EE 387, Notes 15, Handout #26

Cyclic codes: review

- A cyclic code is a LBC such that every cyclic shift of a codeword is a codeword.
- ► A cyclic code has *generator polynomial* g(x) that is a divisor of every codeword.
- The generator polynomial is a divisor of $x^n 1$, where n is blocklength.
- The parity-check polynomial is $h(x) = \frac{x^n 1}{g(x)}$.
- Codewords can be generated by:

nonsystematic: $m(x) \to m(x)g(x)$ systematic: $m(x) \to x^{n-k}m(x) - R_{g(x)}(x^{n-k}m(x))$

Codewords can be characterized by (and errors detected by):

$$c(x) \mod g(x) = 0$$

$$c(x)h(x) = 0 \mod (x^{n} - 1)$$

Examples of binary cyclic codes

Example: Over GF(2) the cyclic polynomial of degree 6 can be factored as $x^6 - 1 = (x^3 \pm 1)^2 = (x + 1)^2 (x^2 + x + 1)^2$.

The binary cyclic codes of blocklength $\boldsymbol{6}$ have generator polynomials

$$(x+1)^i (x^2+x+1)^j$$
, $0 \le i \le 2, \ 0 \le j \le 2$

None of these 9 cyclic codes is interesting—poor minimum distance. *Example*: Over GF(2), $x^7 - 1 = (x + 1)(x^3 + x + 1)(x^3 + x^2 + 1)$. There are $2^3 = 8$ divisors $x^7 - 1$ and thus 8 cyclic codes of blocklength 7. Primitive polynomial yields *cyclic* Hamming code; e.g., $g(x) = x^3 + x + 1$.

$$G = \begin{bmatrix} 1 & 1 & 0 & | & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & | & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & | & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & | & 0 & 0 & 0 & 1 \end{bmatrix} \implies H = \begin{bmatrix} 1 & 0 & 0 & | & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & | & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & | & 0 & 1 & 1 & 1 \end{bmatrix}$$

The "dual" code has generator matrix H, the (7,3) maximum-length code. All nonzero codewords have the same weight, $2^{m-1} = 4$.

Cyclic codes of blocklength 15

Over GF(2) the cyclic polynomial $x^{15} - 1$ has five distinct prime factors: $\begin{aligned} x^{15} - 1 &= (x+1)(x^2 + x + 1) \cdot \\ &\quad (x^4 + x + 1)(x^4 + x^3 + 1)(x^4 + x^3 + x^2 + x + 1) \end{aligned}$

There are 2^5 cyclic codes. Some of the more useful generator polynomials:

$$\begin{array}{ll} (x^4+x+1) & (15,11) \text{ binary cyclic Hamming} \\ (x^4+x+1)(x^4+x^3+x^2+x+1) & (15,7) \text{ 2-error-correcting BCH} \\ (x^4+x+1)(x^4+x^3+x^2+x+1)(x^2+x+1) & (15,5) \text{ 3EC BCH} \\ (x^4+x+1)(x^4+x^3+x^2+x+1)(x^2+x+1)(x+1) & (15,4) \text{ maximum-length} \end{array}$$

These codes, with $d^* = 3, 5, 7, 8$, are obtained by expurgation.

Weight	1	0	0	35	105	168	280	435	435	280	168	105	35	0	0	1
distributions of	1	0	0	0	0	18	30	15	15	30	18	0	0	0	0	1
blocklength 15	1	0	0	0	0	0	0	15	15	0	0	0	0	0	0	1
cyclic codes	1	0	0	0	0	0	0	0	15	0	0	0	0	0	0	0

Equivalent codes

The cyclic (7,4) Hamming code is different from earlier (7,4) Hamming code; check bits are in positions 1, 2, 3 instead of 1, 2, 4.

$$H_{\text{old}} = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix} \neq H_{\text{cyclic}} = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{bmatrix}$$

Definition: Two block codes that are the same except for a permutation of the symbol positions are called *equivalent*.

- Equivalent codes have same weight distribution and minimum weight.
- Not every linear block code is systematic. Consider this generator matrix:

$$G = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

► Every linear block code is equivalent to a linear block code that has a systematic generator matrix G = [P | I] (or G = [I | P]).

Parity-check polynomial

The *parity-check polynomial* of cyclic code with generator polynomial g(x) is $x^n = 1$

$$h(x) = \frac{x^n - 1}{g(x)} \,.$$

The degree of the parity-check polynomial is n - (n - k) = k. Parity-check polynomial defines a relation satisfied by all codewords:

$$\begin{aligned} c(x)h(x) &= m(x)g(x)h(x) = m(x)(x^n - 1) \\ &= x^n m(x) - m(x) = 0 \mod (x^n - 1) \\ &= (0, \dots, 0, m_0, \dots, m_{k-1}) - (m_0, \dots, m_{k-1}, 0, \dots, 0) \end{aligned}$$

Therefore coefficients of x^i in $c(x)h(x)$ are 0 for $i = k, \dots, n-1$.

This corresponds to n - k check equations:

$$\begin{aligned} x^k &\implies 0 = c_0 h_k + c_1 h_{k-1} + \dots + c_{k-1} h_1 + c_k h_0 \\ x^{k+1} &\implies 0 = c_1 h_k + c_2 h_{k-1} + \dots + c_k h_1 + c_{k+1} h_0 \\ \vdots & \vdots \\ x^{n-1} &\implies 0 = c_{n-k-1} h_k + c_{n-k} h_{k-1} + \dots + c_{n-2} h_1 + c_{n-1} h_0 \end{aligned}$$

Parity-check matrix: nonsystematic

The n - k check equations obtained from $c(x)h(x) = 0 \mod (x^n - 1)$ correspond to a *nonsystematic* parity-check matrix:

$$H_{1} = \begin{bmatrix} c_{0} & c_{1} & \cdots & c_{k-1} & c_{k} & c_{k+1} & c_{k+2} & \cdots & c_{n-1} \\ h_{k} & h_{k-1} & \cdots & h_{1} & h_{0} & 0 & 0 & \cdots & 0 \\ 0 & h_{k} & h_{k-1} & \cdots & h_{1} & h_{0} & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & h_{k} & h_{k-1} & \cdots & h_{1} & h_{0} \end{bmatrix} = \begin{bmatrix} h^{R}(x) \\ xh^{R}(x) \\ \vdots \\ x^{n-k-2}h^{R}(x) \\ x^{n-k-1}h^{R}(x) \end{bmatrix}$$

This matrix has the same form as the nonsystematic generator matrix. The rows of H_1 are shifts of the *reverse* of h(x).

$$h^{R}(x) = h_{k} + h_{k-1}x + \dots + h_{1}x^{k-1} + h_{0}x^{k}.$$

Since h(x) is also a divisor of $x^n - 1$, it generates an (n, n - k) cyclic code.

Parity-check matrix: nonsystematic (cont.)

Since $h^R(x) = x^k h(x^{-1})$, zeroes of $h^R(x)$ are reciprocals of zeroes of h(x). Thus $h^R(x)$ is also called the *reciprocal polynomial*.

The equation

$$g^{R}(x)h^{R}(x) = (g(x)h(x))^{R}$$

= $(x^{n} - 1)^{R} = 1 - x^{n} = -(x^{n} - 1)$

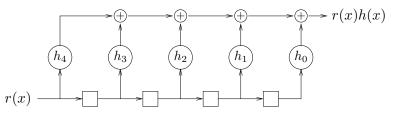
shows that $h^R(x)$ is a divisor of $x^n - 1$.

Parity-check matrix H_1 has the form of a nonsystematic generator matrix. Rows of H_1 are shifts of the reversal polynomial $h^R(x)$. Thus $h_0^{-1}h^R(x)$ generates a cyclic code.

The cyclic code generated by h(x) consists of the *reversals* of the dual of the cyclic code generated by g(x).

Syndrome circuit #1

Syndrome computation circuit corresponding to H_1 multiplies by the fixed polynomial h(x).



This circuit convolves input sequence $r_0, r_1, \ldots, r_{n-1}$ with parity-check polynomial coefficient sequence h_0, h_1, \ldots, h_k .

Since deg $r(x) \leq n-1$, the product r(x)h(x) has degree $\leq n-1+k$. Only n-k of the n+k coefficients of r(x)h(x) are used as the syndrome. The syndrome consists of the coefficients of x^k, \ldots, x^{n-1} in r(x)h(x). These are generated after r_{n-1}, \ldots, r_{n-k} have been shifted into the register.

Syndrome polynomial

We can obtain the systematic parity-check matrix from the systematic generator matrix using the general approach:

$$G = [P \mid I] \implies H = [I \mid -P^T]$$

Direct construction: define *syndrome polynomial* to be the remainder of division by generator polynomial:

$$s(x) = r(x) \mod g(x) = s_0 + s_1 x + \dots + s_{n-k-1} x^{n-k-1}$$

Every codeword is a multiple of g(x), so codewords have syndrome 0. Thus

$$s(x) = r(x) \mod g(x) = (c(x) + e(x)) \mod g(x)$$

= $c(x) \mod g(x) + e(x) \mod g(x) = e(x) \mod g(x)$

The remainder function is linear in the dividend r(x).

Therefore remainders of all n-tuples are linear combinations of

$$x^i \mod g(x)$$
 $(i = 0, 1, \dots, n-1)$

EE 387, October 28, 2015

Notes 15, Page 9

Parity-check matrix: systematic

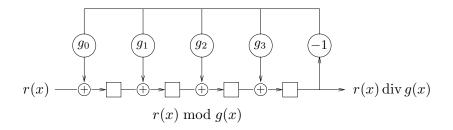
Polynomial syndrome s(x) corresponds to systematic parity-check matrix:

$$H_{2} = \begin{bmatrix} 1 \\ x \\ \vdots \\ x^{n-k-1} \\ x^{n-k} \mod g(x) \\ \vdots \\ x^{n-1} \mod g(x) \end{bmatrix}^{T} = \begin{bmatrix} 1 & 0 & \cdots & 0 & s_{0}^{[n-k]} & \cdots & s_{0}^{[n-2]} & s_{0}^{[n-1]} \\ 0 & 1 & \cdots & 0 & s_{1}^{[n-k]} & \cdots & s_{1}^{[n-2]} & s_{1}^{[n-1]} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & s_{n-k-1}^{[n-k]} & \cdots & s_{n-k-1}^{[n-2]} & s_{n-k-1}^{[n-1]} \end{bmatrix}$$

Column *i* of H_2 is syndrome of x^i , consists of coefficients of $x^i \mod g(x)$. Special case: column n - k consists of coefficients of -g(x) except x^{n-k} . Column *i* is obtained from column i - 1 by a linear feedback shift.

Syndrome circuit #2

Syndromes corresponding to H_2 can be calculated very efficiently using linear feedback shift register circuits that implement polynomial division.



Encoding circuits can also be used for syndrome computation:

syndrome = actual check symbols - expected check symbolswhere expected check symbols are computed from received message symbols using the above encoder.

Partial syndromes

The zeroes of the generator polynomial determine codewords:

c(x) is codeword $\iff c(\beta) = 0$ for every zero β of g(x).

(The "if" holds when g(x) has no repeated zeroes, i.e., repeated factors.) The zeroes of g(x) belong to extension field $GF(q^m)$ of GF(q). Let $\{\beta_1, \ldots, \beta_t\}$ include at least one zero of each prime factor of g(x).

The partial syndromes S_1, \ldots, S_t of r(x) are defined to be

$$S_i = r(\beta_i) = r_0 + r_1\beta_i + \dots + r_{n-1}\beta_i^{n-1}$$
 $(i = 1, \dots, t)$

The partial syndromes belong to the same extension field as β_1, \ldots, β_t . Syndrome component S_i corresponds to m linear equations over GF(q). The equations are linearly dependent if β_i is in a proper subfield of $GF(q^m)$.

Example: cyclic Hamming code

Let p(x) be a primitive polynomial over GF(2) of degree m.

The smallest value of n such that $p(x) \mid (x^n - 1)$ is $n = 2^m - 1$.

Cyclic code generated by p(x) has blocklength $n = 2^m - 1$.

The parity-check matrix H whose columns are $x^i \mod p(x)$ has distinct nonzero columns, so the code can correct all single errors.

The columns of H are powers of $\alpha = x$ in $\operatorname{GF}(2^m)$:

$$H = \begin{bmatrix} 1 & \alpha & \alpha^2 & \cdots & \alpha^{n-2} & \alpha^{n-1} \end{bmatrix}$$

Assume a single error in location *i*, i.e., $e(x) = x^i$. Partial syndrome for α :

$$S_1 = r(\alpha) = r_0 + r_1 \alpha + \dots + r_{n-1} \alpha^{n-1}$$
$$= c(\alpha) + e(\alpha) = e(\alpha) = \alpha^i.$$

Decoder must find error location *i* from syndrome $S_1 = \alpha^i$, i.e., decoder must compute a discrete logarithm base α .

Nonbinary Hamming codes

Every 1EC code has $d^* \ge 3$, hence any two columns of check matrix are LI, hence no column of H is a multiple of another column.

There are $q^m - 1$ *m*-tuples over GF(q). The largest number of pairwise LI columns is

$$\frac{q^m - 1}{q - 1} = q^{m-1} + q^{m-2} + \dots + q + 1.$$

since we can use only one of the q-1 nonzero multiples of any m-tuple.

We normalize columns by requiring first nonzero entry to be 1. Example:

	1	1	1	1	1	1	1	1	1	0	0	0	0]
H =	0	0	0	1	1	1	2	2	2	1	1	1	0	.
H =	0	1	2	0	1	2	0	1	2	0	1	2	1	

Decoding procedure for this (13, 10) code:

- 1. Compute syndrome $s = rH^T$.
- 2. Normalize syndrome by dividing by first nonzero entry s_i .
- 3. Equal column of H is error location, and s_i is error magnitude.

Cyclic nonbinary Hamming codes

A cyclic nonbinary Hamming code is defined by an element β of $GF(q^m)$ of order $n = (q^m - 1)/(q - 1)$. The check matrix is

$$H = \begin{bmatrix} 1 & \beta & \beta^2 & \cdots & \beta^{n-1} \end{bmatrix},$$

and g(x) is the minimal polynomial over GF(q) of β . (Fact: $\deg g(x) = m$) Columns of H are LI over GF(q) if and only if $\beta^j/\beta^i = \beta^l$ is not in GF(q). Fact: There exists a cyclic Hamming code of blocklength n if and only if nand q-1 are coprime, which is true if and only if m and q-1 are coprime. Example: If q = 3 then q - 1 = 2, so odd values of m are required. Let $GF(3^3)$ be defined by primitive polynomial $x^3 + 2x + 1$, and $\beta = \alpha^2$.

$$H = \begin{bmatrix} 1 & \alpha^2 & \dots & \alpha^{22} & \alpha^{24} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 & 2 & 0 & 2 & 0 & 1 & 1 & 1 & 2 & 1 \\ 0 & 0 & 2 & 1 & 0 & 1 & 0 & 2 & 2 & 2 & 1 & 2 & 2 \\ 0 & 1 & 1 & 1 & 2 & 1 & 1 & 0 & 0 & 1 & 2 & 0 & 2 \end{bmatrix}$$

The generator polynomial $x^3 + x^2 + x + 2$ can be found by several methods, then used to construct a systematic parity-check matrix.

Cyclic binary Golay code

Multiplicative orders of elements of $GF(2^{11})$ divide $2^{11} - 1 = 23 \cdot 89$.

There are $\phi(23)=22$ elements of order 23. Conjugates of any such β are

$$\beta, \ \beta^2, \ \beta^4, \ \beta^8, \ \beta^{16}, \ \beta^9, \ \beta^{18}, \ \beta^{13}, \ \beta^3, \ \beta^6, \beta^{12}$$

The minimal polynomial has degree $11. \ {\rm Prime \ polynomials \ of \ degree \ } 11$ are

$$g(x) = x^{11} + x^{10} + x^6 + x^5 + x^4 + x^2 + 1$$

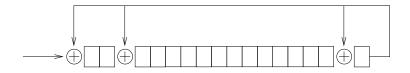
$$\tilde{g}(x) = x^{11} + x^9 + x^7 + x^6 + x^5 + x + 1$$

These polynomials are mirror images; their zeroes are reciprocals. Consecutive powers β , β^2 , β^3 , β^4 among the conjugates guarantee $d^* \ge 5$. Lemma: Golay codewords of even weight have weight a multiple of 4. Theorem: The cyclic Golay codes has $d^* = 7$ and in fact are perfect codes.

Weight enumerator: $1 + 253x^7 + 506x^8 + 1288x^{11} + 1288x^{12} + 506x^{15} + 253x^{16} + x^{23}$

Examples of cyclic codes: CRC-16

Cyclic codes are often used for error detection because the encoding and syndrome calculation circuits are *very* simple.



The most common generator polynomial is CRC-16:

$$\text{CRC-16} \ = \ x^{16} + x^{15} + x^2 + 1 \ = \ (x+1)(x^{15} + x + 1)$$

CRC-16 is simplest polynomial of degree 16 with degree 15 primitive factor. The factor $x^{15}+x+1$ is primitive of degree 15 hence has order $2^{15}-1$.

Therefore the *design* blocklength of CRC-16 is $2^{15} - 1 = 32767$ bits.

A significantly shortened code is almost always used.

Examples of cyclic codes: CRC-CCITT

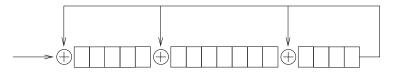
Another popular generator polynomial is

$$< \text{CRC-CCITT} = x^{16} + x^{12} + x^5 + 1 = (x+1)p_2(x),$$

where $p_2(x)$ is a primitive polynomial of degree 15:

$$p_2(x) = x^{15} + x^{14} + x^{13} + x^{12} + x^4 + x^3 + x^2 + x + 1$$

CRC-16 and CRC-CCITTT polynomials have only 4 nonzero coefficients, so the shift register coding circuits need only 3 exclusive-or gates.



Minimum distance for CRC-16, CRC-CCITT is 4. Both codes correct single errors while detecting double errors, or detect up to 3 errors.

Any cyclic code with n-k=16 detects burst errors of length 16 bits, which is optimal.