Α

**Course File Report** 

# On

# ANALOG AND DIGITAL ELECTRONICS

# Submitted by

Mr.S.Sudhakar Assistant Professor

In the department of **Information Technology (IT)** 



# **CMR ENGINEERING COLLEGE**

(Approved by AICTE-New Delhi, Affiliated to J.N.T.U, Hyderabad) Kandlakoya (v), Medchal Road, Hyderabad-501 401, Telangana State, India .Website: www.cmrec.ac.in (2021-22)

## **CONTENTS OF COURSE FILE:**

- 1. Department vision & mission
- 2. List of PEOs, POs, PSOs
- 3. List of Cos (action verbs as per blooms)
- 4. Syllabus copy and suggested or reference books
- 5. Session plan/ lesson plan
- 6. Session execution log
- 7. Lecture notes
- 8. Assignment Questions along with sample assignment
- 9. Mid exam question papers along with sample answer scripts
- 10.Scheme of evaluation
- 11. Mapping of COs with POs and PSOs
- 12. Attainment of COs with POs and PSOs
- 13. University question papers or question bank.
- 14.Power point presentations
- 15. Websites or URLs e- Resources

## 1. Department vision & mission

#### VISION

To accomplish an admirable standard of quality education by utilizing the latest technologies, innovations to be applicable for academia and industry which helps society in large.

#### **MISSION**

M1: To evolve professional who is proficient in the area of AI-ML

M2: To impart principle-based education and contribute to the innovation of computing and learning-based systems.

**M3:** Our Endeavour is to try new advancements in high-end computing hardware and software for society

## 2.List of PEOs, POs, PSOs

## **PROGRAM EDUCATIONAL OBJECTIVES (PEOS)**

Programme educational objectives are broad statements that describe the career and professional accomplishments that the programme is preparing graduates to achieve within 3 to 5 years after graduation.

The **Programme Educational Objectives** of the B. Tech CSE programme are:

**PEO1:** To apply the knowledge of mathematics, basic science and engineering solving the real world computing problems to succeed higher education and professional careers.

**PEO2:** To develop the skills required to comprehend, analyze, design and create innovative computing products and solutions for real life problems.

**PEO3:** To inculcate professional and ethical attitude, communication and teamwork skills, multi-disciplinary approach and an ability to relate computer engineering issues with social awareness

## **PROGRAM OUTCOMES (POS)**

#### Engineering Graduates will be able to satisfy these NBA graduate attributes:

- 1. **Engineering knowledge:** An ability to apply knowledge of computing, mathematics, science and engineering fundamentals appropriate to the discipline
- 2. **Problem analysis:** An ability to analyze a problem, and identify and formulate the computing requirements appropriate to its solution
- 3. **Design/development of solutions:** An ability to design, implement, and evaluate a computer-based system, process, component, or program to meet desired needs with appropriate consideration for public health and safety, cultural, societal and environmental considerations

- 4. **Conduct investigations of complex problems:** An ability to design and conduct experiments, as well as to analyze and interpret data
- 5. **Modern tool usage:** An ability to use current techniques, skills, and modern tools necessary for computing practice
- 6. **The engineer and society:** An ability to analyze the local and global impact of computing on individuals, organizations, and society
- 7. Environment and sustainability: Knowledge of contemporary issues
- 8. **Ethics:** An understanding of professional, ethical, legal, security and social issues and responsibilities
- 9. **Individual and team work:** An ability to function effectively individually and on teams, including diverse and multidisciplinary, to accomplish a common goal
- 10. Communication: An ability to communicate effectively with a range of audiences
- 11. **Project management and finance:** An understanding of engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects
- 12. Life-long learning: Recognition of the need for and an ability to engage in continuing professional development

# **PROGRAM SPECIFIC OUTCOMES (PSO'S)**

- 1. **Professional Skills and Foundations of Software development:** Ability to analyze, design and develop applications by adopting the dynamic nature of Software developments
- 2. Applications of Computing and Research Ability: Ability to use knowledge in cutting edge technologies in identifying research gaps and to render solutions with innovative ideas

# CO.1• Know the characteristics of various components.CO.2• Understand the utilization of components.CO.3• Design and analyze small signal amplifier circuits.CO.4• Learn Postulates of Boolean algebra and to minimize combinational functionsCO.5• Design and analyze combinational and sequential circuitsCO.6• Know about the logic families and realization of logic gates

## **3.** List of COs (action verbs as per blooms)

## 4. Syllabus copy and suggested or reference books

## UNIT - I

**Diodes and Applications:** Junction diode characteristics: Open circuited p-n junction, p-n junction as a rectifier, V-I characteristics, effect of temperature, diode resistance, diffusion capacitance, diode switching times, breakdown diodes, Tunnel diodes, photo diode, LED.

Diode Applications - clipping circuits, comparators, Half wave rectifier, Full wave rectifier, rectifier with capacitor filter.

## UNIT - II

**BJTs**: Transistor characteristics: The junction transistor, transistor as an amplifier, CB, CE, CC

configurations, comparison of transistor configurations, the operating point, self-bias or Emitter bias, bias compensation, thermal runaway and stability, transistor at low frequencies, CE amplifier response, gain bandwidth product, Emitter follower, RC coupled amplifier, two cascaded CE and multi stage CE amplifiers.

#### UNIT - III

**FETs and Digital Circuits**: FETs: JFET, V-I characteristics, MOSFET, low frequency CS and CD amplifiers, CS and CD amplifiers.

Digital Circuits: Digital (binary) operations of a system, OR gate, AND gate, NOT, EXCLUSIVE OR gate, De Morgan Laws, NAND and NOR DTL gates, modified DTL gates, HTL and TTL gates, output stages, RTL and DCTL, CMOS, Comparison of logic families.

## UNIT - IV

**Combinational Logic Circuits:** Basic Theorems and Properties of Boolean Algebra, Canonical and Standard Forms, Digital Logic Gates, The Map Method, Product-of-Sums Simplification, Don't-Care Conditions, NAND and NOR Implementation, Exclusive-OR Function, Binary Adder-Subtractor, Decimal Adder, Binary Multiplier, Magnitude Comparator, Decoders, Encoders, Multiplexers.

## UNIT - V

**Sequential Logic Circuits:** Sequential Circuits, Storage Elements: Latches and flip flops, Analysis of Clocked Sequential Circuits, State Reduction and Assignment, Shift Registers, Ripple Counters, Synchronous Counters, Random-Access Memory, Read-Only Memory

#### **TEXT BOOKS:**

- **1.** Integrated Electronics: Analog and Digital Circuits and Systems, 2/e, Jaccob Millman, Christos Halkias and Chethan D. Parikh, Tata McGraw-Hill Education, India, 2010.
- 2. Digital Design, 5/e, Morris Mano and Michael D. Cilette, Pearson, 2011.

## **REFERENCE BOOKS:**

1. Electronic Devices and Circuits, Jimmy J Cathey, Schaum's outline series, 1988.

2. Digital Principles, 3/e, Roger L. Tokheim, Schaum's outline series, 1994

## 5. Session plan/ lesson plan

| S.NO | TOPIC TO BE COVERED           | Suggested Books<br>(Eg: T1,T2,) | NO. OF<br>LECTURES<br>REQUIRED | Teaching<br>methods |
|------|-------------------------------|---------------------------------|--------------------------------|---------------------|
|      |                               | UNIT-I                          |                                |                     |
|      |                               | Classes required - 12           |                                | 1                   |
| 1    | Introduction                  | T1,R1                           | 1                              | White board,<br>PPT |
| 2    | Junction diode                |                                 |                                |                     |
|      | characteristics:              | T1                              | 1                              | White board,        |
|      | Open circuited p-n junction,: |                                 |                                | rrı                 |
| 3    | V-I characteristics           | T1,R1                           | 1                              | White board,<br>PPT |
| 4    | Effect of temperature, diode  |                                 |                                |                     |
|      | resistance, diffusion         | TT 1                            | 2                              | White board,        |
|      | capacitance                   | 11                              | 2                              | PPT                 |
|      |                               |                                 |                                |                     |
| 5    | diode                         |                                 |                                |                     |
|      | switching times               | T1,R1                           | 1                              | White board,<br>PPT |
| 6    | Breakdown diodes .Tunnel      |                                 |                                |                     |
|      | diodes, photo diode, LED      | T1                              | 1                              | White board,<br>PPT |
| 7    | Diode Applications -          |                                 |                                |                     |
|      | clipping circuits             | T1,R1                           | 1                              | White board,<br>PPT |
| 8    | Comparators                   | T1                              | 1                              | White board,<br>PPT |
| 9    | Half wave rectifier, Full     |                                 |                                | White beend         |
|      | wave rectifier                | T1                              | 2                              | PPT                 |
| 10   | capacitor filter              | T1                              | 1                              | White board,<br>PPT |

|    |                                                                         | Unit-II<br>Classes required-13 |   |                     |
|----|-------------------------------------------------------------------------|--------------------------------|---|---------------------|
| 11 | <b>BJTs</b> : Transistor                                                |                                |   | White board         |
|    | transistor                                                              | T1,R1                          | 2 | PPT                 |
| 12 | transistor as an amplifier                                              | T1                             | 2 | White board,<br>PPT |
| 13 | CB configurations, CE configurations                                    | T1                             | 1 | White board,<br>PPT |
| 14 | CC configurations,<br>comparison of transistor<br>configurations        | T1                             | 1 | White board,<br>PPT |
| 15 | the operating point, self-bias<br>or Emitter bias,<br>bias compensation | T1                             | 1 | White board,<br>PPT |
| 16 | Thermal runaway and stability                                           | T1                             | 1 | White board,<br>PPT |
| 17 | Transistor at low<br>frequencies, CE amplifier<br>Response              | T1                             | 1 | White board,<br>PPT |
| 18 | Gain bandwidth product                                                  | T1                             | 1 | White board,<br>PPT |
| 9  | Emitter follower, RC coupled amplifier                                  | T1                             | 2 | White board,<br>PPT |
| 20 | two cascaded CE and multi<br>stage CE amplifiers                        | T1                             | 1 | White board,<br>PPT |
|    |                                                                         | UNIT-III                       |   |                     |
| 21 | FETs and Digital Circuits:                                              | moore required - 10            |   |                     |
|    | FETs: JFET, V-I<br>characteristics                                      | T1                             | 1 | White board,<br>PPT |
| 22 | MOSFET                                                                  | T1                             | 1 | White board,<br>PPT |
| 23 | low frequency CS and<br>CDamplifiers                                    | T1                             | 1 | White board,<br>PPT |
| 24 | Digital Circuits: Digital<br>(binary) operations of a                   | T1                             | 1 | White board,<br>PPT |

|    | system                    |                      |   |                     |
|----|---------------------------|----------------------|---|---------------------|
| 25 |                           |                      |   |                     |
| 25 | OR gate, AND gate, NOT,   |                      |   |                     |
|    | EXCLUSIVE OR              | T1                   | 1 | White board,<br>PPT |
|    | Gate                      |                      |   |                     |
| 26 | De Morgan Laws            | T1                   | 1 | White board,<br>PPT |
| 27 | NAND and NOR DTL gates    | T1                   | 1 | White board,<br>PPT |
| 28 | modified DTL gates        | T1                   | 1 | White board,<br>PPT |
| 29 | HTL and TTL gates output  |                      |   |                     |
|    | stages, RTL and DCTL,     | T1                   | 1 | White board,<br>PPT |
| 30 | CMOS, Comparison of logic |                      |   | White heard         |
|    | families                  | T1                   | 1 | PPT                 |
|    |                           | UNIT-IV              | I | 1                   |
| 31 | Combinational Logic       | lasses required - 10 |   |                     |
|    | Circuits: Basic Theorems  |                      |   |                     |
|    | and Properties of Boolean | Τ2                   | 1 | PPT                 |
|    | Algebra,                  |                      |   |                     |
| 32 | Canonical and             |                      |   |                     |
|    | Standard Forms Digital    | T)                   | 1 | White board,        |
|    | Logic Gates               | 12                   | 1 | РРТ                 |
|    |                           |                      |   |                     |
| 33 | The Map Method, Product-  |                      |   |                     |
|    | of-Sums Simplification,   | Τ2                   | 1 | White board,<br>PPT |
|    | Don t-Care Conditions     |                      |   |                     |
| 34 | NAND and NOR              | T.A.                 |   | White board.        |
|    | Implementation            | Т2                   | 2 | PPT                 |
| 35 | Exclusive-OR Function     | T2                   | 1 | White board,<br>PPT |
| 36 | Binary Adder-Subtractor,  |                      |   |                     |
|    | Decimal Adder             | Τ2                   | 1 | White board,<br>PPT |
| 37 | Binary Multiplier         | T2                   | 1 | White board,<br>PPT |
| 38 | Magnitude Comparator      | T)                   | 1 | White board,        |
|    |                           | 12                   | L | РРТ                 |

| 39 | Decoders, Encoders,         |                    |            | White board         |  |
|----|-----------------------------|--------------------|------------|---------------------|--|
|    | Multiplexers                | Τ2                 | 2          | PPT                 |  |
|    |                             | UNIT-V             |            |                     |  |
|    | Clas                        | sses required - 12 |            |                     |  |
| 40 |                             | Τ2                 | 1          | White board,<br>PPT |  |
|    | Sequential Logic Circuits:  |                    |            |                     |  |
|    | Sequential Circuits,        |                    |            |                     |  |
| 41 | Storage Elements: Latches   | T2                 | 2          | White board,        |  |
|    | and flip flops              |                    |            | РРТ                 |  |
| 42 | Analysis of                 | Τ2                 | 1          | White board,        |  |
|    | Clocked Sequential Circuits |                    |            | PPT                 |  |
| 43 | State Reduction and         | Τ2                 | 2          | White board,        |  |
|    | Assignment                  |                    |            | РРТ                 |  |
| 44 | Shift Registers             | T2                 | 2          | White board,        |  |
|    |                             |                    |            | РРТ                 |  |
| 45 | Ripple Counters             | Τ2                 | 2          | White board,        |  |
|    |                             |                    |            | PPT                 |  |
| 46 | Synchronous Counters        | T2                 | 2          | White board,        |  |
|    |                             |                    |            | PPT                 |  |
|    |                             | Total no of cl     | asses : 57 |                     |  |

# **Individual Time Table**

|     | Ι     | II    | III   | IV    | V      | VI    | VII   |
|-----|-------|-------|-------|-------|--------|-------|-------|
| MON | ADE-A |       | ADE-B |       |        |       |       |
| TUE |       | ADE-B |       |       | ADE- A |       |       |
| WED |       |       |       |       |        |       |       |
| THU |       | ADE-B |       | ADE-A |        |       | ADE-B |
| FRI | ADE-B |       | ADE-A |       |        |       |       |
| SAT |       |       |       |       |        | ADE-B |       |

## 6. Session execution log

| S NO | UNIT | SCHEDULED<br>COMPLETED<br>DATE | COMPLETED<br>DATE | REMARKS   |
|------|------|--------------------------------|-------------------|-----------|
| 1    | Ι    | 06.09.2021                     | 07.10.2021        | Completed |
| 2    | II   | 08.10.2021                     | 3.11.2021         | Completed |
| 3    | III  | 15.11.2021                     | 7.12.2021         | Completed |
| 4    | IV   | 09.12.2021                     | 24.12.2021        | Completed |
| 5    | V    | 27.12.2021                     | 07.01.2022        | Completed |

## 7. Lecture notes



## 8. Assignment Questions along with sample assignment



CMR ENGINEERING COLLEGE Kandlakoya (v), Medchal Road, Hyderabad -501401 Mid-I Assignment Questions

## MID – I ASSIGNMENT

IT II- I ( 2021 – 2022)

## ANALOG AND DIGITAL ELECTRONICS

- (A)Explain Biasing Modes Of P-N Junction Diode ?(C01)
   (B)Explain Diode Switching Times?
- 2) (A)Describe About Break Down Mechanism?(B)Explain About Zener Diode And Avalanche Diodes (Co1)
- 3) (A)Explain About Ce Configuration Of Transistor?(B)Compare Transistor Three Configurations (Co2)
- 4) Explain About Transistor Operating Point?(Co2)
- 5) Explain Full Wave Rectifier And Its Efficiency?(Co1)
- 6) Explain Diffusion Capacitance And Diode Resistance ?(Co1)
- 7) Explain About These Following Diodes A)Tunnel Diode B) Photo Diode ?(Co2)
- 8) Explain About Self Bias Or Emitter Bias Of A Transistor ? (Co2)

9) Explain About Thermal Stability And Thermal Runaway?

10) What Is Early Effect And Punch Through Effect?

Innovative Questions

- 11) Why Inverse Active Mode Of Transistor Is Not Useful?(Co2)
- 12) Zener Diode As Voltage Regulator(Co1)



CMR ENGINEERING COLLEGE Kandlakoya (v), Medchal Road, Hyderabad -501401 Mid-II Assignment Questions

## IT II- I ( 2021 – 2022) MID – II ASSIGNMENT

#### ANALOG AND DIGITAL ELECTRONICS

- A) Explain the realization of SR flip-flop, JK flip-flop and D flip-flop (CO5)
   B) Compare LATCHES and FLIP FLOPS? (CO5)
- A) Why a NAND and NOR gates are known as universal gates? Simulate all the basic Gates. (CO4)

B) Minimize the following expressions using K-map and realize using NAND Gates.  $f = \sum m (1, 3, 5, 8, 9, 11, 15) + d (2, 13)$ . (CO4)

- 3. A) How do you obtain dual of an expression?
  - B) What are canonical and standard forms of an expressions (CO4)
  - C) Simplify the following Boolean expressions using the Boolean theorems. (CO4) (i)  $(A+B+C) (B\Box+C) + (A+D) (A\Box+C)$  (ii)  $(A+B) (A+B\Box) (A\Box+B)$
- 4. A) Explain about 4 bit magnitude comparator?(CO5)
  - B) Explain about priority encoder? (CO5)
  - C) Design a full adder using two half adders? (CO5)
- 5. A) What is ripple counter? Explain modulo-8 ripple counter? (CO6)
  - B) What are different types of shift registers? (CO6)
  - C) Difference between synchronous and asynchronous circuits? (CO6)
- 6. A) Explain about all types of RAM and ROM(CO6)
  - B) Explain about 8\*1 multiplexer (CO5)
  - C) Explain about 1\*4 demultiplexer? (CO5)
- A) Obtain reduce state table and reduce state diagram for the sequential machine whose state diagram is shown in the figure. (CO6)



- B) Difference between combinational and sequential circuits ? (CO5)
- 8 A) Compare FET and BJT? (CO3)
  - B) Draw HTL and TTL gates? (CO3)
  - C) Explain about modified DTL gates? (CO3)
- 9. A) COMPARE ALL logic families (CO3)
  - B) Explain the operation of Depletion mode MOSFET in detail(CO3)
- 10. A) Simplify the following expressions and implement them with NAND gate circuits. (CO4)

(i) F=AB'+ABD+ABD'+A'C'D'+A'BC' (ii) G=BD+BCD'+AB'C'D'

B) Express the following as the sum of minterms and product of maxterms. (CO4)

i)F(A,B,C,D)=B'D+A'D+BD ii)F(X,Y,Z)=(XY+Z)(XZ+Y)

## **INNOVATIVE QUESTIONS**

13) Prove that OR-AND logic network is equivalent to NOR –NOR network ?(CO4) 14) Design gray code using binary code ? (CO5)

# 9. Mid exam question papers along with sample answer scripts.

| Subject: ADE Branch:IT                                                      | Marks: 25 M              |
|-----------------------------------------------------------------------------|--------------------------|
| Note: Question paper contains two parts,Part - A and Pa                     | rt - B.                  |
| Part-A is compulsory which carries 10 marks. Answer al                      | l questions in part-A.   |
| Part-B consists of (21/2) units. Answer any one full quest question carries | ion from each unit. Each |
| 5 marks and may have a,b,c sub questions.                                   |                          |
| PART-A                                                                      | 5x2=10                   |
| 1.Plot the V-I characteristics of p-n junction diode?                       |                          |
| 2. What is the effect of temperature on diodes?                             |                          |
| 3.What is Thermal runaway of transistor?                                    |                          |
| 4.Operating regions of transistor?                                          |                          |
| 5. What is early effect and punch through effect?                           |                          |
| PART-B                                                                      | 3X5=15                   |
| 6.Descibe the following diodes                                              |                          |
| (a) Tunnel diode                                                            |                          |
| (b) Photodiode                                                              |                          |
| (or)                                                                        |                          |
| 7.explain about the following breakdown mechanisms?                         |                          |
| (a) Avalanche breakdown mechanisms                                          |                          |
| (b) Zener Diode breakdown mechanisms                                        |                          |
| 8.(a) Explain operating point of transistor?                                |                          |
| (b) How transistor acts as an amplifier?                                    |                          |
| (or)                                                                        |                          |

(b) Relation among  $\alpha, \beta, \Upsilon$ ?

10.(a) Self bias of transistor (or) voltage divider biasing method of a transistor?

(b) Define stability factors for s,  $s^1$  ?

(or)

11.(a) Define Full wave rectifier and its efficiency?

(b) Define Diode switching times?



**II.B.TECH- I-SEM -II MID EXAMINATIONS,** Date: 7/1/2022

Time: 10AM TO 11.30 AM

Subject: ADE

**Branch: IT** 

Marks: 25 M

Note: Question paper contains two parts, Part - A and Part - B.

Part-A is compulsory which carries 10 marks. Answer all questions in part-A.

Part-B consists of (21/2) units. Answer any one full question from each unit. Each question carries

5 marks and may have a,b,c sub questions.

#### PART-A

5x2=10

- 1. Compare LATCHES and FLIP FLOPS? (CO5)?
- 2. Difference between synchronous and asynchronous circuits? (CO6)
- 3. Difference between combinational and sequential circuits? (CO5)
- 4. COMPARE ALL logic families (CO3)?
- 5. Explain about all types of RAM and ROM? (CO6)

## PART-B

3X5=15

6. A) Obtain reduce state table and reduce state diagram for the sequential machine whose state diagram is shown in the figure. (CO6)



(i)  $(A+B+C) (B \Box+C) + (A+D) (A \Box+C)$  (ii)  $(A+B) (A+B \Box) (A \Box+B)$ 

8 A) Why a NAND and NOR gates are known as universal gates? Simulate all the basic Gates. (CO4)

B) Minimize the following expressions using K-map and realize using NAND Gates.

 $f = \sum m(1, 3, 5, 8, 9, 11, 15) + d(2, 13).$  (CO4)

(or)

9. A) What is ripple counter? Explain modulo-8 ripple counter? (CO6)

B) What are different types of shift registers? (CO6)

10. A) Compare FET and BJT? (CO3)?

7.

B) Explain the operation of Depletion mode MOSFET in detail? (CO3)

(or)

SET 2

- 11. A) Design a full adder using two half adders? (CO5)
  - B) Explain about 8\*1 multiplexer and 3\*8 Decoder (CO5)

| ENGINEERING COLLEGE<br>EXPLORE TO INVENT | CMR I<br>(Approved by A<br>Kandlako | ENGINEERIN<br>UGC AUTONG<br>AICTE - New Delhi. Affiliated to J<br>bya (V), Medchal (M), Med | NG COLLEG<br>MOUS<br>NTUH and Accredited by NAAC a<br>dchal - Malkajgiri (D)-50140 | E NBA)<br>01        |
|------------------------------------------|-------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------|
| II.B.TECH<br>Subject:                    | I- I-SEM -II<br>ADE                 | MID EXAMINATIONS,<br>Branch: IT                                                             | Date:                                                                              | Time:<br>arks: 25 M |
| Note: Ques                               | stion paper c                       | ontains two parts, Part – A                                                                 | A and Part - B.                                                                    |                     |

Part-A is compulsory which carries 10 marks. Answer all questions in part-A.

Part-B consists of (21/2) units. Answer any one full question from each unit. Each question carries

5 marks and may have a,b,c sub questions.

#### PART-A

7. State different types of FLIP FLOPS? (CO6)?

- 8. Difference between synchronous and asynchronous counters? (CO6)
- 9. Explain about shift registers ? (CO5)
- $10. \qquad \text{What is state assignment? Explain with a suitable example (CO3)?}$
- 11. Explain about encoders and decoders (CO4)

## PART-B

3X5=15

5x2=10

12. A) Obtain reduce state table and reduce state diagram for the sequential machine whose state table is shown in the figure. (CO6)

|               | Next State                        |              | Output                            |              |
|---------------|-----------------------------------|--------------|-----------------------------------|--------------|
| Present State | $\boldsymbol{x} = \boldsymbol{0}$ | <i>x</i> = 1 | $\boldsymbol{x} = \boldsymbol{0}$ | <i>x</i> = 1 |
| а             | a                                 | b            | 0                                 | 0            |
| b             | с                                 | d            | 0                                 | 0            |
| с             | a                                 | d            | 0                                 | 0            |
| d             | е                                 | f            | 0                                 | 1            |
| е             | а                                 | f            | 0                                 | 1            |
| f             | g                                 | f            | 0                                 | 1            |
| g             | a                                 | f            | 0                                 | 1            |

B) design 16\*4 encoder by using two 8\*3 encoders (CO5)

(or)

7. A) What are canonical and standard forms of an expressions (CO4)

B) Explain the working of 2 bit magnitude comparator ? (CO4)

8 A) Why a NAND and NOR gates are known as universal gates? Simulate all the basic Gates. (CO4)

B) Minimize the following expressions using K-map and realize using NOR Gates.

 $f = \sum m (1, 3, 5, 7, 8, 9, 10, 11, 12, 14, 15) + d (2, 4, 13). (CO4)$ 

| 9. | A) What is Asynchronous | counter? Explain modulo-8 | 8 Asynchronous counter? | (CO6) |
|----|-------------------------|---------------------------|-------------------------|-------|
|----|-------------------------|---------------------------|-------------------------|-------|

B) Define memory ? classifications of memories ?(CO6)

10. A) Compare JFET and MOSFET? (CO3)?

B) Explain the operation of JFET in detail? (CO3)

(or)

11. A) Design a full subtractor using two half subtractors? (CO4)

B) State Demorgan's laws? prove it (CO4)

## SET 3

|                                 | CMR<br>CApproved by<br>Kandla                                                                          | ENGINEERING<br>UGC AUTONOMO<br>AICTE - New Delhi. Affiliated to JNTUH<br>koya (V), Medchal (M), Medchal                                                   | and Accredited by NAAC & NBA)<br>- Malkajgiri (D)-501401 |
|---------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| II.B.<br>Sul                    | TECH- I-SEM -L                                                                                         | I MID EXAMINATIONS, Da                                                                                                                                    | ate: Time:<br>Marke: 25 M                                |
| Note                            | e: Question paper                                                                                      | contains two parts, Part – A and                                                                                                                          | I Part - B.                                              |
| Part<br>ques                    | -A is computed y<br>-B consists of (21/<br>stion carries                                               | 2) units. Answer any one full que                                                                                                                         | estion from each unit. Each                              |
| 5 m                             | arks and may hav                                                                                       | e a,b,c sub questions.                                                                                                                                    |                                                          |
|                                 |                                                                                                        | PART-A                                                                                                                                                    | 5x2=10                                                   |
| 13.<br>14.<br>15.<br>16.<br>17. | Implement AND<br>Write a logic of for<br>Define D flip flop<br>What is BCD adder?<br>What is race arou | gate using TTL logic? (CO3)?<br>all adder with Boolean equations?<br>with the help of its characteristics<br>(CO4)?<br>nd condition? how it is eliminated | (CO4)<br>s equations ? (CO5)<br>? (CO6)                  |
|                                 |                                                                                                        | PART-B                                                                                                                                                    | 3X5=15                                                   |

18. A) Obtain reduce state table and reduce state diagram for the sequential machine whose state diagram is shown in the figure. (CO6)



B) what is priority encoder ?Explain (CO4)

(or)

7. A) Minimize the following expressions using K-map and realize using NOR Gates.

 $f = \sum m(1, 3, 4, 11, 12, 13, 14, 15)$  (CO4)

8

B) Design SR flip flop using NOR gates ? (CO5)

A)  $(A^{1}B^{1}C^{1}) + (AB^{1}C^{1}) + (A^{1}B^{1}C) + (ABC^{1}) + (A^{1}BC)$ 

Reduce the following expression , and draw circuit diagram using AND-OR-INVETER logic. (CO4)

B) Minimize the following expressions using K-map and realize using NOR Gates.

 $f = \pi M(1, 3, 5, 7, 8, 9, 10, 11, 12, 14, 15) + d(2, 4, 13).$  (CO4)

(or)

9. A) Compare all logic families ? (CO3)

B) Draw different types of logic gates and state its truth tables ?(CO4)

10. A) Explain operation of JFET common source configuration (CO3)?

B) Explain the operation of CMOS in detail ? Design a CMOS NAND gate (CO3)

(or)

11. A) state and prove the laws of Boolean Algebra ? (CO4)

B)Explain operation of Master --slave JK flip flop (CO6)

# **10. Scheme of evaluation**

| S.No | <b>Theory</b> ( <b>Part-A</b> )                     | Marks | Total |
|------|-----------------------------------------------------|-------|-------|
| 1    | Plot the V-I characteristics of p-n junction diode? | 2M    | 2M    |
| 2    | What is the effect of temperature on diodes?        | 2M    | 2M    |
| 3    | What is Thermal runaway of transistor?              | 2M    | 2M    |
| 4    | Operating regions of transistor?                    | 2M    | 2M    |
| 5    | What is early effect                                | 1M    | 214   |
| 5    | What is punch through effect?                       | 1M    | 2111  |
|      | Total                                               |       | 10M   |

# Scheme of Evaluation(MID-1)

| S.No | Theory(Part-B)                                                                             | Marks  | Total |
|------|--------------------------------------------------------------------------------------------|--------|-------|
| 6    | Descibe the following diodes<br>(a) Tunnel diode                                           | 2 1/2M | 5M    |
| Ū    | (b) Photodiode                                                                             | 2 1/2M |       |
| 7    | Explain about the following breakdown<br>mechanisms?<br>(a) Avalanche breakdown mechanisms | 2 1/2M | 5M    |
|      | (b) Zener Diode breakdown mechanisms                                                       | 2 1/2M |       |
| 8    | 8.(a) Explain operating point of transistor?                                               | 2 1/2M | 5M    |
|      | (b) How transistor acts as an amplifier?                                                   | 2 1/2M | _     |
| 9    | (a) Compare CE,CC,CB configurations of transistor?                                         | 2 1/2M |       |
|      | (b) Relation among α,β,Υ?                                                                  | 2 1/2M | 5M    |
| 5.   | (a) Self bias of transistor (or) voltage divider biasing method of a transistor?           | 2 1/2M | 5M    |

|    | (b) Define stability factors for s, $s^1$ ?        | FOR S              |    |
|----|----------------------------------------------------|--------------------|----|
|    |                                                    | DERIVATION         |    |
|    |                                                    | (1)                |    |
|    |                                                    | FOR s <sup>1</sup> |    |
|    |                                                    | DERIVATION         |    |
|    |                                                    | (1 1/2M)           |    |
| 6. | (a) Define Full wave rectifier and its efficiency? | 2 1/2M             | 5M |
|    | (b) Define Diode switching times?                  | 2 1/2M             |    |
|    |                                                    |                    |    |

# Scheme of Evaluation (MID-2)

| S.No | Theory(Part-A)                                            | Marks | Total |  |  |  |  |  |  |
|------|-----------------------------------------------------------|-------|-------|--|--|--|--|--|--|
| 1    | Compare LATCHES and FLIP FLOPS?                           | 2M    | 2M    |  |  |  |  |  |  |
| 2    | Difference between synchronous and asynchronous circuits? | 2M    | 2M    |  |  |  |  |  |  |
| 3    | Difference between combinational and sequential circuits? | 2M    | 2M    |  |  |  |  |  |  |
| 4    | COMPARE ALL logic families                                | 2M    | 2M    |  |  |  |  |  |  |
| 5    | Explain about RAM                                         | 1M    | 2М    |  |  |  |  |  |  |
| 5    | Explain about ROM                                         | 2111  |       |  |  |  |  |  |  |
|      | Total                                                     |       |       |  |  |  |  |  |  |

| S.No | Theory(Part-B)                                                                                                                            | Marks  | Total |
|------|-------------------------------------------------------------------------------------------------------------------------------------------|--------|-------|
|      | a) Obtain reduce state table                                                                                                              | 1 M    |       |
| 6    | Obtain reduce state diagram                                                                                                               | 1 1/2M | 5M    |
|      | (b) Explain about priority encoder explanation                                                                                            | 1 1/2M |       |
|      | Block Diagram                                                                                                                             | 1 M    |       |
| 7    | a) What are canonical forms of an expressions                                                                                             | 1 M    | 5M    |
|      | What are standard forms of an expressions                                                                                                 | 1 M    |       |
|      | <ul> <li>(b) Simplify the following Boolean expressions using the Boolean theorems.</li> <li>(i) (A+B+C) (B□+C) + (A+D) (A□+C)</li> </ul> | 1 1/2M |       |

|     | (ii) (A+B) (A+B□) (A□+B)                                                                                        | 1 1/2M |    |
|-----|-----------------------------------------------------------------------------------------------------------------|--------|----|
| 8   | (a) Why a NAND and NOR gates are known as universal gates?                                                      | 1 M    | 5M |
|     | Simulate all the basic Gates                                                                                    | 1 1/2M |    |
|     | (b) Minimize the following expressions<br>using K-map and.<br>$f = \sum m (1, 3, 5, 8, 9, 11, 15) + d (2, 13).$ | 1 M    |    |
|     | realize using NAND Gates                                                                                        | 1 1/2M | -  |
| 9   | (a) What is ripple counter?                                                                                     | 1 M    |    |
|     | Explain modulo-8 ripple counter?                                                                                | 1 1/2M | -  |
|     | (b) What are different types of shift registers                                                                 | 2 1/2M | 5M |
| 10. | (a) Compare FET and BJT?                                                                                        | 2 1/2M | 5M |
|     | (b) Explain the operation of Depletion mode                                                                     |        |    |
|     | MOSFET in detail                                                                                                |        |    |
|     | Operation                                                                                                       | 1M     | -  |
|     | Diagram                                                                                                         | 1 1/2M |    |
| 11. | (a) Design a full adder using two half adders?                                                                  | 2 1/2M | 5M |
|     | (b) ) Explain about 8*1 multiplexer                                                                             | 1 1/2M | 1  |
|     | Explain about 3*8 Decoder?                                                                                      | 1 M    | -  |

# **11.Mapping of COs with POs and PSOs**

| COURSE<br>CO-<br>PO&PSO-<br>MATRIX | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1                                | 3   | 3   | 3   | -   | 2   | -   | -   | -   | -   | -    | -    | 1    | 1    | -    |
| CO2                                | 3   | 3   | 3   | 3   | 3   | 3   | -   | -   | -   | -    | -    | 1    | 1    | 1    |
| CO3                                | 3   | 3   | 3   | 2   | 2   | 2   | -   | -   | -   | -    | -    | 1    | 1    | -    |

| CO4     | 3 | 3 | 3 | 2 | 2 | 2 | - | - | - | - | - | 1 | 1 | 1 |
|---------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| CO5     | 3 | 3 | 3 | 2 | 2 | 2 | - | - | - | - | - | 1 | 1 | - |
| C06     | 3 | 3 | 3 | 2 | 2 | 2 | - | - | - | - | - | 2 | 1 | 1 |
| AVERAGE | 3 | 3 | 3 | 2 | 2 | 2 | - | - | - | - | - | 1 | 1 | 1 |

# **12.Attainment of COs with POs and PSOs**

Relationship of Course outcomes to Program Outcomes (PO AVG)

|     |            |     |            |     |            |            |            |            |      |      |             | DCO1 | DCOA |
|-----|------------|-----|------------|-----|------------|------------|------------|------------|------|------|-------------|------|------|
| PO1 | <b>PO2</b> | PO3 | <b>PO4</b> | PO5 | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | <b>PO9</b> | PO10 | PO11 | <b>PO12</b> | PS01 | PSO2 |
|     |            |     |            |     |            |            |            |            |      |      |             |      |      |
|     |            |     |            |     |            |            |            |            |      |      |             |      |      |
|     |            |     |            |     |            |            |            |            |      |      |             |      |      |
|     |            |     |            |     |            |            |            |            |      |      |             |      |      |
|     |            |     |            |     |            |            |            |            |      |      |             |      |      |
|     |            |     |            |     |            |            |            |            |      |      |             |      |      |
|     |            |     |            |     |            |            |            |            |      |      |             |      |      |
|     |            |     |            |     |            |            |            |            |      |      |             |      |      |
|     |            |     |            |     |            |            |            |            |      |      |             |      |      |

| ASSES       | SMENT | OF POs THI | ROUGH THE COURSE |
|-------------|-------|------------|------------------|
| PO          | СО    | Value      | AVG PO (Mid)     |
|             | CO1   |            |                  |
|             | CO3   |            |                  |
| PO1         | CO4   |            |                  |
|             | CO5   |            |                  |
|             | CO6   |            |                  |
|             | CO1   |            |                  |
| PO2         | CO2   |            |                  |
|             | CO3   |            |                  |
|             | CO4   |            |                  |
|             | CO5   |            |                  |
|             | CO1   |            |                  |
|             | CO2   |            |                  |
| <b>DO</b> 2 | CO3   |            |                  |
| FU3         | CO4   |            |                  |
|             | CO5   |            |                  |
|             | CO6   |            |                  |
|             | CO2   |            |                  |
| P04         | CO3   |            |                  |

|       | CO6 |  |
|-------|-----|--|
| PO5   | CO5 |  |
| PO12  | CO2 |  |
| DC 01 | CO2 |  |
| P301  | CO3 |  |
|       | CO1 |  |
|       | CO2 |  |
| PSO2  | CO3 |  |
|       | CO4 |  |
|       | CO6 |  |

# 13. University question papers or question bank.



ADE JNTUH QUESTION PAPERS.rar

# **QUESTION BANK**



ANALOG AND DIGITAL ELECTRONICS question bank.zip

# **14.Power point presentations**













ade unit 1.zip ade unit 2.zip ADE 3 UNIT.zip

## **15.Websites or URLs e- Resources**

- 1. nptel.ac.in/courses/108/102/108102095/
- 2. nptel.ac.in/courses/108/105/108105132/
- 3. <u>nptel.ac.in/courses/108/102/108102112/</u>
- 4. www.geeksforgeeks.org/digital-electronics-logic-design-tutorials/
- 5. https://www.coursera.org/specializations/semiconductor-devices