
Derivation of Entropy from Second Law  
 
Consider the following combined system consisting of a 
Carnot heat engine and a piston cylinder system 
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First Law applied to the combined system 
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Let the system undergo a cycle while the Carnot cycle 
undergoes one or more cycles. Integrate over entire cycle 
(recall system energy is a state property) 
 

∫∫∫ −⋅= CRC dETQW
T

 δδ  

 
The net work for one cycle is  
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The integral must be evaluated at the system boundary 
 
The combined system (cycle) draws heat from a single 
reservoir while involving work WC 
 
Based on K-P statement the combined system cannot 
produce net work output  WC ≤0 
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This is the Clausius Inequality which is valid for all 
thermodynamic cycles, reversible or irreversible. 
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For a reversible cycle (no irreversibilities in the system) 
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Since the cycle integral of (δQ/T) is 0, the quantity δQ/T 
is a state property, it does not depend on the path (similar 
∫ = 0dE ). 
 
We call this new property entropy, S, 
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For a process where the system goes from state 1 to 2 
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Specific entropy s= S/M 
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The entropy change between two specified states is the 
same whether the process is reversible or irreversible 
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To calculate S2-S1 evaluate ∫ TQ /δ for the reversible path 
 
Consider a cycle made up of an irreversible process 
followed by a reversible process 
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Applying Clausius Inequality to the cycle 
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Remove inequality sign to get the entropy balance 
equation for a closed system 
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Note: Moran and Shapir

 

 

Entropy transfer
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heat transfer
 

process impossible 
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o uses symbol σ instead of Sgen

134



For an isolated system (adiabatic closed system) 
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Since Sgen≥0           ∆Sisol≥0   
 
 
This is the Increase in Entropy Principle which simply 
stated says that for an isolated system the entropy always 
increases or remains the same 
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The increase of entropy principle does not say that the 
entropy of a system cannot decrease 
 
 

Isolated 
system 
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A process that is both adiabatic and reversible is referred 
to as isentropic, and for a closed system 
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entropy is constant, S1=S2. 
 
Microscopic Point of View: 
Entropy is the measure of molecular disorder or 
randomness. As a system becomes more disordered, the 
position of the molecules becomes less predictable and 
the entropy increases.  Entropy is the lowest in a solid 
because molecules are held in place and simply vibrate 
and highest in a gas where the molecules are free to move 
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in any direction.  Entropy of a pure crystalline substance 
at absolute zero temperature is zero since the state of each 
molecule is known  Third Law of Thermodynamics 
 
Disorganized energy does not have potential to do useful 
work, 
 
 
 
 
 
 
 
Organize the KE of the molecules (on average moving in 
one direction) by expanding through a nozzle increases 
the ability to do useful work. Some of the IE of the 
molecules is converted in to KE resulting in a temperature 
drop and corresponding drop in entropy. 
 
The paddle-wheel work done on a  
gas increases the level of disorder  
(entropy) of the gas and thus the  
energy is degraded during this process 
 
 
Heat is a form of “disorganized energy” 
and some entropy will flow with it 
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Evaluation of Entropy Change in a Closed System 
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Apply First Law neglecting KE and P
work 
 
In differential form qwqdu =−= δδδ
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substitute du into the above equation 
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These are the Gibb’s equations (or sim
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 For a system undergoing a process from state 1 to state 2 
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Note the terms on the RHS are state properties, so the 
terms on the LHS, i.e., entropy, must also be a state 
property 
 
Although we derived the Tds equations for a reversible 
process since entropy is a state property we can integrate 
these equations to get the change in entropy between any 
two states for any process 
 

∫∫

∫∫

−=−

+=−

2
1

2
112

2
1

2
112

),(

),(

dP
T
v

T
dTTPcss

dv
T
P

T
dTTPcss

P

V

 

 
The above integration is not straight forward, so entropy 
is tabulated along with u and h in the steam tables and 
plotted on T-s and h-s (Mollier) diagrams.
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Entropy tabulated in steam tables is relative to an 
arbitrary reference state 
 
The value of entropy at a given state is determined just 
like for the other state properties u and h 
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Recall for an internally reversible process 
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= Area under curve 

For an isentropic process S is constant 
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No heat transfer  area under the curve is zero
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Entropy Change for an Ideal Gas 
 
For an ideal gas du RTPvdTTcdhdTTc PV ===  ,)( ,)(  
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The value of the specific entropy is set to zero at 0K and 1 
atm, e.g., s(0K, 1 atm)= 0  
 
The specific entropy at temperature T and 1 atm is 
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Values of os  are tabulated as a function of T for air in 
Table A-22 
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If the specific heats cP and cV are taken as constant  
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