P-v-T Relations for Vapors (Gases)

Consider a fixed amount (# of moles) of gas in a pistoncylinder assembly held at constant temperature, say T_1 .

Move piston slowly to various positions, measure system pressure P and volume (via height h) at each equilibrium position

Repeat tests at different temperatures $T_2, T_3,...$

Define **molar specific volume** \overline{v} as $\frac{volume}{\mu_{mol/es}}$ $\frac{m}{mol}$ \int \setminus $\overline{}$ \setminus $\bigg($ $\frac{volume}{\#moles}$ $\left(\frac{m^3}{mol}\right)$ *moles volume* Plot results as *T* $\frac{P\overline{v}}{P}$ vs P $\frac{P\overline{v}}{T}$ **\$ # # \$** # - T_4 $$ - T₃$ \mathbf{o} - T₂ \mathbf{x} - T₁ **o o # # \$ # \$ x o x** *P*

54

Since $P\overline{v}$ is a finite number, as $P \to 0$, $\overline{v} \to \infty$

As \bar{v} (volume/#moles) approaches infinity continuum assumption fails have to extrapolate experimental data to $P= 0$

It is found that when the data is extrapolated to $P=0$ you get a limiting value for $P\overline{v}/T$:

$$
\lim_{P \to 0} \left(\frac{P\overline{v}}{T} \right) = \overline{R} \qquad \text{units} : \frac{\frac{N}{m^2} \left(\frac{m^3}{kmol} \right)}{N} = \frac{Nm}{kmol^o K}
$$

The same value for \overline{R} is found for all gases, hence it is referred to as the **Universal Gas Constant**

$$
\overline{R} = 8314 \frac{J}{kmol^{o}K} = 8.314 \frac{kJ}{kmol^{o}K}
$$

The ratio of the molar and mass specific volume defines the **Molar mass**, µ:

$$
\frac{\overline{v}}{v} = \left(\frac{vol}{mol}\right) \frac{mass}{vol} = \frac{mass}{mol} = \mu
$$

$$
\overline{\nu} = \mu \cdot \nu
$$

$$
\lim_{P \to 0} \left(\frac{P\overline{v}}{T} \right) = \lim_{P \to 0} \left(\frac{P\mu v}{T} \right) = \overline{R}
$$

$$
\lim_{P\to 0}\left(\frac{Pv}{T}\right) = \frac{\overline{R}}{\mu}
$$

Define the **gas constant** as, $R = \overline{R}/\mu$

The gas constant for air is

$$
R_{air} = \frac{\overline{R}}{\mu} = \left(8314 \frac{J}{kmol^{o}K}\right)\left(\frac{kmol}{29kg}\right) = 286.7 \frac{J}{kg^{o}K}
$$

We define the **compressibility factor** Z as

$$
Z = \frac{P\overline{v}}{\overline{R}T} = \frac{P(\mu v)}{(\mu R)T} = \frac{Pv}{RT}
$$

Re-plotting data as Z vs P (as P \rightarrow 0, $\frac{1}{R}$ = \overline{R}) *T Pv* $=\overline{R}$, $Z \rightarrow 1$)

Repeat experiments using different gases and get the same shape curves.

If we plot Z versus the **reduced pressure** P_R (=P/ P_c) for different **reduced temperatures** T_R (=T/T_c) you get a universal set of curves known as the **generalized compressibility chart**

Molar mass and critical properties are given in Table A-1, for example:

Jigure 3.12

For a given gas with a gas constant $R = \overline{R} / \mu$, knowing the pressure and temperature you can use the above graph to get the specific volume μ *v* $v =$

 $Z \rightarrow 1$ (within 5%) for *low* reduced pressure (P_R < 0.2) independent of temperature, e.g. P_{air} < 7.6 bar

 $Z \rightarrow 1$ (within 5%) for *high* reduced temperatures (T_R > 2) independent of pressure, e.g. for air T_{air} > 266K (-7C)

In most engineering applications we deal with gases at conditions that are within these limits, so $Z\rightarrow 1$

A gas for which Z can be assumed equal to one is called a **perfect gas**, or an **ideal gas**

For an ideal gas $Z = \frac{1}{\sqrt{2}} = \frac{1}{2} = 1$ *RT Pv RT* $Z = \frac{P\overline{v}}{\overline{v}}$

$$
\boxed{P\overline{v} = \overline{R}T} \quad \text{and} \quad \boxed{Pv = RT} \rightarrow \boxed{P = \rho RT}
$$

since $v = V/M$ and $\overline{v} = V/n$ $n = #$ moles

so
$$
\boxed{\text{PV} = n\overline{R}T}
$$
 and $\boxed{\text{PV} = MRT}$

Microscopic Point of View

Molecules have KE associated with motion and PE associated with mutual attraction/repulsion. An ideal gas is one where the PE is negligible, e.g., billiard ball model.

At low pressure molecules are far apart so negligible PE At high temp $KE \gg PE$