Part 2 Mechanical Properties of Materials ### Elastic deformation – bending of beams - Why study elastic deformation - Essential to predict how materials deform under applied forces - In order to choose "best" material for required function - Examples of beams - Hockey sticks - Oars - AFM lever ### Hooke's Law ### Strain ### **Definitions** Tensile strain Shear strain Fractional increase in length $\gamma = \tan \theta \approx \theta \text{ (small }\theta)$ Poisson's ratio v= - lateral strain/tensile strain $$= \varepsilon_{l}/\varepsilon_{t}$$ #### **Stress** #### **Definition** Internal resistance to deformation σ =F/A (units; GPa, 10⁹ N m⁻²) Tensile/ Compressive stress – Force is perpendicular to plane of resistance Shear stress – Force parallel to plane of resistance (τ) #### Elastic deformation Non-permanent deformation – Material returns to original state when load is removed | Tension / o | compression | |-------------|-------------| |-------------|-------------| $$\sigma$$ = E ϵ E is Young's modulus Hooke's Law $$\tau = G \gamma$$ G is the Shear Modulus $$P = -K \Delta V/V$$ K is the Bulk Modulus For isotropic materials $$G = E/2(1 + v)$$ $$K = E/3(1-2 v)$$ ### Elastic Energy Work done in extending a cube of material (side L) by dL $$= \frac{1}{2} \sigma L^{2} (\varepsilon L)$$ Energy per unit volume = Work per unit volume Energy per unit volume = $\frac{1}{2} \sigma \epsilon$ #### Modulus of Resilience Amount of elastic energy stored in a material at point of failure ### Young's Modulus and Interatomic forces Stiffness of bond $$S = dF/dr = (d^2U/dr^2)_{r0}$$ $$\sigma$$ = NS(r-r₀) = E (r-r₀)/r₀ N is number of bonds E= S/r₀ per unit area=1/r₀² Young's modulus – typical values (GPa) | Diamond | 1000 | |-----------|------| | Aluminium | 69 | | Tungsten | 407 | | Nylon | 2 | #### Calculated from interatomic potentials | | S (Nm ⁻¹) | E(GPa) | |-------------------|-----------------------|----------| | Covalent (eg C-C) | 50-180 | 200-1000 | | Metallic | 15-75 | 60-300 | | Ionic | 8-24 | 32-96 | | Van der Waals | 0.5- 1 | 2-4 | ### Beams - Examples - Roofing beams - Floor boards - Bridges - Diving boards - Cranes - Girders - Aircraft wings - Oars - AFM cantilever ## Bridges ### Bending of beams Require maximum stiffness and minimum weight Weight (M) = L $t^2 \rho$ ρ is density Deflection (δ) = 4 L³ F/ t⁴ E $M = (4L^5 F /\delta)^{1/2} (\rho^2 /E)^{1/2}$ Stiffness = F/δ For a given stiffness weight is minimised by minimising $\rho/E^{1/2}$ Performance measure $P = E^{1/2} / \rho$ (Figure of Merit) | 7 | | | |---|---|----| | | | | | | | | | | | | | ≺ | | | | | | | | | | | | | | | | | ч | | | | | ٠ | | | × | | | | 2 | | | | | | | - | ٠ | | | | | | | 0 | | | | 6 | | | | | | | | | | | | | | | | 7 | | | | | | | | | | | | | | | | | ۰ | | | - | | | | | | | | | | | | | | -4 | | | | | | | | | | 6 | 2 | - | ۵ | | | | | | | 6 | 2 | | | | | | | Steel | 1.82 | |-------------------|------| | Polyurethane foam | 2.44 | | Concrete | 2.78 | | Aluminium | 3.13 | | GFRP | 3.23 | | Wood | 5.88 | | CFRP | 11.1 | Must also consider cost and ease of manufacture ### Beyond the elastic limit- Plastic deformation ### Why study plastic deformation? Need to know maximum loads materials can withstand before permanent shape changes occur Need to know whether materials will fracture or deform ### Yield Strength Typical values (MPa) Aluminium 35 High strength Steel 1400 Yield stress is stress at which noticeable plastic strain has occurred (eg ϵ_p = 0.002) ### Tensile Strength / Ductility #### Tensile Strength Maximum stress material can accommodate without fracture #### **Ductility** Elongation at fracture Metals ~ 40 % Ceramics ~ 5% ### Toughness #### **Toughness** Energy required to break a material Depends on ability of a material to absorb energy up to fracture Area under σ – ϵ curve up to fracture Require high strength and high ductility #### stress strain #### Hardness # Resistance to localised plastic deformation (scratching) #### Moh's hardness scale 1 Talc 10 Diamond #### Hardness test Small indenter forced into surface and size of indentation measured Simple, inexpensive and nondestructive #### Diamond cone Measure size of indentation ### Mechanisms for plastic deformation #### Dislocation motion Dislocation glides along easy direction —slip plane Unit of slip – Burgers vector Plastic shear strain of b/L per dislocation moved through the crystal ### Screw dislocation Slip plane between red an black planes ### FCC Slip planes (111) close-packed planes (0 bar1 1) close packed directions ### **HCP Slip planes** (001) Plane (close packed) ### Slip Systems | Crystal Structure | Slip Planes | Slip Directions | Number of slip systems | |--------------------|-------------|-----------------|------------------------| | FCC (Cu,Al,Ni,Ag,A | Au) {111} | <110> | 12 | | BCC (Fe,W,Mo) | {110} | <111> | 12 | | HCP (Cd,Mg,Ti,Be) | (001) | <110> | 3 | FCC metals soft at all temperatures BCC metals brittle at low T – slip planes not close packed HCP metals tend to be brittle – few slip planes #### Dislocation motion - Force per unit length on dislocation line F - The movement of dislocations allows the applied stress (τ) to do work - On moving a dislocation through crystal (distance L₁) work done by τ is τbL₁L₃ - Work done on dislocation is FL₁L₃ - Equating the work gives F=τb - Only component of stress on slip plane does work #### **Critical Shear Stress** $$\tau_{crit}$$ = G exp –(2 π W/b) W is width dislocation core Dislocation cores are narrow in covalent materials but can be extended in metals ### Slip #### www.msm.cam.ac.uk/doitpoms/tlplib/index.php ### Slip in single crystals Dislocation motion or slip occurs when the resolved shear stress reaches a critical value φ is angle between normal to slip plane and applied stress λ is angle between the slip direction and the applied stress Resolved shear stress $$\tau_R = \sigma \cos \phi \cos \lambda$$ Slip occurs when maximum τ_R exceeds a critical value τ_{crss} (property of a material) $$\sigma_{y} = \tau_{crss} / (\cos \phi \cos \lambda)_{max}$$ Minimum yield stress when $\phi = \lambda = 45^{\circ}$ Slip bands formed ### Single Crystal Slip - Slip start on single plane when resolved stress reaches τ_{crit} - As deformation continues the number of slipped planes increases and the slip per plane increases For bcc and fcc metals a second slip system may be initiated ### Slip bands Figure 11 - Graphical representation of slip bands. (from Hertzberg.⁵) Slip bands in brass ### Deformation in polycrystalline materials Random orientation of grains means slip planes differ in different grains Plastic flow occurs first in most favourably oriented grains Plastic deformation restricted by the need for the crystal to fit to neighbouring grains After deformation grains elongated along direction of load Grain boundaries reduce dislocation motion Polycrystalline materials stronger than single crystals ### Strengthening Materials Why study material strengthening? To understand the relationship between microstructure and strength Awareness of available processes for maximising material performance ### Increasing the Yield Strength Dislocations – carriers of deformation The ability of a metal to plastically deform depends on the ability of dislocations to move Reducing the mobility of dislocations increases yield strength Restricting or hindering dislocation motion renders a material harder and stronger ### Solid solution strengthening High purity metals are softer than alloys of the same base metal Add substitutional and interstitial impurities (add to melt) Large and small impurities diffuse to dislocations to reduce strain energy. Larger stress required to separate dislocation for motion $\sigma_y \, \alpha$ concentration, size mismatch, Shear modulus Most metals have limited solubility in other metals ### Interaction between dislocations and impurities Region of dilation Large impurities diffuse here Region of Compression Small impurities diffuse here ### Cu/Ni Alloys ## Yield strength (MPa) ### Steel Larger size difference gives greater strengthening # Reduce grain size Dislocation must change direction when crossing grain boundary Dislocations may pile up at boundaries repelling further dislocations Small angle grain boundaries are not effective in blocking dislocations Twin boundaries do block dislocations Phase boundaries block dislocations ## Hall-Petch Relationship For average grain size d $$\sigma_y = \sigma_0 + k_y d^{-1/2}$$ eg Brass (70%Cu 30%Zn) # Grain Size Regulation - By rate of solidification from the liquid phase - Rapid cooling produces small grains - Slow cooling produces large grains - Grain size can be varied by plastic deformation (to increase dislocation density) followed by heat treatment (to rearrange dislocations into grain boundaries) # Precipitation Hardening #### Weak obstacles - Coherent particles - Lattice planes continuous - Long range stress field - Dislocations can cut through costs energy - Partially coherent particles - Most lattice planes continuous - Long range stress fields from misfit dislocations - Dislocations can cut through ## Strong obstacles - Hard precipitates - Dislocations cannot cut through - Critical stress required to bypass particles # Precipitation hardening Add small hard precipitates (eg SiC in Fe) Particles are difficult to shear – pin dislocations $\sigma_{_{\! V}}\,\alpha$ 1/S (spacing between precipitates) Dislocation motion Al with 0.04% Cu # Strain hardening (cold working) The phenomenon whereby a ductile metal becomes harder and stronger as it is plastically deformed Increase dislocation density by repeated tensile loading Dislocations repels each other and get entangled Decrease in dislocation motion. σ_y increases with dislocation density (ρ_d ~10¹⁰ mm mm⁻³) ## Dislocation interactions //zig.onera.fr/DisGallery/index.html # Dislocation debris # Cross-slip # Screw dislocation can glide in any plane containing slip vector # Percentage Cold Work $$%CW = (A_0 - A_d)/A_0 \times 100$$ A₀ original area A_d area after deformation # Softening materials - Annealing Exposed to elevated temperature for extended period then slowly cooled Relieves stress introduced by machining and nonuniform cooling Increases softness ductility and stiffness Changes micro structure Fe, C 1.3 (wt%) steel, annealed at 1100°C # ww.jntuworld.com # Stages of annealing Recovery – annihilation reduces dislocation density and dislocations rearrange to lower energy conformations Recrystallisation – new strain-free equiaxed grains with low dislocation density are formed. Nuclei grow until parent material consumed Grain growth - large grains consume smaller grains Tensile strength ductility recrystallisation Annealing temperature # Strengthening - Summary #### Solution strengthening - Useful for moderate strength increase (few 100 MPa) - Limited solubility for solutes with large misfits #### Decrease grain size - Limited strength increase (few 100 MPa) - Grains grow at moderate temperatures #### Precipitation hardening - Can achieve strength increase of 1000 GPa for fine dispersion of hard particles - Particles tend to dissolve at high temperatures #### Cold Working - Increases strength but reduces ductility and toughness - Anneals out at moderate temperatures # Fracture and fatigue Why study failure and fatigue? Need to understand the various failure modes in order to minimize the chances of failure in a design #### Fracture #### stress **Ductile Material** Large energy absorption before fracture **Brittle Material** Low energy absorption before fracture # Types of Fracture #### **Brittle Fracture** - Some materials break suddenly while still elastic - Rapid progression of crack perpendicular to direction of applied stress - Broken surfaces fit together after fracture - Fracture surfaces have grainy, faceted texture - Crack propagates by successive breaking of bonds along specific crystallographic directions (cleavage planes) # www.jntuworld.c #### **Ductile Fracture** Typical of metals Failure progresses slowly Necking – microvoids-elliptic crack- crack growth – failure Cup and cone fracture #### **Fracture Mechanics** - Theoretical strength of materials ~E/10 - Actual strength around 10 to 1000 times lower - Griffith proposed discrepancy arose because of microscopic flaws in materials - Applied stress amplified around flaws $\sigma_m = 2\sigma_0 (a/\rho_t)^{1/2}$ #### **Stress Concentration Factor** $$\sigma_{\rm m}$$ =2 $\sigma_{\rm 0}$ (a/ $\rho_{\rm t}$)^{1/2} $$K_t = \sigma_m / \sigma_0 = 2 (a/\rho_t)^{1/2}$$ The Stress Concentration Factor K_t is the degree to which the stress is amplified at a flaw or crack In ductile materials plastic deformation occurs when stress exceeds yield stress – this reduces the stress concentration factor below the theoretical value #### Griffith's criterion Criterion for rapid crack progression Stored elastic energy must exceed energy of the crack cf Inflated balloon Material relaxes to zero stress σ δa Consider a material with crack length a thickness t a increases to a + δa Elastic energy $U_{el} = (\sigma^2/2E) (\pi a^2t/2)$ Change in Elastic energy $\delta U_{el} = dU_{el}/da \delta a$ = $$(\sigma^2/2E)$$ (2 π at $\delta a/2$) Costs $2\gamma_s$ t δa to create new surface Critical stress when $\delta U_{el} = (\sigma^2/2E) (2\pi \text{ at } \delta a/2) = 2\gamma_s \text{ t } \delta a^{\checkmark} \sigma$ $$\sigma_{\rm c} = 2({\rm E} \, \gamma_{\rm s}/\pi a)^{1/2}$$ # Stress Intensity Factor General relationship between applied stress and stress at crack tip Stress Intensity factor K (units MPa m^{1/2}) $$K = Y\sigma (\pi a)^{1/2}$$ Y is a dimensionless parameter that depends on crack geometry, specimen size and manner of load application Fracture Toughness $$K_c = Y\sigma_c (\pi a)^{1/2}$$ # Fracture Toughness Table 8.1W Room-Temperature Yield Strength and Plane Strain Fracture Toughness Data for Selected Engineering Materials | J | | | | | |---|----------------|----------|---------------|------------------| | | Yield Strength | | K_{Ic} | | | Material | MPa | ksi | $MPa\sqrt{m}$ | ksi $\sqrt{in.}$ | | | Metal | s | | | | Aluminum alloy ^a
(7075-T651) | 495 | 72 | 24 | 22 | | Aluminum alloy ^a
(2024-T3) | 345 | 50 | 44 | 40 | | Titanium alloy"
(Ti-6Al-4V) | 910 | 132 | 55 | 50 | | Alloy steel ^a
(4340 tempered @ 260°C) | 1640 | 238 | 50.0 | 45.8 | | Alloy steel ^a
(4340 tempered @ 425°C) | 1420 | 206 | 87.4 | 80.0 | | | Ceram | ics | | | | Concrete | _ | _ | 0.2 - 1.4 | 0.18 - 1.27 | | Soda-lime glass | _ | _ | 0.7 - 0.8 | 0.64-0.73 | | Aluminum oxide | _ | _ | 2.7-5.0 | 2.5-4.6 | | | Polymo | ers | | | | Polystyrene
(PS) | _ | _ | 0.7-1.1 | 0.64-1.0 | | Polymethyl methacrylate
(PMMA) | 53.8-73.1 | 7.8–10.6 | 0.7-1.6 | 0.64-1.5 | | Polycarbonate
(PC) | 62.1 | 9.0 | 2.2 | 2.0 | [&]quot; Source: Reprinted with permission, Advanced Materials and Processes, ASM International, © 1990. - Some metals become brittle below a certain temperature - Above transition fracture surface is fibrous (shear character) - Below transition surface is shiny and granular(cleavage character) - FCC metals do not generally become brittle dislocation motion not strongly T dependent - Structures should only be used above transition temperature to avoid brittle failure (transport ships in world war II – weld failure, Titanic) Hertzberg, Fig. 7.1(a) Hertzberg, Fig. 7.1(b) - FCC metals do not undergo ductile to brittle transition - In BCC metals transition temperature is around 0.1 Tm - For ceramic materials transition temperature is usually greater than 0.5 Tm - Transition temperature depends on strain rate and pressure #### **Impact Test Results** Impact energy Temperature Impact energy has 3 main components Elastic strain + plastic work done + energy to create fracture surface # **Fatigue** Failure under dynamic fluctuating stress Largest single cause of failure in metals - 90% engineering failures Crack propagation at loads well below the critical stress #### **Definitions** Mean stress $$\sigma_{\rm m} = (\sigma_{\rm max} + \sigma_{\rm min})/2$$ Stress range $$\sigma_r = (\sigma_{max} - \sigma_{min})$$ Stress ratio R= $$\sigma_{min}/\sigma_{max}$$ # www.jntuworld.com # Fatigue - S/N Curves #### Stress vs Number of cycles to failure # Fatigue Mechanism - Initiation - formation of micro-crack at surface at point of stress concentration - Propagation advances incrementally every cycle - Stage I slow propagation through planes of high shear stress - Stage II faster propagation along direction perpendicular to load - •Final failure rapid fracture once crack has reached critical size At low stress levels large amount of fatigue life utilised in crack initiation Crack extended $\pi\delta/2$ # How cracks grow #### Rate of Crack Growth Number of cycles N da/dN = A($$\Delta$$ K)^m m=1-6 Δ K = K_{max} - K_{min} = Y(σ _{max}- σ _{min})(π a)^{1/2} # Fatigue failure Fatigue failure in Ni superalloy Fatigue failure brittle-like in nature – even in normally ductile materials The fracture surface is perpendicular to the direction of applied stress # www.jntuworld.con # Strengthening against fatigue Eliminate sharp corners to reduce stress concentration Avoid scratches or tears on surface due to manufacture Reduce residual stresses due to processing Surface Treatment – impose residual surface stress Case hardening – surface exposed to carbonaceous or nitrogenous atmosphere at high T C or N rich outer layer introduced by atomic diffusion Fe C .07 Mn 2.3% Carburised at 950 C #### **Environmental Effects** #### Thermal fatigue Fluctuating thermal stresses due to fluctuating temperature under constrained conditions #### Corrosion fatigue - Simultaneous action of cyclic stresses and corrosive environments - Small pits form as a result of chemical reaction and act as crack nucleation sites - Crack propagation enhanced as a result of chemical attack # Creep Time dependent permanent deformation under a constant stress Slow replacement of elastic strain by plastic strain High temperature T > 0.4 Tm for metals Polymers especially sensitive to creep deformation Often the limiting factor in the lifetime of a part ## Creep Mechanisms Stress induced vacancy diffusion Grain boundary diffusion Dislocation motion (thermally activated) Grain boundary sliding (displacement of scratch lines during creep testing) Polymers – viscous flow ## Creep Rate for Vacancy Diffusion Bulk Diffusion (Nabarro-Herring Creep) $d\varepsilon/dt \propto (D_L/kT)(\sigma)(1/d^2)$ 8 D^{GB} Grain Boundary Diffusion (Coble Creep) $d\varepsilon/dt \propto (D_{GB}/kT)(\sigma)(\delta/d)(1/d^2)$ d is grain size ## **Grain Boundary Sliding** - Flux of matter from zones of compression to zones of dilation leads to smoothing of grain corners - Leads to the formation of cavities #### **Dislocation Motion** - Dislocation glide as with plastic deformation - Stress less than critical shear stress for motion - Dislocation motion is thermally activated - Dislocation climb - Vacancies diffuse to core cause movement out of the glide plane - Work Hardening - Dislocations pile up and repel each other - Climb results in recovery from work hardening # vw.jntuworld.com ## Creep Failure Internal cavities accumulate at grain boundaries Cavities grow and aggregate Eventual failure Growth of voids during creep ## Creep Curve ## Creep strain time #### **Primary** Decreasing strain rate (work hardening) #### Secondary Constant strain rate #### **Tertiary** Increasing strain rate Creep damage accumulates ## Steady State Creep Rate $$d\varepsilon/dt = K_1 \sigma^n$$ K₁ and n are material constants n=1 at low stress n=3-8 at high stress Including temperature $$d\varepsilon/dt = K_2 \sigma^n \exp(-Q_c/kT)$$ K₂, Q_c and n are material constants Q_c is the activation energy for creep ## Deformation diagrams ## Strengthening against creep Choose material with high Tm Choose material with large lattice resistance to dislocation motion Large grain size to minimize grain boundary diffusion Precipitates at grain boundaries to prevent sliding Directional solidification – produced highly elongated grains Precipitates and impurities restrict dislocation glide Ni, Al, Re, W, Ta, Cr, Co, Ru (Ni-Superalloy) The material is in single crystal form for turbine blade application, the operation temperature could easily reach above 1200°C during flight cycles. So, the alloy needs to have good high temperature creep resistance and microstructural stability ## Failure - Summary - Failure under tensile loading - Very ductile necks down to a point - Moderately ductile cup and cone type fracture surface with spherical dimples - Brittle fracture surface shiny and granular perpendicular to applied load. Stress concentration at flaws decrease strength - Fatigue failure under cyclic loading - S/N curves - Creep deformation at high temperature under low stress - Eventual failure due to void growth #### Corrosion #### What is corrosion? The environmental degradation of materials –examples - Rusting of an iron pipe - Patina of a bronze statue - Pitting of stainless steel Why should we care about corrosion? - •Cost around 5% of an industrialized nation's income is spent on corrosion prevention or maintenance - •Safety airplanes, boilers, bridges, pressure vessels - Conservation of resources energy wasted replacing corroded materials ## Aloha 737 Accident www.corrosion-doctors.org # www.jntuworld.com ## **Electronics** ## **Car Corrosion** ## Dry Corrosion - Oxidation Mainly concerned with metals Eg Zn, Fe Cu Oxidation reaction: M + O = MO If energy for reaction is positive oxidation will not occur eg Au, NaCl If energy is negative oxidation may occur ## **Energies of Oxide Formation** #### Rate of Oxidation The rate of oxidation is not correlated with the energy of oxide formation. Why? Because the oxide often forms a protective scale on the surface which acts as a barrier to oxidation Experimentally find either linear or parabolic increase in mass (Δm) with time Linear $\Delta m = k_l t$ Parabolic $(\Delta m)^2 = k_p t$ k_l and k_p follow Arrhenius' law Rate of oxidation increases exponentially with T #### Mechanisms $$M \to M^{2+} + 2 e^{-} : O + 2e^{-} \to O^{2-}$$ Initial reaction – oxide forms on metal surface Electrons diffuse through scale to ionise oxygen O ions diffuse to form scale at metal surface Electrons and metal ions diffuse through scale Oxide forms on scale surface $$M\rightarrow M^{2+} + e^{-}$$ $M^{2+} + 2e^{-}$ $O^{2-}\leftarrow 2e^{-} + O$ $M^{2+}+O^{2-}\rightarrow MO$ oxide Case 1 Case 2 #### Parabolic Law Fick's Law $$j=\text{-D dC/dx} = \text{-DC/x}$$ $$Integrating$$ $$x^2=k_pt$$ $$k_p \propto \text{CD}_0 \text{exp(-Q/kT)}$$ Rate of oxidation depends on diffusion coefficient Electrically insulating scales make very good protective films (eg Al₂O₃) #### Linear oxidation ## Some scales do not adhere well to metal surface The oxide may be volatile and evaporate from surface There may be large volume mismatch between oxide and metal leading to cracking The absence of a protective scale leads to linear oxidation #### **Wet Corrosion** The rate of corrosion increases by several orders of magnitude in the presence of water ## Electrochemistry Electrolyte – solution capable of conducting electricity via ions Anode – electrode whose atoms lose electrons from the external circuit Cathode – electrode whose atoms gain electrons from the external circuit Single metal can have both anodic and cathodic areas ## Corrosion – Electrochemistry Oxidation reaction $M \rightarrow M^{n+} + ne^{-}$ Eg Fe $$\rightarrow$$ Fe²⁺ + 2e⁻ Oxidation takes place at the anode Reduction reaction $$X^{n+} + ne^{-} \longrightarrow X$$ Eg $2H^{+} + 2e^{-} \longrightarrow H_{2}$ $O_{2} + 4H^{+} + 4e^{-} \longrightarrow 2H_{2}O$ Reduction takes place at the cathode ## Corrosion of Zn in Acid Solution ## Rusting of Fe ## Electrochemical potential - EMF Series Measures tendency for materials to gain or lose electrons (H defined as zero) Measured in V $$Cu^{2+} + 2e^{-} = Cu +0.34$$ $$Ni^{2+} + 2e^{-} = Ni$$ -0.25 $$Fe^{2+} + 2e^{-} = Fe$$ -0.44 $$Zn^{2+} + 2e^{-} = Zn$$ -0.76 $$AI^{3+} + 3e^{-} = AI$$ -1.66 Lower metal oxidizes (loses electrons) Higher metal reduces (gains electrons) #### **Galvanic Series** - EMF series was generated under highly idealised conditions and is of limited utility - The Galvanic series lists the relative reactivities of metals in sea water - Metal near the top are unreactive - Metals near the bottom are the most anodic (tend to oxidize) - No voltages are given ### The Galvanic Series Gold Silver Copper Nickel Stainless Steel Iron **Aluminium Alloys** Cadmium Zinc Magnesium #### **Corrosion Rates** #### **Corrosion Penetration Rate** $$CPR = KW/\rho At$$ K = constant (depends on units) W is weight loss in time t $\boldsymbol{\rho}$ is the density A is the Area ### Forms of Corrosion - Uniform corrosion - Stress Corrosion - Intergranular corrosion - Pitting - Galvanic corrosion - Crevice corrosion #### **Uniform Corrosion** - Occurs with equivalent intensity over the entire exposed surface - Examples include general rusting of steel and iron and the tarnishing of silverware - Easiest form of corrosion to predict and protect against #### **Stress Corrosion** - Results from combined action of stress and corrosion - Small cracks form and propagate in the direction perpendicular to the stress - Failure characteristic of brittle material even if metal is ductile - Stress may be residual (not applied externally) ## Intergranular Corrosion - Occurs preferentially along grain boundaries - Macroscopic specimen disintegrates along grain boundaries - Especially prevalent in stainless steels – Cr depleted region around grain boundaries ## **Pitting** - Small pits or holes form - Oxidation occurs in the pit with complementary reduction on surface - Penetrate from top of a horizontal surface in vertical direction Initiated at localised surface defect #### Galvanic corrosion - 2 different metals electrically connected in an electrolytic solution - Galvanic series predicts which metal corrodes faster - eg Steel soldered to Cu steel corrodes faster Stainless Steel screw / Cadnium plated washer #### **Crevice Corrosion** - Electrochemical Corrosion may occur because of concentration differences of dissolved ions between 2 regions of same metal - Crevices or recesses are examples - Crevice must be wide enough for solution to penetrate but narrow enough for it to be stagnant ## Minimising or preventing corrosion - Use corrosion resistant material - Remove aggressive species from environment - Add chemical to inhibit corrosion - Separate material from environment paint - Remove crevices from design - Use compatible materials - Use cathodic or sacrificial protection galvanized steel #### Cathodic Protection - One of the most effective means of corrosion protection - Involves supplying electrons from an external source making it the cathode - The oxidized metal (often Mg or Zn) is called the sacrificial anode - Common example is galvanizing (coating steel with Zn