signal (mutex);

 signal (full);

 } while (true);

The structure of the consumer process

 do

 {

 wait (full);

 wait (mutex);

 ...

 /* remove an item from buffer to next_consumed */

 ...

 signal (mutex);

 signal (empty);

 ...

 /* consume the item in next consumed */

 ...

 } while (true);

2. The Readers–Writers Problem

 Suppose that a database is to be shared among several concurrent processes.

Some of these processes may want only to read the database, whereas others may want to

update (that is, to read and write) the database. We distinguish between these two types

of processes by referring to the former as readers and to the latter as writers. Obviously,

if two readers access the shared data simultaneously, no adverse effects will result.

However, if a writer and some other process (either a reader or a writer) access the

database simultaneously, problems may ensue.

 To ensure that these difficulties do not arise, we require that the writers have

exclusive access to the shared database while writing to the database. This

synchronization problem is referred to as the readers–writers problem.

Variations in readers–writers problem

 The readers–writers problem has several variations, all involving priorities.

 The simplest one, referred to as the first readers–writers problem, requires that no reader

be kept waiting unless a writer has already obtained permission to use the shared object.

In other words, no reader should wait for other readers to finish simply because a writer

is waiting. In this writers may starve.

17

 The second readers –writer’s problem requires that, once a writer is ready, that writer

perform its write as soon as possible. In other words, if a writer is waiting to access the

object, no new readers may start reading. In this readers may starve.

Solution to the first readers–writers problem

Data structures:

 semaphore rw mutex = 1;

 semaphore mutex = 1;

 int read count = 0;

 The semaphores mutex and rw mutex are initialized to 1; read count is initialized to 0.

The semaphore rw mutex is common to both reader and writer processes. The mutex

semaphore is used to ensure mutual exclusion when the variable read count is updated. The

read count variable keeps track of how many processes are currently reading the object. The

semaphore rw mutex functions as a mutual exclusion semaphore for the writers. It is also

used by the first or last reader that enters or exits the critical section. It is not used by readers

who enter or exit while other readers are in their critical sections.

The structure of a writer process

 do

 {

 wait (rw_mutex);

 ...

 /* writing is performed */

 ...

 signal(rw_mutex);

 } while (true);

The structure of a reader process

 do

 {

 wait(mutex);

 read_count++;

 if (read_count == 1)

 wait(rw_mutex);

 signal(mutex);

 ...

 /* reading is performed */

 ...

 wait(mutex);

 readcount--;

 if (read_count == 0)

 signal(rw_mutex);

 signal(mutex);

 } while (true);

18

Reader–Writer Locks

 The readers–writers problem and its solutions have been generalized to provide

reader–writer locks on some systems. Acquiring a reader–writer lock requires specifying the

mode of the lock: either read or write access. When a process wishes only to read shared

data, it requests the reader–writer lock in read mode. A process wishing to modify the shared

data must request the lock in write mode. Multiple processes are permitted to concurrently

acquire a reader–writer lock in read mode, but only one process may acquire the lock for

writing, as exclusive access is required for writers.

Reader–writer locks are most useful in the following situations:

 In applications where it is easy to identify which processes only read shared data and

which processes only write shared data.

 In applications that have more readers than writers.

3. The Dining-Philosophers Problem

 Consider five philosophers who spend their lives thinking and eating. The

philosophers share a circular table surrounded by five chairs, each belonging to one

philosopher. In the centre of the table is a bowl of rice, and the table is laid with five single

chopsticks. When a philosopher thinks, she does not interact with her colleagues. From time

to time, a philosopher gets hungry and tries to pick up the two chopsticks that are closest to

her (the chopsticks that are between her and her left and right neighbours). A philosopher

may pick up only one chopstick at a time. Obviously, she cannot pick up a chopstick that is

already in the hand of a neighbour. When a hungry philosopher has both her chopsticks at the

same time, she eats without releasing the chopsticks. When she is finished eating, she puts

down both chopsticks and starts thinking again.

Solution

 One simple solution is to represent each chopstick with a semaphore. A philosopher

tries to grab a chopstick by executing a wait () operation on that semaphore. She releases her

chopsticks by executing the signal () operation on the appropriate semaphores. Thus, the

shared data are

 semaphore chopstick [5];

where all the elements of chopstick are initialized to 1.

The structure of Philosopher i:

do

 {

 wait (chopstick[i]);

 wait (chopStick [(i + 1) % 5]);

19

 // eat for a while

 signal (chopstick[i]);

 signal (chopstick[(i + 1) % 5]);

 // think for a while

} while (TRUE);

 Although this solution guarantees that no two neighbours are eating simultaneously, it

nevertheless must be rejected because it could create a deadlock. Suppose that all five

philosophers become hungry at the same time and each grabs her left chopstick. All the

elements of chopstick will now be equal to 0. When each philosopher tries to grab her right

chopstick, she will be delayed forever.

Several possible remedies to the deadlock problem are replaced by:

 Allow at most four philosophers to be sitting simultaneously at the table.

 Allow a philosopher to pick up her chopsticks only if both chopsticks are available (to

do this, she must pick them up in a critical section).

 Use an asymmetric solution—that is, an odd-numbered philosopher picks up first her

left chopstick and then her right chopstick, whereas an even numbered philosopher

picks up her right chopstick and then her left chopstick.

Monitors

 Although semaphores provide a convenient and effective mechanism for process

synchronization, using them incorrectly can result in errors such as following,

 Suppose that a process interchanges the order in which the wait() and signal() operations

on the semaphore mutex are executed, resulting in the following execution:

signal (mutex);

...

critical section

...

wait (mutex);

 In this situation, several processes may be executing in their critical sections

simultaneously, violating the mutual-exclusion requirement. This error may be discovered

only if several processes are simultaneously active in their critical sections.

 Suppose that a process replaces signal (mutex) with wait (mutex). That is, it executes

wait (mutex);

...

critical section

...

wait (mutex);

 In this case, a deadlock will occur.

 Suppose that a process omits the wait (mutex), or the signal (mutex), or both. In this

case, either mutual exclusion is violated or a deadlock will occur.

20

 To deal with such errors, researchers have developed one fundamental high-level

synchronization construct—the monitor type.

1. Monitor Usage

 A monitor type is an ADT that includes a set of programmer defined operations that

are provided with mutual exclusion within the monitor. The monitor type also declares the

variables whose values define the state of an instance of that type, along with the bodies of

functions that operate on those variables.

Monitor monitorname

{ /* shared variable declarations */

function P1 (. . .) { . . .

}

function P2 (. . .) { . . .

}

.

.

.

function Pn (. . .) { . . .

}

initialization code (. . .) { . . .

}

}

 The monitor construct ensures that only one process at a time is active within the

monitor. Consequently, the programmer does not need to code this synchronization constraint

explicitly.

Condition Variables: The monitor construct is not sufficiently powerful for modelling some

synchronization schemes. For this purpose, we need to define additional synchronization

mechanisms. These mechanisms are provided by the condition construct,

 condition x, y;

 The only operations that can be invoked on a condition variable are wait () and signal

(). The operation

 x.wait ();

means that the process invoking this operation is suspended until another process invokes

 x.signal ();

21

The x.signal () operation resumes exactly one suspended process. If no process is suspended,

then the signal () operation has no effect.

2. Dining-Philosophers Solution Using Monitors

 Monitor concepts presents a deadlock-free solution to the dining-philosophers

problem. This solution imposes the restriction that a philosopher may pick up her chopsticks

only if both of them are available.

 The following are the data structure:

 enum {THINKING, HUNGRY, EATING} state [5];

 Philosopher i can set the variable state[i] = EATING only if her two neighbours are

not eating: (state[(i+4) % 5] != EATING) and(state[(i+1) % 5] != EATING).

 We also need to declare: condition self [5];

 This allows philosopher i to delay herself when she is hungry but is unable to obtain

the chopsticks she needs.

monitor DiningPhilosophers

{

 enum {THINKING, HUNGRY, EATING} state [5];

 condition self [5];

 void pickup (int i)

 {

 state[i] = HUNGRY;

 test (i);

 if (state[i]! = EATING)

 self[i].wait ();

 }

 void putdown (int i)

 {

 state[i] = THINKING;

 test ((i + 4) % 5);

 test ((i + 1) % 5);

 }

 void test (int i)

 {

 if ((state [(i + 4) % 5]! = EATING) && (state[i] == HUNGRY) && (state [(i

+ 1) % 5]! = EATING))

 {

 state[i] = EATING;

 self[i].signal ();

 }

 }

 initialization code ()

 {

 for (int i = 0; i < 5; i++)

 state[i] = THINKING;

 }

22

}

3. Implementing a Monitor Using Semaphores

Variables

The following are the variables,

semaphore mutex=1;

 For each monitor, a semaphore mutex (initialized to 1) is provided. A process must

execute wait (mutex) before entering the monitor and must execute signal (mutex) after

leaving the monitor.

semaphore next=0;

 Since a signalling process must wait until the resumed process either leaves or waits,

an additional semaphore, next, is introduced, The signalling processes can use next to

suspend themselves

 int next_count = 0;

 An integer variable next count is also provided to count the number of processes

suspended on next.

Procedure

Each procedure F will be replaced by,

 wait (mutex);

 ...

 body of F

 ...

 if (next _count > 0)

 signal (next);

 else

 signal (mutex);

Mutual exclusion within a monitor is ensured.

Condition Variables

For each condition x, we introduce a semaphore x _sem and an integer variable x _count,

both initialized to 0.

The operation x.wait () can now be implemented as,

 x_count++;

 if (next_count > 0)

 signal (next);

 else

 signal (mutex);

 wait (x_sem);

 x_count--;

The operation x.signal () can be implemented as,

 if (x_count > 0)

 {

23

 next_count++;

 signal (x_sem);

 wait (next);

 next_count--;

 }

4. Resuming Processes within a Monitor

 If several processes are suspended on condition x, and an x.signal () operation is

executed by some process, then we have to determine which of the suspended processes

should be resumed next.

First-Come, First-Served (FCFS)

 One simple solution is to use a first-come, first-served (FCFS) ordering, so that the

process that has been waiting the longest is resumed first. This is a simple scheduling scheme

but not adequate.

Conditional-Wait

 This construct has the form

 x.wait(c);

 where c is an integer expression that is evaluated when the wait () operation is

executed. The value of c, which is called a priority number, is then stored with the name of

the process that is

suspended. When x.signal () is executed, the process with the smallest priority number is

resumed next.

ResourceAllocator monitor

 It controls the allocation of a single resource among competing processes. Each

process, when requesting an allocation of this resource, specifies the maximum time it plans

to use the resource. The monitor allocates the resource to the process that has the shortest

time-allocation request. A process that needs to access the resource in question must observe

the following sequence:

 R.acquire(t);

 ...

 access the resource;

 ...

 R.release();

 where R is an instance of type ResourceAllocator.

Monitor to allocate a single resource

 monitor ResourceAllocator

 {

 boolean busy;

 condition x;

 void acquire(int time)

 {

 if (busy)

 x.wait(time);

 busy = true;

 }

24

 void release()

 {

 busy = false;

 x.signal();

 }

 initialization code()

 {

 busy = false;

 }

 }

Problems

The following problems can occur:

 A process might access a resource without first gaining access permission to the

resource.

 A process might never release a resource once it has been granted access to the

resource.

 A process might attempt to release a resource that it never requested.

 A process might request the same resource twice (without first releasing the resource).

 One possible solution is to include the resource access operations within the

ResourceAllocator monitor.

