
2.  MANIPULATOR KINEMATICS 
 

Position vectors and their transformations 
Direct and inverse kinematics of manipulators 
Transformation of velocity and torque vectors  
Classification of kinematical chains of manipulator 
Cartesian, polar cylindrical and spherical and angular coordinates of manipulators  
Multilink manipulators and manipulators with flexible links 
Manipulators with parallel kinematics  
Kinematics of mobile robots  

 
 
2.1. Position vectors and their transformation  
 
Manipulator kinematics is the field of science that investigates the motion of manipulator 
links without regard to the forces that cause it. In that case the motion is determined with 
trajectory, i.e. positions, velocity, acceleration, jerk and other higher derivative components.  
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The location of a point A in Cartesian coordinates {A} is determined by vector   
(Fig 2.1), the individual element of which are projections to the three orthogonal axes of 
coordinates x, y, z, respectively. The projections px, py and pz can be considered as three 
orthogonal vectors. 
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The orientation of a body in Cartesian space {A} is determined by three unit vectors 

BBB zyx rrr ,,  that are attached to the body. These orthogonal unit vectors form the Cartesian 
coordinate system {B} that can be called body coordinates {B}. Therefore, the orientation of 
a body in space coordinates can be described by the rotation of  body coordinates {B} relative 
to the reference coordinates {A}. The unit vector Bxr  can be described in Cartesian space 
coordinates {A} with three projections to coordinate axes xA, yA, zA. In the same way, other 
unit vectors Byr Bzr and  can be described. 
 

 {A}

px 

x 

y

z

PA

py

pz

OA

 
 

Figure 2.1. Position vector of a point in Cartesian coordinates  
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Generally  
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 will form the rotation matrix , which describes the 
orientation of coordinates {B} relative to coordinates {A}. 
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The position of coordinates {B} relative to coordinates {A} (Fig. 2.2) is defined by the 
position vector  of the origin of coordinates {B} in coordinates {A} and rotation matrix 
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The position vector  in translated coordinates {B} relative to coordinates {A}  
(Fig. 2.3) is defined by the sum of two vectors  
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The position vector  in rotated coordinates {B} relative to coordinates {A} is defined 
by the rotation matrix . In this case the position vector PA

r
RA

B  is determined as the scalar 
product of the rotation matrix  and the position vector PB

r
B
AR  (2.6). 
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Figure 2.2 Determination of manipulator gripper or tool orientation 
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Figure 2.3 Position vectors in translated coordinates {A} and {B}  
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⋅=  (2.6) 
 
The rotation matrix  describes the rotation of coordinates {B} relative to coordinates {A}. 
We can use the rotation matrix to describe inversely coordinates {A} relative to coordinates 
{B}. This transformation will be described by the rotation matrix . It is known from the 
course of linear algebra that the inverse of matrix with orthonormal columns is equal to its 
transpose. The transpose of the matrix is defined by the change of elements of rows and 
columns. 
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The program MathCAD Symbolics helps us to calculate and we can easily demonstrate that 
the inverse of the rotation matrix is equal to its transpose. , because the nominator 
of elements in rotation matrix 
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The matrix with orthogonal elements the norm of which is equal to 1 (orthogonal unit vectors) 
is called orthonormal. The transposed matrix is the matrix with transposed rows and columns. 
The inverse matrix is calculated by the formula 
 

),(
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11
jiR

R
R =−  (2.8) 

 
where Rji is an adjunct matrix. The inverse matrix of the orthonormal matrix is equal to the 
transposed matrix. Because the rotation matrix is orthonormal, its inverse matrix can be found 
as its transpose.  
 
The product of the matrix and its inverse gives a unit matrix. The unit matrix has diagonal 
elements equal to 1, and all other elements equal to 0.  
 
The scalar product of matrixes can be calculated by using the formula:  
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The formula can be used for the calculation of product 2.6. In this case the matrix aij is the 
rotation matrix and bjk is the position vector PB

r
PA
r

. The result cik is the position vector , 
where (i = 1...3; j = 1...3; k = 1). 
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The general transform of the position vector,  the vector  given in translated and rotated 
coordinates {B} in the relation of base coordinates {A} can be described by the formula  
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The vector can also be calculated by the transformation matrix  
 

,PTP BA
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A
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⋅=  (2.11) 
 
where B  is the transformation matrix to transform translated and rotated coordinates {B} to 
the base coordinates {A}. The procedure is called as the Homogeneous Transform. 

AT

 
The transformation matrix to transform coordinates {B} includes 3x3 rotation matrix and 
3x1 position vector of origin coordinates {B} in the relation of coordinates {A}. The formula 
2.11 can be shown as follows: 
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Addition of the last row [0 0 0 1] is a mathematic manipulation to get 4x4 square matrix.  
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The use of transformation matrixes (transformation operators) helps us to describe different 
spatial vectors in different coordinates. For example, we can describe the motion of multi link 
manipulators and to solve the direct and inverse kinematics tasks of manipulators. The general 
transformation can be replaced by separate translation and rotation transforms and the 
corresponding transform operators. 
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where Q is the  vector and  its module.  Q
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where Z defines the rotation around z-axis and α the rotation angle. 
 
The separate translation and rotation operators can be combined in one transformation 
operator (transformation matrix). 
 
Several sequential transforms can be combined in one. The transform equations: 
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can be combined in the following equation: 
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Inverse transform matrix  can be presented as follows: A
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The transformation matrix A
B  is not orthonormal (consisting only of orthogonal unit vectors) 

and therefore its inverse matrix is not equal to the transposed matrix. 
T

 
By solving transform equations it is possible to find solutions for any unknown transform if 
sufficient transform conditions exist. For example, if we know the conditions 
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Euler angles. The rotation matrix is not the only way to define the orientation of a body. We 
can define the orientation of a body also by three independent angles. The nine elements of 
the rotation matrix are mutually dependent and there are six conditions, including three 
conditions for the longitude of the unit vector 
 

;1ˆ =X ;1ˆ =Y ;1ˆ =Z   (2.19) 
 
and three conditions for their orthogonal location exist.  
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The following calculation using the MathCAD program illustrates the issue of scalar or dot 
product and cross product of orthogonal vectors. The dot product of two orthogonal or 
parallel vectors with magnitude 5 gives  
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where the resultant vector  is orthogonal to the unit vector arnr  and . Hence, the scalar or 
dot product of two orthogonal vectors is equal to zero, but their cross product is an orthogonal 
vector the magnitude of which equals the scalar product of two magnitudes.  
 
To conclude we can declare that any rotation of the coordinate system can be described by 
three independent variables. Mostly three independent angles: roll, pitch and yaw angles are 
used in this case (Fig. 2.4). The rotation angle on yz-plane if rotation happens around x axis is 
defined by the roll angle α, the rotation angle on xz-plane if rotation happens around y axis is 
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defined by the pitch angle β and the rotation angle on xy-plane if rotation happens around z 
axis is defined by the yaw angle γ. Sometimes these angles are also called X, Y, Z angles.  
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Figure 2.4 Roll, pitch and yaw angles of manipulator’s gripper or tool  
 
 
Three possible rotation angles are needed for free orientation in space. These are essential for 
control of aircraft (Fig. 2.5, a) or human head (Fig. 2.5, b) motion.  
 
 

 
Figure 2.5 Roll, pitch and yaw angles of aircraft a and human head b 

 
 
General rotation matrix for three rotation angles can be found from separate rotation matrixes 
for angles α, β and γ.  
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In this case and also in future examples the first letters s and c are used instead of functions 
sine and cosine to reduce the formula. 
 
General rotation matrix for angles α, β and γ  is 
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The MathCAD program is very convenient for the calculation of matrix products. For 
symbolic calculations the toolbox MathCAD Symbolic can be used. The following example 
shows the use of MathCAD Symbolic toolbox for the calculation of matrixes product using 
symbolic elements.  
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The transformation matrix written in the symbolic mode can be used for solving tasks of 
inverse kinematics. In this case the links of rotation angles α and β will be determined if the 
gripper positioning coordinates x, y and z are known.  
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2.2. Description of manipulator kinematics 
 
 
Control procedure of a robot includes several sequential steps to realize the program 
instruction and reference motion between a given starting and a destination positioning point 
(x , y2 2, z ) in a robot’s working envelope. Generally these steps are as follows:  2
 
1. Detection of signals from position sensors located on the drive motor shaft and 

determination of rotation angles (e.g. α , βa a, γa) of manipulator links in the joint 
coordinate system. 

2.  Calculation of the real location of  the manipulator gripper or the tool in the base or world 
Cartesian coordinate system x , y , za a a, i.e. solving the direct kinematics task of  the 
manipulator using angles (αa, β , γ ) in joint coordinates.  a a

3.  Comparison of  the real position with the given motion destination point location in the 
base or world coordinates; planning of motion trajectory between the start and destination 
points in a robot’s working envelope space; determination of reference time diagrams for 
position, velocity, acceleration and jerk of manipulator gripper or tool, using linear or 
circular interpolation for trajectory generation.  

4.  Determination of motion time dependent reference coordinates in the Cartesian 
coordinate system (projections x , y , z ). r r r

5.  Determination of motion time dependent joint reference coordinates (α , β , γr r r), i.e. 
solving the inverse kinematics tasks of the manipulator and transfer of the reference 
signals to manipulator joint drives.  

6.  Cyclic repeating of steps 1…5 and stopping the motion in the destination positioning 
point.  

 
 
The flow diagram for the trajectory and motion control of manipulator is shown in Fig. 2.6. 
 
Direct kinematics of a manipulator  
To solve a direct kinematics task of a manipulator, the position of the gripper or the tool 
centre point and gripper or tool orientation coordinates in the base or world coordinates are 
calculated if the joint angles measured by drive sensors are known in joint coordinates. In 
other words, the gripper or tool location is calculated according to the measured angles of 
manipulator joints (links).  
 
Inverse kinematics of a manipulator 
To solve an inverse kinematics task of a manipulator, the location of all manipulator joints 
(links) in joint coordinates is calculated if the gripper or tool reference position and 
orientation angles are calculated by the trajectory planner in the base or world Cartesian 
coordinates.  
 
Methods for solving direct kinematics tasks  

 Geometric method (using basic formulas of geometry and trigonometry) 
 Matrix method (using transformation matrixes of coordinate systems) 

 
Methods for solving of inverse kinematics tasks 

 Definition of manipulator joints relative locations (pose) if multiple solutions exist.  
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 Closed form solutions and iterative numerical solutions. Generally all systems with 
revolute and prismatic joints having a total of six degrees of freedom (DOF) as a 
single series chain are solvable.  

 
 

 

Motion instruction and 
destination point coordinates  
 

Determination of real position in 
joint coordinates  
 
Solving of direct kinematics tasks 
of  the  manipulator and 
determination of the  position in 
base coordinates  
 
Trajectory planning and 
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of manipulator and determination 
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αs, βs, γs 

αs, βs, γs 

As = Aa? 

END  
 
 

Figure 2.6 The flow diagram for the trajectory and motion control of the manipulator  
 
 
The direct kinematics task of a manipulator is solved using transformation matrixes of 
coordinate systems. The inverse kinematics task of a manipulator can be solved by the use 
inverse transform matrixes. In some cases the inverse kinematics task has multiple solutions 
and to select one of them is an additional problem. For example articulated hand with two 
links of a manipulator has two possible poses to reach the reference end point (Fig. 2.7 a). 
The number of possible poses depends on the construction of the manipulator kinematics 
chain. The manipulator of a PUMA robot has four poses to reach the defined space 
coordinates of end effectors, i.e. the gripper or tool (Fig. 2.7 b). If the pose of the manipulator 
is defined, in the case of a single series chain and six links, only one solution exists. The pose 
must be defined during programming or before the motion start of the robot because in the 
case of continuous motion the change of pose is not possible (Fig. 2.8).  
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Figure 2.7 Different poses of an articulated robot hand a, and manipulator of PUMA robot b if end effector 
coordinates are referred to 
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Figure 2.8 Example of linear motion using articulated robot hand and  
impossible change of pose during this motion  

 
 
To solve the inverse kinematics task of a manipulator, the roll, pitch and jaw angles of robot 
hand must be calculated using numerical values of given rotation matrix elements. If the 
rotation matrix has numerical elements rij
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and if we compare matrixes 2.22 and 2.23 and their elements, the angles of the orientation of  
the coordinate system can be calculated as follows: 
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where arctan2(rij) is the function of two arguments (y, x). For example, arctan2(2, 2) = 45°. 
 
Inverse kinematics equations can be solved using the MathCAD program and its operators 
Given and Find 
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Find α β,( ):=

α 0→

β 1
2
π⋅→

 
 
The inverse kinematics equations are often transcendental equations, i.e. these equations 
have a solution that can not be described analytically with the help of known mathematical 
expressions. The transcendental equations can be solved numerically. The other way to solve 
the transcendental equations is using supplementary auxiliary functions and substitute 
variables.  
 
The trigonometric functions can be replaced with new algebraic functions and a new variable 
u.  
 

( )

2

2

2

1
2sin

1
1cos

2/tan

u
u
u
u

u

+
=

+
−

=

=

α

α

α

 (2.25) 

 
After that substitution, the transcendental equations are transformed to polynomials that have 
an analytical solution.  
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2.3. Transform of velocity and torque vectors 
 
 
The transform of velocity, force and torque vectors is different from the transform of 
position vectors, because in this case the point of vector application is not always essential, 
i.e. the vector can be translated if its magnitude and direction stay unchanged. These vectors 
are named free vectors and their magnitude and direction do not depend on the point of 
vector application.  
 
The transform of vectors belongs to the field of linear algebra and the mathematical methods 
and formulas for the vector transform are described in textbooks of the same course.  The 
formulas given in this chapter help us to solve the kinematics tasks of robots and to analyze 
the matematical problems of robot control.  
 
The transform of free vectors. The torque vectors can be transformed by using the rotation 
matrix, because the position vector of the origin point of the coordinate system is not essential 
for free vector transformation 
 

Torque
BA

BTorque
A NRN ⋅=  (2.26) 

 

The transform of the velocity vector 
 

Velocity
BA

BVelocity
A VRV

rr
⋅=   (2.27) 

 
The conclusion is that the rotation of the coordinate system does not influence the magnitude 
and direction of the vector, but changes the description of the vector.   
 
Transformation of velocity vectors on translation. If a coordinate system {B} moves in 
relation to a rotated coordinate system {A} with a velocity of 0B

AV
r

, the velocity of the 
linearly moving point in the coordinates {B} can be transformed to coordinate system {A} 
using the following equation:  
 

P
BA

BB
A

P
A VRVV

rrr
⋅+= 0  (2.28) 

 

B
AΩ
r

If the coordinate system {B} rotating with an angular, velocity of  in relation to the 
coordinate system {A}, the linear velocity of vector PB

r
 point given by position in the 

coordinate system {B} can be calculated in the coordinate system {A} by the equations: 
 

PV

PRP
A

B
A

P
A

BA
B

A

rrr

rr

×Ω=

⋅=
 (2.29) 

 

rv ⋅= ωFor vector variables the last equation has the same meaning as the equation:  used for 
scalar variables, where r is the radius and v the linear velocity.  
 
Generally, if a point moves in relation to the rotating coordinate system {B} with a linear 
velocity: P

BV
r

, this motion can be transformed to the coordinate system {A} using the 
following equation: 
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( ) PVV A
B

A
P

BA
P

A
rrrr

×Ω+=   or (2.30) 
 

PRVRV BA
BB

A
P

BA
BP

A
rrrr

⋅×Ω+⋅=  (2.31) 
 
If the coordinate system {B} rotates and translates simultaneously the transformation of the 
velocity vector can be done by equation (2.32) similar to (2.31), but in this case the velocity 
vector of the origin point of coordinates {B} must be added.  
 

PRVRVV BA
BB

A
P

BA
BB

A
P

A
rrrrr

⋅×Ω+⋅+= 0  (2.32) 
 
Velocities of manipulator links 
The planar manipulator on the xy-plane is shown in Fig. 2.9. The stationary base coordinates 
of the manipulator are x0y0. Around the origin of coordinates (point O) rotates link 1 having 
longitude L . The second link has longitude L1 2 and is connected with the revolute joint to link 
1. The relative rotation angles of links are α  and α1 2. The angular velocity is the derivative of 
angular position. Consequently  
 

22
2

11
1

ωαα

ωαα

==

==

&

&

dt
d
dt

d

 (2.33) 

 
The angular velocities of links in the stationary base coordinates if rotating around z-axis are 
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=Ω

1

1
0 0

0

ω

r
  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+
=Ω

21

2
0 0

0

ωω

r
2

0
3

0 Ω=Ω
rr

 (2.34) 
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V1 = 0 

V2
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Figure 2.9 Planar articulated hand of the manipulator 
 
 
The linear velocity vector of the origin point of the coordinate system is defined by 
projections of the velocity vector to the corresponding axes of the coordinate system.  
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⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

0
0
0

1
1V
r

   (2.35) 

 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

0
cos
sin

211

211

2
2 αω

αω
L
L

V
r

(
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
++=

0
cos

sin

212211

211

3
3 ωωαω

αω
LL

L
V
r

)

The manipulator has the following rotation and translation matrixes:  
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −
=

100
0
0

11

11
0
1 cs

sc
R    (2.36) 

 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −
=

100
0
0

22

22
1
2 cs

sc
R

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

100
010
001

2
3 R

and 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ −

=

1000
0100
00
00

11

11

0
1
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sc

T    (2.37) 

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ −

=

1000
0100
00

0

22

122

1
2
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Lsc

T

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

1000
0100
0010

001 2

2
3

L

T

The summary rotation matrix is 
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −
=⋅⋅=

100
0
0

1212

1212
2
3

1
2

0
1

0
3 cs

sc
RRRR  (2.38) 

 
where 
 

( )21cos αα +212112 ssccc −=  =   
( )21sin αα +.212112 sccss += =  

 
The velocity vector in stationary base coordinates will be calculated as the product of the 
rotation matrix with the eienvalue of velocity ( Velocity

BA
BVelocity

A VRV
rr

⋅= ). Because the first 
coordinates are stationary in relation to base coordinates, then  
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

0
0
0

1
0V
r

 

 
The velocity of an object moving in the second coordinate system can be transformed to the 
base coordinate system as follows:  
 

2
20

22
0 VRV

rr
⋅=   

 

where    
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

0
cos
sin

211

211

2
2 αω

αω
L
L

V
r
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and  (2.39) 

 

( )
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⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡−
=
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sin
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2
0 αω

αω
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V
r

(
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
++=

0
cos

sin

212211

211

3
3 ωωαω

αω
LL

L
V
r

)  (2.40) 

 

( ) ( )[ ]
( ) ([

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+++
++−−

=
0

coscos
sinsin

21212111

21212111

3
0 ααωωαω

ααωωαω
LL
LL

V
r

3
30

33
0 VRV

rr
⋅= )]  (2.41) 

 
 
The solution can be easily found with the help of  theMathCAD Symbolic program.  

 
MathCAD calculates 

 
Using the operator Simplify we get the following matrix expression: 

 
 
Jacobian matrixes or Jacobians are used to describe of multidimensional derivatives of 
vectors. Because the velocity vector is the time related derivative of the position vector, the 
velocity vectors can be found using Jacobians. In the case of the six coordinate (six links) 
manipulator the Jacobian is a matrix with dimensions 6 x 6. The Jacobian of the manipulator 
with two coordinates (see Fig. 2.11) has dimensions 2 x 2. 
 

Ω⋅=
rr

JV 00  
 
Jacobian matrix consists of components of linear velocity vectors ω  and ω1 2. For previously 
described vectors  ja   3

3V
r

3
0V
r
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the following Jacobians or Jacobian matrixes can be found: 
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( ) ⎥
⎦

⎤
⎢
⎣

⎡
+

=
2221

213 0
LLcL

sL
J α   (2.42) 

 

( ) ⎥
⎦

⎤
⎢
⎣

⎡
+

−−−
=

12212211

122122110

cLcLcL
sLsLsL

J α

In the base coordinates the velocity vector can be found as the product of Jacobian and 
angular velocities. The example of this product is calculated with the help of the MathCAD 
Symbolic program.   
 

L1 sin α2( )⋅

L1 cos α2( )⋅ L2+

0

L2

⎛
⎜
⎝

⎞
⎟
⎠

ω1

ω2

⎛
⎜
⎝

⎞
⎟
⎠

⋅
L1 sin α2( )⋅ ω1⋅

L1 cos α2( )⋅ L2+( ) ω1⋅ L2 ω2⋅+

⎡
⎢
⎣

⎤
⎥
⎦

→
 

 
L1− sin α1( )⋅ L2 sin α1 α2+( )⋅−

L1 cos α1( ) L2 cos α1 α2+( )⋅+

L2− sin α1 α2+( )⋅

L2 cos α1 α2+( )⋅

⎛
⎜
⎝

⎞
⎟
⎠

ω1

ω2

⎛
⎜
⎝

⎞
⎟
⎠

⋅
L1− sin α1( )⋅ L2 sin α1 α2+( )⋅−( ) ω1⋅ L2 sin α1 α2+( )⋅ ω2⋅−

L1 cos α1( )⋅ L2 cos α1 α2+( )⋅+( ) ω1⋅ L2 cos α1 α2+( )⋅ ω2⋅+

⎡
⎢
⎣

⎤
⎥
⎦

→
 

 
 
 
2.4. Kinematics chains of manipulators  
 
 
The kinematics chains of manipulators are composed from spatially coupled joints. The 
number of joints and types of kinematics pairs determines the manipulator’s degree of 
freedom (DOF). For spatial transfer and orientation of objects the manipulator must have 
minimally six degrees of freedom (three of them for object translation and other three for 
object orientation). To use all six degrees of freedom, a robot must have six drives, each of 
which realizes one motion in one coordinate. Possible spatial motions and kinematics pairs 
used in robots are shown in Fig. 2.10. 
 
All mechanisms can be divided into planar and spatial mechanisms. Description of these 
mechanisms is on website http://www.cs.cmu.edu/People/rapidproto/mechanisms/chpt4.html  
 
Joints of kinematics chains are coupled with the help of kinematics couplings. In the case of 
planar mechanisms, the kinematics pairs of the fifth order are used. The kinematics pairs of 
the fifth order are revolute pairs and prismatic pairs.  
 
The kinematics behaviours of kinematics couplings are defined by degrees of freedom, 
DOF and constraints:  
 
0 degrees of freedom - 6 constraints 
1 degree of freedom – 5 constraints – the kinematics pair of the fifth order 
2 degrees of freedom – 4 constraints – the kinematics pair of the fourth order 
etc. 
 
Most of manipulators have kinematics joints with revolute and prismatic pairs (Fig. 2.10). The 
revolute pair R allows rotational and prismatic pair T translational motion in one coordinate 
of polar, angular or Cartesian coordinate system. 
 
Each revolute or prismatic kinematics pair gives one degree of freedom to a manipulator. 
Consequently, for full spatial motion and orientation of objects a six link manipulator with 
revolute or prismatic pairs is needed. 
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Some manipulators have links joined with kinematics pairs having more than one degree of 
freedom. For example, spherical joint has three degrees of freedom (three constrains) and is 
considered as the joint of the third degree. In the case of the fourth or third degree joints in the 
manipulator chain, the number of manipulator links needed for full spatial motion is less than 
six.  
 
Generally the number L of the degrees of freedom can be calculated from the structural 
equation of kinematics chain.  
 

12345 23456 pppppnL −−−−−= , (2.43) 
 
where n is the number of moving links in the chain and p …p1 5 is the number of kinematics 
pairs of different order.  
 
 
a b 

 

x 

z 

y

 

  
 

Figure 2.10. Possible motions of an object in space a and kinematics pairs of yhe fifth order b 
 
 
The formula (2.43) can be used to calculate the number of degrees of freedom of different 
manipulation mechanisms. It can also be used to calculate the number degrees of freedom of a 
human hand. Regarding, that a human hand has three links: upper arm, forearm and flat of the 
hand and each link has spherical joints, the number of degrees of freedom of human hand is  
 

9333636 3 =⋅−⋅=−= pnL  (2.44) 
 
If the kinematics chain of the manipulator contains only kinematics pairs of the fifth order, 
then  
 

556 pnL −=  (2.45) 
 
In some cases the total number degrees of freedom of the manipulator is less than six and the 
robot cannot be used for universal orientation of objects in space. To use a manipulator 
having less than 6 degrees of freedom, in industry the additional mechanism of orientation 
must be added to the robot system. Objects can be put in order, e.g. on the feeding conveyor.    
 
In the case of the manipulator with planar mechanism the lower kinematics pairs (revolute 
and prismatic pairs) can form 2n different structures of kinematical chains (where n is the 
number of series links in the chain).  
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In the case of manipulator with spatial mechanism each kinematics pair has its own axis 
that can be oriented in different ways in relation to the base coordinate system. In addition, 
the centre of revolute or prismatic kinematics pair may not lie on the axis of the former link. 
Consequently, the number of potential kinematics structures of manipulators is much higher. 
If kinematics pairs are freely oriented in space, the number of possible structures is infinite.  
Normally, most of the manipulators have kinematics pairs with parallel or orthogonal 
orientation.  
 
All manipulators have a stationary fixed link, as a base link in the kinematical chain that is not 
considered if different kinematics chains are compared. So the manipulator consisting of a 
stationary link and three other links are considered a three link manipulator. The first 
kinematics pair couples the stationary link with the first moving link in the chain.  
 
The motion of multi-link manipulation mechanism and its possibility to manipulate objects in 
space depends on the types of kinematics pairs and their degrees of freedom (Fig. 2.11). 
 

 
 

Figure 2.11 Order of kinematics pairs and their degrees of freedom 
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The transport mechanism of manipulator (arm of the manipulator) has normally three links 
the construction and kinematics pairs for their coupling are essential for the external image of 
the manipulator as well as for motion extension and handling capacity. More than three links 
in the kinematics chain of the transport mechanism gives higher maneuverability of 
manipulator and higher flexibility of robot that helps to work in complex work spaces, 
including obstacles in the working envelope. Its weakness is the higher complexity of 
construction. Therefore, normal industrial robots have a minimal number of links: three for 
transportation and three for orientation.  
 
The orientation mechanism of the manipulator (wrist of the manipulator) is very compact, 
its motion extension is small and its effect on the external image of the robot is also small. 
Normally three links with revolute kinematics pairs are used in the wrist mechanism.  
 
Kinematics pairs, coupling transport links of the manipulator mechanism define also the 
coordinate system of the manipulator used to describe of motion. If three translational linearly 
moving links are used, the manipulator is working in Cartesian coordinates with three 
orthogonal axes. If two linear translational motions and one rotational motion are used, the 
manipulator is working in the cylindrical coordinate system. If two rotational motions and one 
linear translational motion are used, the manipulator is working in the spherical coordinate 
system. And finally, if the manipulator has an articulated arm, its motion can be described in 
cylindrical or spherical angular coordinate systems. 
 
 
2.5. Manipulator in Cartesian coordinate system 
 
A manipulator working in the Cartesian coordinate system shown in Fig. 2.12 uses three links 
with linear translational motion and is known as a gantry robot. The working envelope of  a 
gantry robot has the form of right parallelepiped with dimensions a, b, h that determines the 
extension of motion. Dimensions L, M and H determine the location of the working envelope 
in Cartesian coordinates 0xyz. 
 

 

x 

z 

y

 
 

 
Figure 2.12 Manipulator in the Cartesian coordinate system  

 
Kinematics tasks in Cartesian coordinates can be easily solved because the direction of each 
link motion can be selected in the direction of orthogonal axes.  
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2.6. Manipulator in cilindrical coordinate system 
 
 
The working envelope of a manipulator in the cylindrical coordinate system is the part of a 
hollow cylinder. Examples of manipulators in the cylindrical coordinate system are shown in 
Figs. 2.13 and 2.14. The base or the world coordinate system is bound to the manipulator 
stationary base.  
More information about manipulator coordinate systems can be found from website 
http://prime.jsc.nasa.gov/ROV/types.html  
 

 
 
 

         
 
 

Figure 2.13. Manipulator in the cylindrical coordinate system: a working envelope for vertical axis robot,  
b working envelope for horizontal axis robot, examples of Versatran, Seiko RT3300 and Fanuc M300 robots 

 
 
The following is the mathematical description of the manipulator shown in Fig 2.14. 
 
Position vector 

z

y

x

A

p
p
p

P =
r

, (2.46) 

 
where 
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Figure 2.14 Calculation scheme for the manipulator working in the cylindrical coordinate system 

 
 
Equations describing geometrical components of the position vector can be used to solve 
manipulator kinematics tasks. This method is named the geometrical method of solution of 
manipulator kinematics tasks. Complexity of the equations and their solving procedure 
depends on the configuration of the manipulator and used coordinate system. Principally, 
these equations can be used for direct as well as for indirect kinematics tasks. Difficulties can 
exist if the equations are transcendental. In this case there are no general solutions but only 
numerical values for solution exist.   
 
Rotation matrixes 
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0cossin
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αα
αα −
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Articulated arm manipulator working in cylindrical coordinates (i.e. SCARA-type 
manipulator) has also a hollow cylinder form working envelope. It must be added that the 
cylinder axis may be vertical or horizontal. That kind of robots are shown in Fig. 2.15. The 
kinematics of the SCARA-type robot is shown in Fig. 2.16.  
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The motion of the horizontal articulated arm robot is described by simple equations and a 
simple solution exists for direct as well as for indirect kinematics tasks. The position of 
manipulator’s tool or gripper is defined by point A, location of which may be determined in 
the Cartesian coordinates 0xyz or in cylindrical coordinates 0α1α z.  2
 

    
 

Figure 2.15 Articulated arm robots working in the cylindrical coordinate system:  
with the horizontal axis and vertical axis  
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Figure 2.16 Calculation scheme for the articulated arm robot working in the cylindrical coordinate system 

 
 
The manipulator direct kinematics task can be solved using the following system of 
equations:  
 

( )
(

aa

a

a

zz
LLy
LLx

=
++=
++=

21211

21211

sinsin
coscos

ααα )
ααα

 (2.50) 

 
Using equations (2.50) it is possible also to solve the inverse kinematics task of the 
manipulator, but it must be considered that the calculation of angles α , and α1 2  may be 
complicated. Because of this the other solution based on the geometrical construction in Fig. 
2.17 can be used to solve the inverse kinematics task of the manipulator.  
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Figure 2.17 Geometrical solving of the inverse kinematics task of the planar articulated arm and determination of 

angles α  if the position reference point A and α (x , y ) is given 1e 2e e e e

 
 
If the manipulator inverse kinematics task is solved using the geometrical method, the 
triangles in Fig. 2.17 can be formed and used to find the following equations:  
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The variable c can be found from the two last equations of (2.51).  
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The following angles can be found from Fig. 2.17: 
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The angles 2.53 can be used to find rotation angles of manipulator links α1e and α2e: 
 

 211 ϕϕα −=e

322 ϕϕα +=e  (2.54) 
 
The other way to solve the kinematics tasks of the manipulator is the algebraic method based 
on the transformation matrixes of the coordinate systems. The rotation and transformation 
matrixes are used.  
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In the case of the manipulator (Fig. 2.16), coordinate system 3 is rotated by 90º around z-axis 
of coordinate system 2 and then once 90º around x-axis.  
 
Rotation matrixes 
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Transformation matrixes 
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2.7. Manipulator in the spherical coordinate system  
 
 
A manipulator in the spherical coordinate system is shown in Fig. 2.18. An articulated arm 
manipulator in spherical coordinates is shown in Fig. 2.19. The working envelopes of both 
manipulators have a hollow sphere form.  
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Figure 2.18 Working envelope of the manipulator in the case of the spherical coordinate system  
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Figure 2.19 Articulated arm robots working in the spherical coordinates: 
a 6 DOF manipulator of Mitsubishi Co and b PUMA 560 manipulator of Unimation Co 
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Figure 2.20 Calculation scheme for the articulated arm manipulator working in the spherical angular coordinates  
 
 
Coordinates of the manipulator second link (Fig. 2.20) are rotated 90º around z coordinate of 
the first link, rotated 90º around the x coordinate and then rotated by α  around z-axis.  2
 
Transformation matrixes of coordinate systems: 
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Rotation matrix of the component of the transformation matrix can be found as the product 
of two rotation matrixes. The first describes the right angle rotation around z and x axis and 
the second describes the rotation by α

T1
2

 around z axis.  2
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2.8. Multi-links and flexible links manipulators 
 
 
An example of a multi-link manipulator is shown in Fig. 2.21. Manipulator’s tool or gripper 
position is controlled by changing the relative positions of links. The manipulator has very 
high maneuverability. The same properties may be achieved by using manipulators with 
flexible links. The control of the position of flexible links can be achieved, e.g. by using the 
magnetic field or electric current. That type of manipulators are not covered in this book. 
 
 

 
 
 
 

Figure 2.21 Construction of a multi-link manipulator 
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2.9. Parallel kinematics of manipulators  
 
 
Traditionally manipulators have a series configuration of links. In this case the drives of 
moving links are also located on the link chain and normally they are placed on previous links 
in relation to the moved link. It means that weight of each drive is a payload for the previous 
drive. In the case of wrist it is very difficult to locate massive drives near the gripper or tool. 
The solution is the location of all wrist drives on the last transportation link of the manipulator 
and use of complex multi-coordinate manipulator transmission gears (manipulator 
transmission mechanisms). With the help of these transmission mechanisms drives can be 
removed farther from the gripper or tool, but the weight of drives is still a problem in terms of 
better dynamical properties of a robot.  
 
A new direction in the development of industrial robotics is to use manipulators with parallel 
kinematics. Because these robots have totally different external image of the body of a 
traditional robot on several columns (legs), they are named as Trepod or Hexapod (Fig. 2.22) 
or (Figs. 2.23 and 2.24). The same type of a robot is also the ABB robot FlexPicker. 
Additional information about manipulators with parallel kinematics is available on websites: 
http://www.parallemic.org/Terminology/General.html 
http://www.parallemic.org/SiteMap.html  
 
Advantages of manipulators having parallel kinematics structure:  

 3-6 motors driving small weight links and one gripper or tool of a manipulator. Due to 
small weight and mass and little moment of inertia the robot has very high dynamic 
properties.  

 positioning errors of links cannot be summed 
 higher rigidity (mechanical accuracy)  
 no moving connection cables  
 higher accuracy and repeatability 
 higher reliability 

 
 

 

 

Robot image from website: 
http://www.parallemic.org/Reviews/Review002.html  

 
Figure 2.22 Three-leg manipulator with parallel kinematics in the suspended pose 
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Figure 2.23 Six-leg moving platform (octahedral hexapod) or Stewarti platform 
 
 
 

 

 
 
 

Image from website:  
http://www.parallemic.org/Reviews/Review012.html  

 
Figure 2.24 Six-leg hexapod manipulator and its constructional components  

 
 
M. Stewart widely known paper of about  new type mechanism with 6 DOF was published in 
1965. This mechanism was used in flying simulators for pilot training. Initial Stewart’s 
construction flying simulator was completely different from today’s construction, known as a 
octahedral hexapod, later named as Stewart’s platform. Another inventor of that kind of 
mechanism was engineer Klaus Cappel from the USA who has constructed a 6 DOF vibrating 
machine, very similar to a octahedral hexapod.  
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2.10. Kinematics of mobile robot  
 
 
The mobile robot can be automatically ground moving, flying, in water swimming or an 
automated submarine. The moving mechanism of a ground moving robot is a wheeled or 
crawled vehicle or different ledged mechanism.  
 
If we consider the number of wheels and the type of the turning mechanism, the mobile robots 
based on wheeled vehicles can be divided into different groups: 
 

• Three-wheel vehicle with one turning wheel and with one or two driving wheels;  
• The vehicle that can be turned by paired wheels;  
• Two- or four-wheel vehicle driving and with differential turning mechanism;  
• Vehicle with multi-wheel turning mechanism that allows turning if the center of the 

vehicle does not move;  
• Four-wheel vehicle with Ackermann’s turning mechanism (Ackermann’s turning 

mechanism is widely used in cars). In this case the inner wheel turns more than the 
outer wheel. 

 
Turning of a wheeled vehicle is shown in Fig. 2.29. During turning on a curved way, the inner 
wheel goes a shorter way as compared with the outer wheel. Because of this wheels must have 
different angular speeds or one of the wheels must slip with curved motion. The different 
speeds for turning wheels can be achieved by using differential mechanisms.  
 
 

Turning axis and 
turning radius 

 

b 

S2 = (R+b)θ 

S1 = R θ θ R 

 
  

 
 

Figure 2.29 Turning pairs of wheels of a carriage  
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Turning of a wheel pair on the head of a carriage  
Turning of a wheel pair is the oldest method of turning a four-wheels carriages. Due to 
simplicity this method is also used today. This method gives geometrically the best turning, 
because both wheels have the same centre of turning. A weakness of this method is that the 
mechanism is clumsy and needs too much space for turning. It is very difficult to integrate the 
turning axis with carriage, because the wheels must be turned under the carriage (for smaller 
turning radius). This means that turning wheels must have a smaller diameter and the smaller 
stability of carriage during turning. Principally back wheels can be used for turning, but in 
this case the control of carriage turning on the forward motion is more complicated.  
 
Examples of turning mechanisms are shown in Fig. 2.30. Similar to the wheel pair turning is 
the turning by using the revolute body joint of a vehicle. The vehicle with a central body joint 
is shown in Fig. 2.30 a. This type of a turning mechanism is very simple, but using the vehicle 
is complicated because of moving body parts. All vehicles having the rotating axis of two 
wheels are not stabile when turning in curve.  
 

 
 

Turning by using a pair 
of wheels and body joint 

Turning of forward wheels by 
Ackermann’s mechanism 

Controlled turning of 
all wheels  

Turning centers 

Turning centers

a b c 

 
 

Figure 2.30 Different constructions of the turning mechanism of a carriage 
 
 
In 1816 Rudolf Ackermann found the main principle of the operation of an ideal turning 
mechanism - vertical surfaces of wheels must be orthogonal to the turning radius vector – and 
invented the turning mechanism that is wellknown today in all four-wheeled cars. Figure 
2.31 a shows the four-link closed kinematics chain (car’s steering mechanism) that guarantees 
coinciding of the turning centers of wheels. In contrast, in the case of parallel wheels, turning 
centers of wheels do not coincide (Fig. 2.31 b) a lateral slip of wheels exists and 
consequently, the result is higher wearing and weaker stability. 
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Centre of turning 

Ackermann’s turning mechanism 
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Figure 2.31 Ackermann’s mechanism (a) and unsuitable turning if turning wheels are parallel (b) 
 
 
Control of turning of four-wheel vehicles 
Turning of all four wheels gives the best maneuverability. That kind of very flexible turning 
mechanism can be used to turn a vehicle if the center of turning is fixed. Control of the 
turning of all four wheels is useful and widely used in the case of robot vehicles. The 
following versions of turning control can be used: 
 

• Proportional control by using the double Ackermann’s mechanism. Fore and back 
wheels of a vehicle will be turned proportionally by the turning radius.  

• Delayed non-proportional control when back wheels will be turned after the fore 
wheels have been turned by a certain angle. 

• Control by differential mechanism if inner and outer wheels during turning in curve 
have different angular speeds and turns of the vehicle.  

• Control by the turning of all wheels when the fore and back wheels will be turned in 
the opposite directions and the vehicle turns if its body centre does not move.  

• Control by using the reversible differential mechanism when a vehicle’s inner and 
outer wheels in curve are rotating in opposite directions and the vehicle turns if its 
body centre does not move. 

• Dog walk steering when the fore and back wheel will be turned in the same direction 
and the vehicle moves laterally. 

 
Locomotion of mobile robots was studied in the USA in the University of Carnegie Mellon. 
In 2001 a PhD thesis Analytical Configuration of Wheeled Robotic Locomotion was 
published. Different methods to turn vehicle are shown in Fig. 2.32. If in the robot drive the 
differential mechanism is used and wheels are not turned in the curve, the lateral slip of 
wheels exist.  
 
Control of four-wheel turning is used in the case of agricultural machines, construction 
machines, special vehicles and mobile robots.  
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Figure 2.32 Turning of a vehicle using different turning mechanisms  

 
 
Problems of dynamical control of turning  
If a vehicle turns in curve, the effect of inertial forces on the vehicle and the lateral slip of 
wheels can happen. Turning the wheel more means that a higher slip has happened. A higher 
slip means that higher counterforce appears on the wheels, that compensates the centrifugal 
force generated by turning.  It must be added that in curve the turning angle of the inner wheel 
and its slip are higher than the turning angle and the slip of the outer wheel. At the same time, 
the load (force) of the outer wheel is higher than the load of the inner wheel.  
 
Figure 2.33 shows the problems of the dynamical effect of forces if turned in curve. The 
driving force, inertial force of a vehicle and the friction force on the rolling surface will have 
the sum effect on the wheel. If a vehicle moves at a uniform constant speed, the driving force 
Fv and friction force Fv are in same direction. In a curve the additional centrifugal force Fts 
that pushes the vehicle in the lateral direction to the wheel appears. If a wheel is in the 
direction of motion (Fig. 2.27, a), then the summary force pushes the vehicle out of curve. If 
the turning angle of the wheel is higher (Figs. b and c), it can be achieved that the direction of  
the summary force coincides with direction of motion. The wheel rolling and slipping 
conditions on the surface depend on the friction and profile of surface that is very uncertain 
and occasional. Therefore, the control of a vehicle in curve if riding conditions can change is 
very complicated and a danger exists that vehicle can lose its controllability.  
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Figure 2.33 Turning of a wheel in curve: the wheel is in the direction of motion a,  
the wheel is turned to compensate centrifugal forces b, c 
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For small, simple and cheap robots to help turning in small places and to get higher 
maneuverability, the multi-directional wheels can be used (Fig. 2.34). 
 

  
 

Figure 2.34 Examples of wheels rolling in two different directions  
 
 
In the case of robots with wheeled vehicles, the problem is the motion on a soft or uneven 
surface, because the pressure of the wheel to the surface is relatively high. To get a lower 
pressure to the surface, several types of creeping mechanisms are used. For motion on an 
uneven surface the best solution may be using of ledged mechanisms. In some cases also 
wheeled vehicles can be used on an uneven surface if a special construction of a vehicle and 
special driving wheels will be used (Fig. 2.35).  

 

 
 

Figure 2.35 Example of a vehicle for moving on an uneven surface 
 
 
Control of creeping machines  
In the case of machines using a creeping driving mechanism, the brakes are used to control 
the turning. If turning is needed the inner to curve creeper must be broken. Normally this 
creeper will be decoupled from the drive. Brakes are used for turning by some special 
wheeled vehicles, e.g. construction or loading machines when the motion distances are 
relatively small. Machines the turning of which is controlled by brakes are shown in Fig. 2.36. 
Sometimes turning with brakes is also useful for robots. 
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Figure 2.36 Machines using a crawling driving mechanism and brakes for turning 
(Photos of Uwe Berg from Internet) 

 
 
Walking robots or ledged robots  
Walking or ledged robots are copied from nature. Depending on the number of legs, walking 
robots can be divided as follows: 
 

• One-leg robots  
• Two-leg robots 
• Three-leg robots  
• Four-leg robots 
• Six-leg robots 
• Eight-leg robots  
• Multi-leg robots (hundred-leg robots) 

 
If one- or two-leg robots are used, an additional problem of keeping balance appears. 
Generally to control balance of a robot, dynamic feedback from acceleration sensors is 
needed. Three-leg robots are used seldom because the same problem to keep balance if the 
third leg is moved exist. Mainly three-leg robots are useful for climbing.  
 
Phases of motion of a two-leg walking mechanism are shown in Fig. 2.37.  
 
 

 1 432 

II I II I III II I 

 
 

Figure 2.37 Phases of motion of a two-leg walking mechanism  
 
 
Walking starts if the weight of a body is transferred to the stretched leg (II) and free leg 
movement in the direction of motion. In the second phase of walking, leg (I) is in its final 
forward position. In the third phase of walking, this leg will be put to ground. In the fourth 
phase of walking, the weight of a body will be transferred to leg (I). These phases will be 
repeated cyclically and the free leg (II) will be moved in the direction of walking motion.  
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Two- and four-leg human or animal kind robots are shown in Fig. 2.38.  
 

a b c 

   
 
Figure 2.38 Examples of two- and four-leg human or animal kind robots: Two-leg (bipod) robot Asimo from firm 

Honda Co (a) and four-leg (quadruped, tetrapod) Robodog from RoboScience (b, c) 
 
 
The walking mechanisms of a four-leg and six-leg robot are shown in Fig. 2.39. 
 

  

  
 

Figure 2.39. Walking mechanisms of a four- and six-leg robot 
 
 
The higher number of legs gives more stability to the vehicle and more possibilities to move 
on an uneven surface. An eight-leg robot is very similar to a six-leg robot. Robots having 
more than eight legs are used seldom, only in special cases. Motion of these robots is more 
similar to the moving of creepers than to a walking human or animal. A ten-leg robot that 
moves by turning pairs of legs is shown in Fig. 2.40.  
 
Sometimes it may be useful to combine wheels and legs in a robot’s motion mechanism. In 
this case the robot is named a wheeled and ledged hybrid robot.  
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Figure 2.40 Ten-leg robot that moves by the turning pairs of legs  
 
 
Hybrid vehicles using legs and wheels 
Legs give more possibilities to overcome obstacles but wheels have a simpler construction 
and the motion is more efficient. Examples of hybrid robots are shown in Fig. 2.41. 
 

 
 

 
Figure 2.41 Hybrid vehicles using legs and wheels  

 
Three-leg climbing robot. The kinematics of a three-leg climbing robot is shown in Fig. 
2.42. Two legs of the robot are used for holding and the third leg moves to the new place of 
holding. Legs move using the chain of leg links coupled by the revolute kinematics pairs. 
 

Holding leg 1 Holding leg 2 

Holding place 3 
Free leg 3 

Kinematics chain 

Pelvis of legs 

 
 

Figure 2.42 Climbing mechanism 
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