
A 

Major Project Report 

On 

 Brain Stroke Prediction Using Machine Learning 

Technique 

Submitted to CMREC, HYDERABAD 

In Partial Fulfillment of the requirements for the Award of Degree of 

BACHELOR OF TECHNOLOGY 

IN 

COMPUTER SCIENCE AND ENGINEERING (DATA SCIENCE) 

 

Submitted 

By 

                                M. Manoj Kumar (218R1A67A3) 

                                T. Sai Ramya (218R1A67C5) 

                                R. Narender                                (228R5A6711) 

                                S. Shyam Sundar Reddy            (21UJ1A6732) 

 

Under the Esteemed guidance of 

Mrs.N.Sumanjali 

 Assistant Professor, Department of CSE (Data Science) 
 

 

Department of Computer Science & Engineering (Data Science) 

CMR ENGINEERING COLLEGE 
UGC AUTONOMOUS 

(Approved by AICTE, NEW DELHI, Affiliated to JNTU, Hyderabad) 

Kandlakoya, Medchal Road, R.R. Dist. Hyderabad-501401. 

2024-2025 



CMR ENGINEERING COLLEGE 

UGC AUTONOMOUS 

(Accredited by NBA, Approved by AICTE NEW DELHI, Affiliated to JNTU,Hyderabad) 

Kandlakoya, Medchal Road, Hyderabad-501401 

Department of Computer Science & Engineering (Data Science) 
 

 

CERTIFICATE 

 
This is to certify that the major project entitled “BRAIN STROKE PREDICTION USING THE  

MACHINE LEARNING TECHNIQUE” is a bonafide work carried out by  

                                 M. Manoj Kumar (218R1A67A3) 

                                 T. Sai Ramya                              (218R1A67C5) 

                                 R. Narender (228R5A6711) 

                                 S. Shyam Sundar Reddy            (21UJ1A6732) 

in partial fulfillment of the requirement for the award of the degree of BACHELOR OF 

TECHNOLOGY in COMPUTER SCIENCE AND ENGINEERING (DATA SCIENCE) from 

CMR Engineering College, affiliated to JNTU, Hyderabad, under our guidance and supervision. 

The results presented in this major project have been verified and are found to be satisfactory. The 

results embodied in this major project have not been submitted to any other university for the award 

of any other degree or diploma 

 

 

 

 

 

Internal Guide Major Project Coordinator Head of the Department External Examiner 

    

Mrs. N. Sumanjali Mr. B. Kumaraswamy Dr. M. Laxmaiah  

Assistant Professor Assistant Professor Professor & HOD  

CSE(Data Science) 
,CMREC 

CSE(Data Science), 
CMREC 

CSE(Data Science), 
CMREC 

 



DECLARATION 

 

This is to certify that the work reported in the present Major project entitled "Brain Stroke 

Prediction Using Machine Learning Technique” is a record of Bonafide work done by 

us in the Department of Computer Science and Engineering (Data Science), CMR 

Engineering College, JNTU Hyderabad. The reports are based on the project work done 

entirely by us and not copied from any other source. We submit our project for further 

development by any interested students who share similar interests to improve the project 

in the future. 

The results embodied in this Major project report have not been submitted to any other 

University or Institute for the award of any degree or diploma to the best of our knowledge 

and belief. 

 

 

 

 

 

 

 

 

 

M. Manoj Kumar          (218R1A67A3) 

T. Sai Ramya         (218R1A67C5) 

R. Narender                       (228R5A6711) 

S. Shyam Sundar Reddy   (21UJ1A6732) 



ACKNOWLEDGMENT 
 

 

 

We are extremely grateful to Dr. A. Srinivasula Reddy, Principal and Dr. M. Laxmaiah, HOD, 

Department of CSE (Data Science), CMR Engineering College for their constant support. 

 

We are extremely thankful to Mrs. N.Sumanjali, Assistant Professor, Internal Guide, Department 

of CSE(DS), for his constant guidance, encouragement, and moral support throughout the project. 

 

We will be failing in duty if We do not acknowledge with grateful thanks to the authors of 

the references and other literatures referred in this Project. 

 

We thank Mr. B. Kumaraswamy, Assistant Professor, CSE(DS) Department, Major Project 

Coordinator for his constant support in carrying out the project activities and reviews. 

 

We express my thanks to all staff members and friends for all the help and co-ordination extended 

in bringing out this project successfully in time. 

 

Finally, We are very much thankful to our parents who guided me for every step. 

 

 

 

 

 

 

M. Manoj Kumar            (218R1A67A3) 

T. Sai Ramya            (218R1A67C5) 

R. Narender                           (228R5A6711) 

S. Shyam Sundar Reddy (21UJ1A6732) 



ABSTRACT 

This project aims to use machine learning to predict stroke risk, a leading cause of 

long-term disability and mortality worldwide. The study uses a dataset with patient 

demographic and health features to explore the predictive capabilities of three algorithms: 

Artificial Neural Networks (ANN), Decision Trees, and Naive Bayes. The primary 

objectives are to build a predictive model for stroke risk, assess and compare the 

performance of these algorithms, and deploy the best-performing model in a web-based 

application for easy access for healthcare professionals and patients.  The ANN model 

demonstrated the highest accuracy among the models, while the Decision Tree model 

offered interpretability and was useful for clinicians who prioritize transparent decision-

making. Naive Bayes was effective in cases where independence between features could 

be reasonably assumed and performed well due to its simplicity and speed. To implement 

the models, an interactive web application with a user-friendly interface using Flask was 

developed. This tool allows users to input individual health data and receive immediate 

stroke risk predictions, with options to select the prediction model. The system records 

input and prediction data for future model refinement and personalized health 

recommendations. Future developments include expanding the model's predictive 

capacity with additional features and real-time data integration from wearable health 

monitoring devices. Ensemble learning approaches could also be investigated to further 

enhance predictive accuracy.  

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                    I 

 

     



CONTENTS 

 

TOPIC PAGE NO 

ABSTRACT  

LIST OF FIGURES  

1.  INTRODUCTION  

 1.1 Overview                                                                                          1 

 1.2 Research Motivation 2 

 1.3 Problem Statement 3 

 1.4 Applications 3 

2.  LITERATURE SURVEY 6 

3. EXISTING SYSTEM  

 3.1 Stroke Risk Prediction Models Using Traditional Statistical 8 

 3.2 Machine Learning-Based Stroke Prediction Systems 8 

 3.3 Stroke Prediction Systems Based on Medical Imaging 9 

 3.4 Mobile Applications and Wearable Devices for Stroke Risk Monitoring                                   9 

4.  PROPOSED SYSTEM  

 4.1 Overview 11 

 4.2 Architecture Diagram 11 

 4.3 Dataflow Diagram 13 

5. UML DIAGRAMS  

 5.1 Class Diagram 15 

 5.2 Architecture Diagram   16 

 5.3 Sequence Diagram 17 

 5.4 Activity Diagram  19 

6. SOFTWARE ENVIRONMENT  

 6.1 Programming language and its Advantages and Disadvantages 20 

 6.2 History of python 24 

 6.3 Modules used in project 26 

 6.4 Installation of python 28 

 6.5 Frontend 35 

 6.6 Backend 36 

7.  SYSTEM REQUIREMENTS SPECIFICATIONS  

 7.1 Software Requirements  37 

 7.2 Hardware Requirements  

 

 

 

37 



8.  FUNCTIONAL REQUIREMENTS   

 8.1 Output Design and Definition 38 

 8.2 Input Design, Stages, Types, Media 38 

 8.3 User Interface 40 

 8.4 Performance Requirements 41 

 8.5 Feasibility Study 42 

9. METHODOLOGY  

 9.1 Requirements Gathering Stage 44 

 9.2 Analysis Stage 46 

 9.3 Designing Stage 47 

 9.4 Development Stage 47 

 9.5 Integration and Testing Stage 48 

 9.6 Installation and Acceptance Test Stage 49 

 9.7 Maintenance  49 

10.  SYSTEM TESTING  

 10.1 Testing  50 

 10.2 System Testing  50 

 10.3 Module Testing  50 

 10.4 Integration Testing 51 

 10.5 Acceptance Testing 51 

11. SOURCE CODE 52 

12.  RESULTS AND DISCUSSIONS   

 12.1 Implementation Description 59 

 12.2 Results  60 

13. CONCLUSION AND REFERENCES  63 



LIST OF FIGURES 
 

 

 

FIG.NO DESCRIPTION PAGE NO 

 4.1          Architecture Diagram of proposed system 12 

       4.2          Dataflow Diagram of proposed system 13 

  5.1  Class Diagram 16 

        5.2  Use Case Diagram 17 

  5.3  Sequence Diagram 18 

 5.4  Activity Diagram 19 

6          Python installation Diagrams 29 

         9.1  Umbrella Model 44 

 9.2  Requirements Gathering 45 

 9.3  Analysis Stage  46 

 9.4  Designing Stage 47 

 9.5  Coding Stage 48 

 9.6  Integration and Testing Stage 48 

 9.7  Installation  49 

       12.1   Home Page 60 

  12.2  User Login Page 61 

   12.3  Prediction Page 61 

   12.4   Result Page  62 

   12.5   Result page 62 

   

   



1  

1. Introduction 
 

1.1 Overview 

Stroke is a major global health concern, affecting millions and burdening healthcare 

systems. Early detection and prediction of stroke risk are crucial for timely medical 

intervention, potentially saving lives and preventing severe disabilities. Machine 

learning (ML) has emerged as a promising tool in healthcare, offering robust support in 

diagnosis, prognosis, and treatment planning. This project focuses on applying ML 

techniques to predict stroke risk, enabling healthcare providers and patients to take 

preventative measures proactively. The study explores the effectiveness of different ML 

algorithms—Artificial Neural Networks (ANN), Decision Trees, and Naive Bayes—in 

accurately predicting the likelihood of stroke based on patient demographic and medical 

data. A comprehensive dataset with features related to known stroke risk factors was 

used, and data preprocessing involved handling missing values, encoding categorical 

variables, and normalizing numerical features. The three ML models were trained and 

validated on a labeled dataset, with ANN showing superior accuracy due to its layered 

structure and deep learning capabilities, Decision Tree's transparent structure making it 

easier to interpret, and Naive Bayes providing reliable predictions and computational 

efficiency. Decision Trees are highly beneficial for machine learning tasks due to their 

simplicity and interpretability. They provide a clear visualization of the decision-making 

process, making them easy to understand and explain even to non-technical stakeholders. 

They effectively handle both classification and regression problems, capturing complex, 

nonlinear relationships in the data. Decision Trees do not require feature scaling or 

normalization and can work with a mix of categorical and numerical data. They highlight 

feature importance, enabling insights into which variables contribute most to 

predictions. Additionally, they are computationally efficient, robust to outliers, and can 

handle irrelevant features by focusing on significant splits. 

Naive Bayes is a probabilistic machine learning algorithm based on Bayes' Theorem, 

widely used for classification tasks. It assumes that all features are conditionally 

independent, which simplifies computations and makes the model efficient, even with 

high-dimensional data. Naive Bayes calculates the probability of a class given the input 

features by combining prior probabilities, the likelihood of features within each class, 

and the overall feature probability. Despite its "naive" assumption of independence, it 

performs remarkably well for problems like spam detection, sentiment analysis, and 

medical diagnoses.  



2  

1.2 Research Motivation 

The increasing global burden of stroke, a leading cause of mortality and long-term 

disability, necessitates the development of accurate and early risk prediction methods. 

Traditional stroke risk assessment relies on clinical evaluations and statistical models, 

which may not fully capture the complex interactions between various physiological and 

lifestyle-related risk factors. Recent advancements in artificial intelligence (AI) and 

machine learning (ML) offer a promising alternative by enabling data-driven, high-

precision predictive models. Several studies have demonstrated that ML algorithms can 

identify subtle patterns in medical data that might be overlooked by conventional 

approaches. By leveraging large datasets containing demographic, clinical, and lifestyle 

variables, ML models can improve stroke risk prediction, allowing for timely medical 

interventions. Research has shown that models such as Artificial Neural Networks (ANN), 

Decision Trees, and Naïve Bayes can effectively analyze stroke-related risk factors, 

leading to significant improvements in predictive accuracy. The motivation behind this 

project stems from the need to develop a robust, automated, and efficient stroke prediction 

system that enhances early detection capabilities. By integrating ML techniques with 

electronic health records (EHRs) and other medical databases, this project aims to 

facilitate proactive stroke prevention strategies, reducing the overall healthcare burden.  

Furthermore, the widespread availability of digital health technologies, such as wearable 

devices and mobile health applications, provides an opportunity to incorporate ML-driven 

stroke risk assessments into everyday healthcare monitoring. This accessibility is 

particularly valuable in remote or underserved regions, where access to specialized 

healthcare professionals may be limited. By utilizing ML for stroke prediction, healthcare 

providers and individuals can benefit from early warnings, allowing for lifestyle 

modifications and timely medical interventions. 

In summary, this project is motivated by the potential of ML to revolutionize stroke 

prediction through its ability to analyze complex medical data with high accuracy. By 

leveraging ML algorithms, we aim to develop a non-invasive, efficient, and widely 

accessible tool for stroke risk assessment, ultimately contributing to improved patient 

outcomes and global public health efforts.  



3  

1.3 Problem Statement 

Existing brain health monitoring systems primarily rely on conventional clinical 

assessments or imaging techniques such as magnetic resonance imaging (MRI) and 

computed tomography (CT) scans. While these methods are highly effective in diagnosing 

stroke after occurrence, they pose challenges that hinder their widespread adoption for 

proactive and continuous stroke risk assessment. MRI and CT scans provide detailed 

insights into brain structure and vascular conditions; however, they are expensive, time-

consuming, and require specialized medical facilities. This makes them impractical for 

routine monitoring, especially for individuals at high risk of stroke who may require 

frequent assessments. Additionally, these imaging techniques are reactive rather than 

preventive, detecting stroke after significant damage has already occurred.Traditional risk 

assessment models rely on patient history, clinical biomarkers, and manual evaluation, 

which may not capture subtle patterns indicative of an impending stroke. Moreover, these 

methods depend heavily on periodic clinical visits, leading to delays in early detection 

and intervention. Machine learning-based stroke prediction models offer a promising 

alternative by leveraging vast amounts of patient data, including demographics, medical 

history, lifestyle factors, and physiological parameters. By analyzing complex patterns 

and correlations, these models can provide early warnings of stroke risk, enabling timely 

preventive measures and reducing the likelihood of severe outcomes. However, 

challenges such as data availability, model interpretability, and integration into real-world 

healthcare systems must be addressed to maximize their effectiveness and reliability. 

1.4 Applications 

Brain stroke prediction using machine learning offers a wide range of applications 

across healthcare, research, and technology-driven solutions. By leveraging predictive 

analytics and pattern recognition, these systems enable early intervention and improved 

patient outcomes. The key applications include:  

1. Personal Health Monitoring 

 

• Early Stroke Risk Assessment: Machine learning models can analyze lifestyle, 

genetic, and health data to provide individuals with early warnings about potential 

stroke risks. 

• Health Trend Analysis: Users can track their risk factors over time, enabling 

them to take preventive measures through lifestyle modifications. 

• Wearable Device Integration: Smartwatches and health-monitoring devices can 



4  

integrate predictive models to alert users about irregular health parameters related 

to stroke risk. 

2.  Clinical Applications 
 

• Remote Patient Monitoring: Healthcare professionals can monitor at-risk 

patients remotely using machine learning-driven predictive tools, reducing the 

need for frequent hospital visits. 

• Emergency Stroke Prediction: AI models can analyze real-time health data 

from emergency response systems to predict and respond to stroke symptoms 

faster. 

• Personalized Treatment Plans: By assessing an individual’s risk factors, 

machine learning can help doctors create personalized preventive care strategies. 

3. Mental Health Assessment 

• Neurodegenerative Disease Monitoring: Stroke risk is linked to conditions like 

dementia and Alzheimer’s. Predictive models can assist in monitoring cognitive 

health deterioration. 

• Mood and Stress Analysis: Machine learning can assess physiological and 

behavioral indicators that contribute to stroke risks due to chronic stress or 

depression. 

4. Workplace Wellness Programs 
 

• Employee Health Monitoring: Organizations can integrate stroke risk prediction 

models into wellness programs to encourage preventive healthcare among 

employees. 

• Occupational Health Assessments: High-risk professionals, such as those in 

stressful or physically demanding jobs, can benefit from stroke risk monitoring as 

part of workplace safety protocols.   

5. Research and Data Collection 

• Large-Scale Health Studies: Machine learning models can process vast datasets 

to uncover new stroke risk factors and improve medical understanding. 

• Predictive Epidemiology: Public health organizations can use AI-driven analysis 

to predict stroke prevalence in different populations, enabling better resource 

allocation. 

6. Integration with Other Technologies 

• Smart Home Systems: AI-powered stroke prediction can integrate with smart 



5  

home devices to alert caregivers or emergency services if a high-risk event is 

detected. 

• Electronic Health Records (EHR) Integration: Predictive models can be 

embedded in healthcare management systems to enhance decision-making for 

stroke prevention. 

7. Educational Tools 

• Public Awareness Campaigns: AI-powered stroke risk calculators can help 

educate individuals about risk factors and encourage preventive healthcare. 

• Medical Training and Decision Support: Healthcare professionals can use 

machine learning models to study stroke risk factors and improve clinical 

decision-making. 

8. Insurance and Wellness Programs 

• Health Insurance Optimization: Insurers can offer personalized plans based on 

machine learning-driven stroke risk assessments,incentivizing preventive 

healthcare. 

• Corporate Health Initiatives: Businesses can implement AI-driven health 

monitoring as part of corporate wellness programs to reduce long-term healthcare 

costs. 



6  

2. Literature Survey 

 
 

[1] Patel R, al. Proposed a Time Stroke Prediction Model with Federated Learning 

System. To protect patient privacy while enabling accurate stroke predictions across 

multiple healthcare institutions. By allowing local models at each site to contribute to a 

global model without sharing raw patient data, this approach enhances prediction accuracy 

while maintaining compliance with privacy regulations. The model is trained on data from 

over 10,000 patients across various demographics and achieves an accuracy rate of 95%. 

The study highlights the model’s effectiveness in providing timely predictions to aid in 

preventive stroke treatment. 

 

[2] Zhang H, et al. Proposed a Explainable AI for Stroke Risk Assessment Using Gradient-

Boosted Decision Trees in the year 2024.This research introduces an explainable AI (XAI) 

model using Gradient-Boosted Decision Trees (GBDT) for stroke prediction, focusing on 

interpretability and transparency. The XAI approach allows healthcare professionals to 

understand the influence of each factor on stroke risk. Key predictive features identified 

include age, hypertension, and blood glucose levels, among others. With an accuracy of 

92%, this model aims to provide clinicians with a clear and interpretable framework to 

predict stroke risk and guide patient counseling on modifiable risk factors. 

 

[3] Patel S, et al. Proposed a Predicting Stroke Risk with Hybrid Ensemble Models in the 

year 2023.This study develops a hybrid ensemble model combining Decision Trees, 

Gradient Boosting, and k-Nearest Neighbors to improve stroke prediction accuracy. The 

hybrid approach capitalizes on the strengths of each model, achieving a balanced accuracy 

rate of 93%. The model was trained on a large dataset with multiple stroke risk factors, 

including age, hypertension, and lifestyle habits. By leveraging ensemble methods, this 

model demonstrates robust performance, even with noisy data, and provides reliable 

predictions for clinical decision support.   

 

[4] M. Anand Kumar and N. Abiram proposed a Stroke Disease Prediction based on ECG 

Signals using Deep Learning Techniques in the year 2023. Stroke-related diseases are 

rapidly increasing day by day due to the changes in environmental factors including 

lifestyles, food habits, and stress-related working cultures. According to a recent report 

from World Health Organization (WHO), Stroke is the second largest disease after 



7  

cardiovascular disease that leads to death. Early diagnosis of stroke-related diseases was 

one of the major requirements for patients as well as medical professionals. This work 

proposed a framework based on Long Short-term Memory (LSTM) network for predicting 

stroke-related diseases with ECG data and other parameters. The experimental results 

show that 90% accuracy results with the combination of ECG data and the Deep learning 

approach. 

 

      [5] Rajasekaran S, et al. Proposed a Stroke Prediction Using Machine Learning Models. 

A Comparative Analysis in the year 2021. This study compares various machine learning 

algorithms, including Logistic Regression, Random Forest, and Support Vector Machines 

(SVM), for stroke prediction. The study aims to identify the most effective algorithm for 

predicting stroke risk based on commonly available clinical and demographic data. With 

an accuracy of 91%, Random Forest performed best among the models tested, followed 

closely by SVM. This research provides valuable insights into how different machine 

learning algorithms handle stroke prediction tasks. 

 



8  

 

 

3. EXISTING SYSTEM 
 

In the field of stroke prediction, several systems and methodologies have been 

developed to aid healthcare professionals in identifying individuals at risk and making 

timely interventions. These existing systems leverage various machine learning (ML) 

algorithms, data sources, and diagnostic tools to predict stroke risk and assist in clinical 

decision-making. Below are some of the prominent systems used for stroke prediction. 

3.1 Stroke Risk Prediction Models Using Traditional Statistical: Historically, many 

stroke prediction systems have relied on traditional statistical methods to predict stroke 

risk based on patient data. These models use risk factors such as age, gender, blood 

pressure, cholesterol levels, smoking status, and family medical history to calculate a 

patient's likelihood of experiencing a stroke. Some of the widely used models include 

Framingham Stroke Risk Profile (FSRP): This is one of the most well-known stroke 

risk assessment tools. The FSRP calculates a patient's 10-year stroke risk based on factors 

like age, gender, blood pressure, smoking status, diabetes, and cholesterol levels. 

However, its predictions are based on statistical relationships rather than machine learning 

models, and its accuracy may be limited when applied to diverse populations or novel 

data. 

       QRISR: Another commonly used risk assessment tool, QRISK, predicts the likelihood of 

cardiovascular events, including stroke, by analyzing factors like age, smoking, body 

mass index (BMI), and medical history. QRISK is widely used in clinical practice but is 

also based on traditional statistical methods rather than modern machine learning 

approaches. 

3.2 Machine Learning-Based Stroke Prediction Systems: As machine learning has                 

evolved, more advanced systems have been developed that use algorithms to analyze 

larger and more complex datasets, improving prediction accuracy and decision-making.  

       Random Forest, Decision Tree, and Support Vector Machines (SVM): These models 

have been successfully used for stroke prediction by learning from historical medical data. 

They are often trained on datasets that include patient demographics, clinical features, and 

lifestyle factors. These models can automatically detect complex patterns in the data, 

leading to more accurate predictions compared to traditional statistical models. 

       Artificial Neural Networks (ANN): ANN is one of the most powerful and widely used 



9  

machine learning algorithms in medical applications. It can handle nonlinear relationships 

between input features and provide higher accuracy in stroke prediction. ANN models are 

used in systems that take into account various risk factors such as age, hypertension, 

cholesterol levels, and smoking to predict stroke probability. These systems can also learn 

from new data and improve predictions over time.  

Logistic Regression: Logistic regression models are another widely used technique in 

stroke prediction, especially in clinical settings. These models predict the likelihood of 

stroke based on input features like blood pressure, heart rate, glucose levels, and lifestyle 

choices. Although simpler than ANN, logistic regression models are still effective for 

predicting stroke risk in certain contexts. 

3.2 Stroke Prediction Systems Based on Medical Imaging: Medical imaging plays a 

crucial role in the diagnosis of strokes, and with the advancements in artificial intelligence 

(AI) and deep learning, new systems have been developed to assist healthcare providers 

in detecting stroke from images like CT scans, MRIs, and angiograms. These systems use 

convolutional neural networks (CNNs) and other deep learning algorithms to analyze 

medical images for early signs of stroke. 

Deep Learning for Image Analysis: CNN-based models have been trained to detect 

stroke-related abnormalities such as ischemic stroke, hemorrhagic stroke, and cerebral 

edema from medical imaging. These systems can automatically identify subtle changes in 

brain images that may indicate early signs of a stroke, helping radiologists and doctors 

make quicker, more accurate diagnoses. 

Stroke Detection Using CT and MRI: Systems like BrainCT and BrainMRI are being 

used to analyze CT and MRI scans for stroke detection. These systems use deep learning 

techniques to segment brain tissues, detect blockages or hemorrhages, and provide a 

diagnosis, all in a fraction of the time it would take a radiologist to do manually. 

               3.4   Mobile Applications and Wearable Devices for Stroke Risk Monitoring 

 The rise of mobile technology and wearable health devices has enabled continuous 

monitoring of individuals' health status. Several stroke prediction systems are now 

integrated into mobile apps and wearables that track real-time health data, including heart 

rate, blood pressure, glucose levels, and activity patterns.  

Wearables and Smartwatches: Devices like the Apple Watch, Fitbit, and other 

smartwatches track user health metrics continuously. These devices use machine learning 

algorithms to monitor factors such as heart rate variability, irregular heart rhythms (like 

atrial fibrillation), and blood pressure. If these devices detect any abnormal readings, they 



10  

can alert users to potential stroke risks, prompting them to seek medical attention. 

 

Drawbacks 
 

Signal Complexity: SCG signals are formed from multiple overlapping mechanical events 

of the heart, complicating the extraction of meaningful stroke-related features. 

 

Technological Limitations: Older SCG sensors lacked the resolution for precise 

measurements. Despite improvements, these limitations delayed SCG’s integration into 

stroke prediction systems. 

 

Motion Artifacts: SCG is highly sensitive to respiratory and body motion artifacts, which 

can obscure the heart's mechanical signals and affect prediction outcomes. 

 

Lack of Standardization: The absence of a universally accepted SCG acquisition and 

analysis protocol leads to inconsistent performance and results across different models and 

studies. 

 

Limited Clinical Validation: SCG-based stroke risk systems still lack robust clinical 

backing, with few large-scale validations comparing them to established tools like ECG or 

MRI. 

 

Data Quality and Availability: ML models require large, clean, and diverse datasets.Many 

healthcare datasets are incomplete, biased, or inconsistently labeled.Privacy concerns and 

limited access to medical records hinder data collection. 

 

Complexity and Interpretability: Many ML models (e.g., deep learning) operate as “black 

boxes”. Clinicians often struggle to trust or understand decisions without transparent 

reasoning. 

 

Integration with Existing Healthcare Systems: Technical challenges exist in embedding 

ML tools into EHRs (Electronic Health Records).Workflow disruptions may occur if 

integration is not seamless. Compatibility with various hospital systems is inconsistent. 

 

Over-reliance on Technology: Dependence on AI may reduce clinical judgment or 

oversight. Technology may fail in unexpected scenarios or edge cases.Critical thinking and 

human validation are still essential. 

 

Generalization to New Data: Models trained on one population may not generalize to 

others (e.g., ethnic, geographic, or demographic differences).Continuous re-training with 

new data is needed to maintain performance. 

 

User Acceptance and Trust:Clinicians and patients may be skeptical of AI-driven 

decisions. Adoption depends on trust in the model, its accuracy, and transparency. Training 

and education are needed to build confidence. 

 

Limited Real-Time Prediction: Some models are not optimized for real-time or emergency 

settings. Computational demands may slow down predictions. Real-time integration into 

hospital systems remains challenging.



11  

4. PROPOSED METHODOLOGY 
 

4.1 Overview 

The proposed system aims to address the limitations and challenges of existing stroke 

prediction models by integrating advanced machine learning techniques, enhancing data 

quality, improving interpretability, and ensuring real-time prediction capabilities. The 

system leverages multiple machine learning algorithms—Artificial Neural Networks 

(ANN), Decision Trees, and Naive Bayes—along with a user-friendly web interface for 

healthcare professionals and patients. The core of the proposed system is the integration 

of three distinct machine learning algorithms: Artificial Neural Networks (ANN), 

Decision Trees, and Naive Bayes classifiers. Each algorithm is selected based on its 

unique strengths to collectively improve the robustness and versatility of the system.  The 

system also includes a user-friendly web-based interface that allows healthcare 

professionals and patients to interact with the system in a seamless manner. This interface 

supports data entry, displays risk assessment results, and provides real-time feedback 

based on the analysis of input data.To ensure accurate predictions, the system processes 

patient data such as age, blood pressure, glucose levels, body mass index (BMI), smoking 

status, heart disease, and other lifestyle or clinical factors. A preprocessing pipeline is 

implemented to handle noise, missing values, and normalization, which significantly 

contributes to data quality improvement.Moreover, the system is capable of making real-

time predictions, thanks to its optimized architecture and efficient algorithmic backend. 

The prediction results are categorized into different risk levels (e.g., Low, Medium, High), 

enabling timely medical interventions and personalized patient monitoring. 

In summary, the proposed system combines the strengths of multiple machine learning 

techniques with an intuitive user interface to form a comprehensive solution for brain 

stroke prediction. It holds the potential to transform the conventional stroke risk 

assessment process by offering a more accurate, interpretable, and accessible tool for use 

in modern healthcare environments. 

4.2 Architecture Diagram: A system architecture or systems architecture is the 

conceptual model that defines the structure, behavior, and more views of a system. An 

architecture description is a formal description and representation of a system, organized 

in a way that supports reasoning about the structures and behaviors of the system. System 



12  

architecture can comprise system components, the externally visible properties of those 

components, the relationships (e.g. the behavior) between them. It can provide a plan from 

which products can be procured, and systems developed, that will work together to 

implement the overall system. There have been efforts to formalize languages to describe 

system architecture, collectively these are called architecture description languages 

(ADLs).  

                  Various organizations define systems architecture in different ways, including: 

An allocated arrangement of physical elements which provides the design solution for a 

consumer product or life-cycle process intended to satisfy the requirements of the 

functional architecture and the requirements baseline. 

Architecture comprises the most important, pervasive, top-level, strategic inventions, 

decisions, and their associated rationales about the overall structure (i.e., essential 

elements and their relationships) and associated characteristics and behavior. 

If documented, it may include information such as a detailed inventory of current 

hardware, software and networking capabilities; a description of long-range plans and a 

plan for upgrading and/or replacing dated equipment and software. 

                                    Fig.no.4.1 Architecture Diagram 

 

                                       



13  

               4.3 Dataflow Diagram 

A two-dimensional diagram explains how data is processed and transferred in a system. The 

graphical depiction identifies each source of data and how it interacts with other data sources to 

reach a common output. Individuals seeking to draft a data flow diagram must identify external 

inputs and outputs, determine how the inputs and outputs relate to each other, and explain with 

graphics how these connections relate and what they result in. This type of diagram helps business 

development and design teams visualize how data is processed and identify or improve certain 

aspects. 

                  LEVEL 0 

This stage is to create the Level 0 Data Flow Diagram. This highlights the main functions carried 

out by the system. As a rule, to describe the system was using between two and seven functions - two 

being a simple system and seven being a complicated system. This enables us to keep the model 

manageable on screen or paper.  

                                           Fig .no .4.2 Dataflow Diagram 

 

 

                                                 

  Home Page   

User database  
 

Login  
 

Prediction 

Page 

 

User Input 

Result 
 



14  

          Advantages 

1. Enhanced Prediction Accuracy: 

• ML models can identify complex and nonlinear relationships in data.  

• Improves the precision of stroke risk classification over traditional statistical methods. 

2. Real-Time Risk Assessment: 

• Once trained, ML models provide instant predictions.  

• Enables timely medical interventions and faster clinical decision-making. 

3. Model Interpretability and Transparency: 

• Algorithms like DecisionTrees  and Naive Bayes offer understandable outputs. 

• Helps healthcare professionals trust and validate the system’s recommendations. 

 

4. Continuous Improvement and Adaptation: 

• Enhances adaptability across different populations and improves model 

performance over time. 

5. Efficient Processing of Large Datasets: 

• Capable of handling and learning from vast amounts of medical and lifestyle 

data. 

• . Increases the robustness of predictions. 



15  

                                             5. UML DAIGRAMS 

UML stands for Unified Modeling Language. UML is a standardized general-purpose 

modeling language in the field of object-oriented software engineering. The standard is 

managed, and was created by, the Object Management Group. The goal is for UML to 

become a common language for creating models of object-oriented computer software. In 

its current form UML is comprised of two major components: a Meta-model and a 

notation. In the future, some form of method or process may also be added to; or associated 

with, UML. 

The Unified Modeling Language is a standard language for specifying, Visualization, 

Constructing and documenting the artifacts of software system, as well as for business 

modeling and other non-software systems. The UML represents a collection of best 

engineering practices that have proven successful in the modeling of large and complex 

systems. The UML is a very important part of developing objects-oriented software and 

the software development process. The UML uses mostly graphical notations to express 

the design of software projects. 

GOALS: The Primary goals in the design of the UML are as follows: 

 

• Provide users a ready-to-use, expressive visual modeling Language so that they can 

develop and exchange meaningful models. 

• Provide extendibility and specialization mechanisms to extend the core concepts. 

• Be independent of particular programming languages and development process. 

• Provide a formal basis for understanding the modeling language. 

• Encourage the growth of OO tools market. 

• Integrate best practices. 

• Class diagram 

The class diagram is used to refine the use case diagram and define a detailed design of 

the system. The class diagram classifies the actors defined in the use case diagram into a 

set of interrelated classes. The relationship or association between the classes can be either 

an "is-a" or "has-a" relationship. Each class in the class diagram may be capable of 

providing certain functionalities. These functionalities provided by the class are termed 

"methods" of the class. Apart from this, each class may have certain "attributes" that 

uniquely identify the class. 



16  

 

Fig.no.5.1 Class Diagram 

 

• Use case Diagram 

A use case diagram in the Unified Modeling Language (UML) is a type of behavioral 

diagram defined by and created from a Use-case analysis. Its purpose is to present a 

graphical overview of the functionality provided by a system in terms of actors, their goals 

(represented as use cases), and any dependencies between those use cases. The main 

purpose of a use case diagram is to show what system functions are performed for which 

actor. Roles of the actors in the system can be depicted. 



17  

         

                                 
Fig. no. 5.2 Use case Diagram 

 

• Sequence Diagram 

A sequence diagram in Unified Modeling Language (UML) is a kind of interaction 

diagram that shows how processes operate with one another and in what order. It is a 

construct of a Message Sequence Chart. A sequence diagram shows, as parallel vertical 

lines ("lifelines"), different processes or objects that live simultaneously, and as horizontal 

arrows, the messages exchanged between them, in the order in which they occur. This 

allows the specification of simple runtime scenarios in a graphical manner. 



18  

Fig.no.5.3SequenceDiagram 

 

 

 

• Activity diagram: Activity diagrams are graphical representations of 

Workflows of stepwise activities and actions with support for choice, iteration, and 

concurrency. 

In the Unified Modeling Language, activity diagrams can be used to describe the business 

and operational step-by-step workflows of components in a system. An activity diagram 

shows the overall flow of control. 

 



19  

 

                                                      Fig.no.5.4 Activity Diagram 



20  

                                                6.  SOFTWARE ENVIRONMENT 

 

              6.1 Python Programing Language 

                What is Python? 

                      Below are some facts about Python. 

• Python is currently the most widely used multi-purpose, high-level 

programming language. 

• Python allows programming in Object-Oriented and Procedural paradigms. 

Python programs generally are smaller than other programming languages like 

Java. 

 

• Programmers have to type relatively less and indentation requirement of 

the language, makes them readable all the time. 

 

• Python language is being used by almost all tech-giant companies like 

– Google, Amazon, Facebook, Instagram, Dropbox, Uber… etc. 

The biggest strength of Python is huge collection of standard libraries which can be used 

for the following – 

• Machine Learning 

• GUI Applications (like Kivy, Tkinter, PyQt etc.) 

• Web frameworks like Django (used by YouTube, Instagram, Dropbox) 

• Image processing (like Opencv, Pillow) 

• Web scraping (like Scrapy, BeautifulSoup, Selenium) 

• Test frameworks 

• Multimedia 

 

 

Advantages of Python 

Let’s see how Python dominates over other languages. 

 

 

1. Extensive Libraries 

Python downloads with an extensive library and it contain code for various purposes like 

regular expressions, documentation-generation, unit-testing, web browsers, threading, 



21  

databases, CGI, email, image manipulation, and more. So, we don’t have to write the 

complete code for that manually. 

2. Extensible 

As we have seen earlier, Python can be extended to other languages. You can write 

some of your code in languages like C++ or C. This comes in handy, especially in 

projects. 

3. Embeddable 

Complimentary to extensibility, Python is embeddable as well. You can put your Python 

code in your source code of a different language, like C++. This lets us add scripting 

capabilities to our code in the other language. 

4. Improved Productivity 

The language’s simplicity and extensive libraries render programmers more productive 

than languages like Java and C++ do. Also, the fact that you need to write less and get 

more things done. 

5. IOT Opportunities 

Since Python forms the basis of new platforms like Raspberry Pi, it finds the future bright 

for the Internet of Things. This is a way to connect the language with the real world. 

6. Simple and Easy 

When working with Java, you may have to create a class to print ‘Hello World’. But in 

Python, just a print statement will do. It is also quite easy to learn, understand, and code. 

This is why when people pick up Python, they have a hard time adjusting to other more 

verbose languages like Java. 

7. Readable 

Because it is not such a verbose language, reading Python is much like reading English. 

This is the reason why it is so easy to learn, understand, and code. It also does not need 

curly braces to define blocks, and indentation is mandatory. These further aids the 

readability of the code 



22  

8. Object- Oriented 

This language supports both the procedural and object-oriented programming paradigms. 

While functions help us with code reusability, classes and objects let us model the real 

world. A class allows the encapsulation of data and functions into one. 

9. Free and Open-Source 

Like we said earlier, Python is freely available. But not only can you download Python for 

free, but you can also download its source code, make changes to it, and even distribute 

it. It downloads with an extensive collection of libraries to help you with your tasks. 

10. Portable 

When you code your project in a language like C++, you may need to make some 

changes to it if you want to run it on another platform. But it isn’t the same with Python. 

Here, you need to code only once, and you can run it anywhere. This is called Write 

Once Run Anywhere (WORA). However, you need to be careful enough not to include 

any system-dependent features. 

11. Interpreted 

Lastly, we will say that it is an interpreted language. Since statements are executed one 

by one, debugging is easier than in compiled languages. 

Any doubts till now in the advantages of Python? Mention in the comment section. 

 

Advantages of Python Over Other Languages 

 

1. Less Coding 

Almost all of the tasks done in Python requires less coding when the same task is done in 

other languages. Python also has an awesome standard library support, so you don’t have 

to search for any third-party libraries to get your job done. This is the reason that many 

people suggest learning Python to beginners. 

2. Affordable 

Python is free therefore individuals, small companies or big organizations can leverage 

the free available resources to build applications. Python is popular and widely used so it 

gives you better community support. 

The 2019 Github annual survey showed us that Python has overtaken Java in the most 

popular programming language category. 



23  

3. Python is for Everyone 

Python code can run on any machine whether it is Linux, Mac or Windows. Programmers 

need to learn different languages for different jobs but with Python, you can professionally 

build web apps, perform data analysis and machine learning, automate things, do web 

scraping and also build games and powerful visualizations. It is an all- rounder 

programming language. 

Disadvantages of Python 

 

So far, we’ve seen why Python is a great choice for your project. But if you choose it, you 

should be aware of its consequences as well. Let’s now see the downsides of choosing 

Python over another language. 

1. Speed Limitations 

 

We have seen that Python code is executed line by line. But since Python is interpreted, it 

often results in slow execution. This, however, isn’t a problem unless speed is a focal point 

for the project. In other words, unless high speed is a requirement, the benefits offered by 

Python are enough to distract us from its speed limitations. 

2. Weak in Mobile Computing and Browsers 

 

While it serves as an excellent server-side language, Python is much rarely seen on the 

client- side. Besides that, it is rarely ever used to implement smartphone-based 

applications. One such application is called Carbonnelle. 

The reason it is not so famous despite the existence of Brython is that it isn’t that secure. 

 

3. Design Restrictions 

 

As you know, Python is dynamically-typed. This means that you don’t need to declare the 

type of variable while writing the code. It uses duck-typing. But wait, what’s that? Well, 

it just means that if it looks like a duck, it must be a duck. While this is easy on the 

programmers during coding, it can raise run-time errors. 

4. Underdeveloped Database Access Layers 

 

Compared to more widely used technologies like JDBC (Java Data Base Connectivity) 

and ODBC (Open Data Base Connectivity), Python’s database access layers are a bit 

underdeveloped. Consequently, it is less often applied in huge enterprises. 



24  

5. Simple 

No, we’re not kidding. Python’s simplicity can indeed be a problem. Take my example. I 

don’t do Java, I’m more of a Python person. To me, its syntax is so simple that the 

verbosity of Java code seems unnecessary. 

This was all about the Advantages and Disadvantages of Python Programming Language. 

 

             6.2 History of Python 

What do the alphabet and the programming language Python have in common? Right, 

both start with ABC. If we are talking about ABC in the Python context, it's clear that the 

programming language ABC is meant. ABC is a general-purpose programming language 

and programming environment, which had been developed in the Netherlands, 

Amsterdam, at the CWI (Centrum Wiskunde &Informatica). The greatest achievement of 

ABC was to influence the design of Python. Python was conceptualized in the late 1980s. 

Guido van Rossum worked that time in a project at the CWI, called Amoeba, a distributed 

operating system. In an interview with Bill Venners1, Guido van Rossum said: "In the 

early 1980s, I worked as an implementer on a team building a language called ABC at 

Centrum voor Wiskunde en Informatica (CWI). I don't know how well people know 

ABC's influence on Python. I try to mention ABC's influence because I'm indebted to 

everything I learned during that project and to the people who worked on it. "Later on in 

the same Interview, Guido van Rossum continued: "I remembered all my experience and 

some of my frustration with ABC. I decided to try to design a simple scripting language 

that possessed some of ABC's better properties, but without its problems. So, I started 

typing. I created a simple virtual machine, a simple parser, and a simple runtime. I made 

my own version of the various ABC parts that I liked. I created a basic syntax, used 

indentation for statement grouping instead of curly braces or begin- end blocks, and 

developed a small number of powerful data types: a hash table (or dictionary, as we call 

it), a list, strings, and numbers." 

Python Development Steps 

Guido Van Rossum published the first version of Python code (version 0.9.0) at alt. 

sources in February 1991. This release included already exception handling, functions, 

and the core data types of lists, dict, str and others. It was also object oriented and had a 

module system. Python version 1.0 was released in January 1994. The major new features 

included in this release were the functional programming tools lambda, map, 



25  

filter and reduce, which Guido Van Rossum never liked. Six and a half years later in 

October 2000, Python 2.0 was introduced. 

This release included list comprehensions, a full garbage collector and it was 

supporting 

unicode. Python flourished for another 8 years in the versions 2.x before the next major 

release as Python 3.0 (also known as "Python 3000" and "Py3K") was released. Python 3 

is not backwards compatible with Python 2.x. The emphasis in Python 3 had been on the 

removal of duplicate programming constructs and modules, thus fulfilling or coming close 

to fulfilling the 13th law of the Zen of Python: "There should be one -- and preferably only 

one -- obvious way to do it. Some changes in Python 7.3: 

• Print is now a function. 

• Views and iterators instead of lists 

• The rules for ordering comparisons have been simplified. E.g., a heterogeneous list 

cannot be sorted, because all the elements of a list must be comparable to each other. 

• There is only one integer type left, i.e., int. long is int as well. 

• The division of two integers returns a float instead of an integer. "//" can be used to 

have the "old" behavior. 

• Text Vs. Data Instead of Unicode Vs. 8-bit 

Purpose 

 

We demonstrated that our approach enables successful segmentation of intra-retinal 

layers— even with low-quality images containing speckle noise, low contrast, and 

different intensity ranges throughout—with the assistance of the ANIS feature. 

 

Python 

 

Python is an interpreted high-level programming language for general-purpose 

programming. Created by Guido van Rossum and first released in 1991, Python has a 

design philosophy that emphasizes code readability, notably using significant whitespace. 

Python features a dynamic type system and automatic memory management. It supports 

multiple programming paradigms, including object-oriented, imperative, functional and 

procedural, and has a large and comprehensive standard library. 



26  

• Python is Interpreted − Python is processed at runtime by the interpreter. You do not 

need to compile your program before executing it. This is similar to PERL and PHP. 

• Python is Interactive − you can actually sit at a Python prompt and interact with the 

interpreter directly to write your programs. 

Python also acknowledges that speed of development is important. Readable and terse 

code is part of this, and so is access to powerful constructs that avoid tedious repetition of 

code. Maintainability also ties into this may be an all but useless metric, but it does say 

something about how much code you have to scan, read and/or understand to troubleshoot 

problems or tweak behaviors. This speed of development, the ease with which a 

programmer of other languages can pick up basic Python skills and the huge standard 

library is key to another area where Python excels. All its tools have been quick to 

implement, saved a lot of time, and several of them have later been patched and updated 

by people with no Python background - without breaking. 

              6.3 Modules 

 

TensorFlow 

TensorFlow is a free and open-source software library for dataflow and differentiable 

programming across a range of tasks. It is a symbolic math library and is also used for 

machine learning applications such as neural networks. It is used for both research 

and production at Google. 

TensorFlow was developed by the Google Brain team for internal Google use. It was 

released under the Apache 2.0 open-source license on November 9, 2015. 

 

 

NumPy 

 

NumPy is a general-purpose array-processing package. It provides a high- 

performance multidimensional array object, and tools for working with these arrays. 

It is the fundamental package for scientific computing with Python. It contains various 

features including these important ones: 

• A powerful N-dimensional array object 

• Sophisticated (broadcasting) functions 



27  

• Tools for integrating C/C++ and Fortran code 

• Useful linear algebra, Fourier transform, and random number capabilities 

Besides its obvious scientific uses, NumPy can also be used as an efficient multi- 

dimensional container of generic data. Arbitrary datatypes can be defined using NumPy 

which allows NumPy to seamlessly and speedily integrate with a wide variety of 

databases. 

Pandas 

 

Pandas is an open-source Python Library providing high-performance data manipulation 

and analysis tool using its powerful data structures. Python was majorly used for data 

munging and preparation. It had very little contribution towards data analysis. Pandas 

solved this problem. Using Pandas, we can accomplish five typical steps in the processing 

and analysis of data, regardless of the origin of data load, prepare, manipulate, model, and 

analyze. Python with Pandas is used in a wide range of fields including academic and 

commercial domains including finance, economics, Statistics, analytics, etc. 

Matplotlib 

 

Matplotlib is a Python 2D plotting library which produces publication quality figures in a 

variety of hardcopy formats and interactive environments across platforms. Matplotlib can 

be used in Python scripts, the Python and IPython shells, the Jupyter Notebook, web 

application servers, and four graphical user interface toolkits. Matplotlib tries to make 

easy things easy and hard things possible. You can generate plots, histograms, power 

spectra, bar charts, error charts, scatter plots, etc., with just a few lines of code. 

For examples, see the sample plots and thumbnail gallery. 

For simple plotting the pyplot module provides a MATLAB-like interface, particularly 

when combined with IPython. For the power user, you have full control of line styles, font 

properties, axes properties, etc, via an object-oriented interface or via a set of functions 

familiar to MATLAB users. 

Scikit – learn 

 

Scikit-learn provides a range of supervised and unsupervised learning algorithms via a 

consistent interface in Python. It is licensed under a permissive simplified BSD license 

and is distributed under many Linux distributions, encouraging academic and commercial 

use. Python 



28  

Python is an interpreted high-level programming language for general-purpose 

programming. Created by Guido van Rossum and first released in 1991, Python has a 

design philosophy that emphasizes code readability, notably using significant whitespace. 

Python features a dynamic type system and automatic memory management. It supports 

multiple programming paradigms, including object-oriented, imperative, functional and 

procedural, and has a large and comprehensive standard library. 

• Python is Interpreted − Python is processed at runtime by the interpreter. You do 

not need to compile your program before executing it. This is similar to PERL and 

PHP. 

• Python is Interactive − you can actually sit at a Python prompt and interact with 

the interpreter directly to write your programs. 

Python also acknowledges that speed of development is important. Readable and terse 

code is part of this, and so is access to powerful constructs that avoid tedious repetition of 

code. Maintainability also ties into this may be an all but useless metric, but it does say 

something about how much code you have to scan, read and/or understand to troubleshoot 

problems or tweak behaviors. This speed of development, the ease with which a 

programmer of other languages can pick up basic Python skills and the huge standard 

library is key to another area where Python excels. All its tools have been quick to 

implement, saved a lot of time, and several of them have later been patched and updated 

by people with no Python background - without breaking. 

 

 

6.4  Install Python Step-by-Step in Windows and Mac 

Python a versatile programming language doesn’t come pre-installed on your computer 

devices. Python was first released in the year 1991 and until today it is a very popular 

high- level programming language. Its style philosophy emphasizes code readability with 

its notable use of great whitespace. 

The object-oriented approach and language construct provided by Python enables 

programmers to write both clear and logical code for projects. This software does not 

come pre-packaged with Windows 

How to Install Python on Windows and Mac 

 

There have been several updates in the Python version over the years. The question is 



29  

how to install Python? It might be confusing for the beginner who is willing to start 

learning Python but this tutorial will solve your query. The latest or the newest version of 

Python is version 3.7.4 or in other words, it is Python 3. 

 

Note: The python version 3.7.4 cannot be used on Windows XP or earlier devices. Before 

you start with the installation process of Python. First, you need to know 

about your System Requirements. Based on your system type i.e., operating system and 

based processor, you must download the python version. My system type is a Windows 

64-bit operating system. So, the steps below are to install python version 3.7.4 on 

Windows 7 device or to install Python 3. Download the Python Cheatsheet here. The steps 

on how to install Python on Windows 10, 8 and 7 are divided into 4 parts to help 

understand better. 

Download the Correct version into the system 

 

Step 1: Go to the official site to download and install python using Google Chrome or any 

other web browser. OR Click on the following link: https://www.python.org 

 

 

 

                Now, check for the latest and the correct version for your operating system. 

 

 

 

http://www.python.org/


30  

                Step 2: Click on the Download Tab. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Step 3: You can either select the Download Python for windows 3.7.4 button in Yellow 

Color or you can scroll further down and click on download with respective to their 

version. Here, we are downloading the most recent python version for windows 3.7.4 

 

 

Step 4: Scroll down the page until you find the Files option. 

 

                Step 5: Here you see a different version of python along with the operating system. 



31  

 

 

• To download Windows 32-bit python, you can select any one from the three 

options: Windows x86 embeddable zip file, Windows x86 executable installer or 

Windows x86 web-based installer. 

• To download Windows 64-bit python, you can select any one from the three 

options: Windows x86-64 embeddable zip file, Windows x86-64 executable 

installer or Windows x86-64 web-based installer. 

Here we will install Windows x86-64 web-based installer. Here your first part regarding 

which version of python is to be downloaded is completed. Now we move ahead with the 

second part in installing python i.e., Installation 

Note: To know the changes or updates that are made in the version you can click on the 

Release Note Option. 

Installation of Python 

 

Step 1: Go to Download and Open the downloaded python version to carry out the 

installation process. 



32  

 

 

Step 2: Before you click on Install Now, make sure to put a tick on Add Python 3.7 to 

PATH. 

 

Step 3: Click on Install NOW After the installation is successful. Click on Close. 

 

 

With these above three steps on python installation, you have successfully and 



33  

correctly installed Python. Now is the time to verify the installation. 

Note: The installation process might take a couple of minutes. Verify the Python 

Installation 

Step 1: Click on Start 

 

Step 2: In the Windows Run Command, type “cmd”. 

 

 

 

                  Step 3: Open the Command prompt option. 

 

Step 4: Let us test whether the python is correctly installed. Type python –V and press 

Enter. 

 

 

Step 5: You will get the answer as 3.7.4 

 

Note: If you have any of the earlier versions of Python already installed. You must 

first uninstall the earlier version and then install the new one. 

Check how the Python IDLE works 



34  

 

Step 1: Click on Start 

 

Step 2: In the Windows Run command, type “python idle”. 

 

 

Step 3: Click on IDLE (Python 3.7 64-bit) and launch the program 

 

Step 4: To go ahead with working in IDLE you must first save the file. Click on File > 

Click on Save 

 

 

Step 5: Name the file and save as type should be Python files. Click on SAVE. Here 

I have named the files as Hey World. 

Step 6: Now for e.g., enter print (“Hey World”) and Press Enter. 



35  

 

 

You will see that the command given is launched. With this, we end our tutorial on how 

to install Python. You have learned how to download python for windows into your 

respective operating system. 

Note: Unlike Java, Python does not need semicolons at the end of the statements otherwise 

it won’t work. 

 

          6.5 FRONTEND: 

      1. Hypertext Markup Language(HTML) 

HTML (Hypertext Markup Language) is a text-based approach to describing how content 

contained within an HTML file is structured. This markup tells a web browser how to display 

text, images and other forms of multimedia on a webpage. HTML is a formal 

recommendation by the World Wide Web Consortium (W3C) and is generally adhered to by 

all major web browsers, including both desktop and mobile web browsers. 

 

2. HTML Work HTML is a text file containing specific syntax, file and naming 

conventions that show the computer and the web server that it is in HTML and should be 

read as such. By applying these HTML conventions to a text file in virtually any text editor, 

a user can write and design a basic webpage, and then upload it to the internet. The most 

basic of HTML conventions is the inclusion of a document type declaration at the beginning 

of the text file. This always comes first in the document, because it is the piece that 

affirmatively informs a computer that this is an HTML file. The document header typically 

looks like this: <!DOCTYPE html>. It should always be written that way, without any 

content inside it or breaking it up. Any content that comes before this declaration will not be 

recognized as HTML by a computer. Doctypes are not just used for HTML, they can apply 

to the creation of any document that uses SGML (Standard Generalized Markup Language). 



36  

 

2. Cascading Style Sheets (CSS) CSS, or Cascading Style Sheets, is a fundamental 

technology in web development that defines the presentation and layout of HTML 

documents. Serving as a style language, CSS enables the separation of content from 

design, allowing developers to control the appearance of web pages consistently 

across various devices and screen sizes. The working process involves selecting 

HTML elements and applying style rules to define attributes like colors, fonts, 

spacing, and positioning. CSS operates through a cascading mechanism, where styles 

can be inherited, overridden, or combined based on specificity and order of 

application. This separation of concerns enhances maintainability and flexibility in 

web development, as changes to the visual aspects of a website can be implemented 

globally by modifying the CSS, without altering the underlying HTML structure. 

 

             6.6 BACKEND: 

SQLite is a lightweight, serverless, and self-contained relational database 

management system. It is an ideal choice for small to medium-scale applications or 

prototypes due to its simplicity and minimal configuration requirements. For the Stroke 

Prediction System, SQLite can be used as the backend database to store user data and 

predictions securely. 

 

 

 

 

 

 

 

   

 

 

 

   



37  

                            7. SYSTEM REQUIREMENTS SPECIFICATIONS 

               7.1 Software Requirements 

The functional requirements or the overall description documents include the product 

perspective and features, operating system and operating environment, graphics 

requirements, design constraints and user documentation. 

The appropriation of requirements and implementation constraints gives the general 

overview of the project in regard to what the areas of strength and deficit are and how to 

tackle them. 

• Python IDLE 3.7 version (or) 

• Anaconda 3.7 (or) 

• Jupiter  

• HTML, CSS 

• SQL 

• VS code 

7.2  Hardware Requirements 

Minimum hardware requirements are very dependent on the particular software being 

developed by a given Enthought Python / Canopy / VS Code user. Applications that need 

to store large arrays/objects in memory will require more RAM, whereas applications that 

need to perform numerous calculations or tasks more quickly will require a faster 

processor. 

• System : Pentium IV 2.4 GHz. 

• Hard Disk : 100 GB. 

• Monitor : 15 VGA Color. 

• Mouse : Logitech. 

• RAM : 1 GB. 



38  

                           8. FUNCTIONAL REQUIREMENTS 

               8.1 Output Design 

Outputs from computer systems are required primarily to communicate the results of 

processing to users. They are also used to provides a permanent copy of the results for 

later consultation. The various types of outputs in general are: 

• External Outputs, whose destination is outside the organization 

• Internal Outputs whose destination is within organization and they are the 

• User’s main interface with the computer. 

• Operational outputs whose use is purely within the computer department. 

• Interface outputs, which involve the user in communicating directly. 

Output Definition 

 

The outputs should be defined in terms of the following points: 

 

• Type of the output 

• Content of the output 

• Format of the output 

• Location of the output 

• Frequency of the output 

• Volume of the output 

• Sequence of the output 

It is not always desirable to print or display data as it is held on a computer. It should be 

decided as which form of the output is the most suitable. 

8.2  Input Design 

Input design is a part of overall system design. The main objective during the input 

design is as given below: 

• To produce a cost-effective method of input. 

• To achieve the highest possible level of accuracy. 

• To ensure that the input is acceptable and understood by the user. 



39  

Input Stages 

 

The main input stages can be listed as below: 

• Data recording 

• Data transcription 

• Data conversion 

• Data verification 

• Data control 

• Data transmission 

• Data validation 

• Data correction 

Input Types 

 

It is necessary to determine the various types of inputs. Inputs can be categorized as 

follows: 

 

• External inputs, which are prime inputs for the system. 

• Internal inputs, which are user communications with the system. 

• Operational, which are computer department’s communications to the system? 

• Interactive, which are inputs entered during a dialogue. 

Input Media 

 

At this stage choice has to be made about the input media. To conclude about the input 

media consideration has to be given to; 

• Type of input 

• Flexibility of format 

• Speed 

• Accuracy 

• Verification methods 

• Rejection rates 

• Ease of correction 

• Storage and handling requirements 

• Security 

• Easy to use 

• Portability 

Keeping in view the above description of the input types and input media, it can be said 



40  

that most of the inputs are of the form of internal and interactive. As Input data is to be 

the directly keyed in by the user, the keyboard can be considered to be the most suitable 

input device. 

Error Avoidance 

 

At this stage care is to be taken to ensure that input data remains accurate form the stage 

at which it is recorded up to the stage in which the data is accepted by the system. This 

can be achieved only by means of careful control each time the data is handled. 

Error Detection 

 

Even though every effort is made to avoid the occurrence of errors, still a small proportion 

of errors is always likely to occur, these types of errors can be discovered by using 

validations to check the input data. 

Data Validation 

 

Procedures are designed to detect errors in data at a lower level of detail. Data validations 

have been included in the system in almost every area where there is a possibility for the 

user to commit errors. The system will not accept invalid data. Whenever an invalid data 

is keyed in, the system immediately prompts the user and the user has to again key in the 

data and the system will accept the data only if the data is correct. Validations have been 

included where necessary. 

The system is designed to be a user friendly one. In other words the system has been 

designed to communicate effectively with the user. The system has been designed with 

popup menus. 

8.3  User Interface Design 

It is essential to consult the system users and discuss their needs while designing the user 

interface: 

User Interface Systems Can Be Broadly Classified As:  

• User initiated interface the user is in charge, controlling the progress of the user/computer 

dialogue. In the computer-initiated interface, the computer selects the next stage in the 

interaction. 

• Computer initiated interfaces In the computer-initiated interfaces the computer guides the 

progress of the user/computer dialogue. Information is displayed and the user response. 

 

 



41  

User Initiated Interfaces 

 

User initiated interfaces fall into two approximate classes: 

• Command driven interfaces: In this type of interface the user inputs commands or queries 

which are interpreted by the computer. 

• Forms oriented interface: The user calls up an image of the form to his/her screen and fills in 

the form. The forms-oriented interface is chosen because it is the best choice. 

Computer-Initiated Interfaces 

 

The following computer – initiated interfaces were used: 

• The menu system for the user is presented with a list of alternatives and the user chooses one; 

of alternatives. 

• Questions – answer type dialog system where the computer asks question and takes action 

based on the basis of the users reply. 

Right from the start the system is going to be menu driven, the opening menu displays the 

available options. Choosing one option gives another popup menu with more options. In 

this way every option leads the users to data entry form where the user can key in the data. 

Error Message Design 

 

The design of error messages is an important part of the user interface design. As user is 

bound to commit some errors or other while designing a system the system should be 

designed to be helpful by providing the user with information regarding the error he/she 

has committed. 

This application must be able to produce output at different modules for different inputs. 

 

8.4  Performance Requirements 

Performance is measured in terms of the output provided by the application. Requirement 

specification plays an important part in the analysis of a system. Only when the 

requirement specifications are properly given, it is possible to design a system, which will 

fit into required environment. It rests largely in the part of the users of the existing system 

to give the requirement specifications because they are the people who finally use the 

system. This is because the requirements have to be known during the initial stages so 

that the system can be designed according to those requirements. It is very difficult to 

change the system once it has been designed and on the other hand designing a system, 

which does not cater to the requirements of the user, is of no use. 

The requirement specification for any system can be broadly stated as given below: 

• The system should be able to interface with the existing system 

• The system should be accurate 

All the other requirements which do not form a part of the above specification are 



42  

categorized as Non-Functional needs. A system perhaps needed to gift the user with 

a show of the quantity of records during info. If the quantity must be updated in real 

time, the system architects should make sure that the system is capable of change the 

displayed record count at intervals associate tolerably short interval of the quantity of 

records dynamic. Comfortable network information measure may additionally be a 

non-functional requirement of a system. 

The following are the features: 

 

➢ Accessibility 

➢ Availability 

➢ Backup 

➢ Certification 

➢ Compliance 

➢ Configuration Management 

➢ Documentation 

➢ Disaster Recovery 

➢ Efficiency (resource consumption for given load) 

➢ Interoperability 

              8.5 Feasibility Study 

Preliminary investigation examines project feasibility; the likelihood the system will be 

useful to the organization. The main objective of the feasibility study is to test the 

Technical, Operational and Economical feasibility for adding new modules and debugging 

old running system. All systems are feasible if they are given unlimited resources and 

infinite time. There are aspects in the feasibility study portion of the preliminary 

investigation: 

• Technical Feasibility 

• Operation Feasibility 

• Economical Feasibility 

 

8.5.1 Technical Feasibility 

 

The technical issue usually raised during the feasibility stage of the investigation includes 

the following: 

• Does the necessary technology exist to do what is suggested? 

• Do the proposed equipments have the technical capacity to hold the data required to 

use the new system? 

• Will the proposed system provide adequate response to inquiries, regardless of the 



43  

number or location of users? 

• Can the system be upgraded if developed? 

Are there technical guarantees of accuracy, reliability, ease of access and data security? 

8.5.2 Operational Feasibility 

User-friendly 

Customer will use the forms for their various transactions i.e. for adding new routes, 

viewing the routes details. Also the Customer wants the reports to view the various 

transactions based on the constraints. These forms and reports are generated as user- 

friendly to the Client. 

Reliability 

The package wills pick-up current transactions on line. Regarding the old transactions, 

User will enter them in to the system. 

Security 

The web server and database server should be protected from hacking, virus etc 

Portability 

The application will be developed using standard open source software (Except Oracle) 

like Java, tomcat web server, Internet Explorer Browser etc these software will work both 

on Windows and Linux o/s. Hence portability problems will not arise. 

Availability 

This software will be available always. 

Maintainability 

The system uses the 2-tier architecture. The 1st tier is the GUI, which is said to be front- 

end and the 2nd tier is the database, which uses My-Sql, which is the back-end. 

The front-end can be run on different systems (clients). The database will be running at 

the server. Users access these forms by using the user-ids and the passwords. 

 

8.5.3 Economic Feasibility 

The computerized system takes care of the present existing system’s data flow and 

procedures completely and should generate all the reports of the manual system besides a 

host of other management reports. It should be built as a web based application with 

separate web server and database server. This is required as the activities are spread 

throughout the organization customer wants a centralized database. Further some of the 

linked transactions take place in different locations. 



44  

                                           9.METHODOLOGY 

9.1  Requirements Gathering Stage 

 
         SDLC (Software Development Life Cycle) – Umbrella Model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig no. 9.1 Umbrella model 

 

SDLC is nothing but Software Development Life Cycle. It is a standard which is used by 

software industry to develop good software. 

The requirements gathering process takes as its input the goals identified in the high- level 

requirements section of the project plan. Each goal will be refined into a set of one or more 

requirements. These requirements define the major functions of the intended application, 

define operational data areas and reference data areas, and define the initial data entities. 

Major functions include critical processes to be managed, as well as mission critical 

inputs, outputs and reports. A user class hierarchy is developed and associated with these 

major functions, data areas, and data entities. Each of these definitions is termed a 

Requirement. Requirements are identified by unique requirement identifiers and, at 

minimum, contain a requirement title and textual description. 

DOCUMENT 
Umbrell
a 

Business 
Requirement 
Documentation 

Umbrell
a 

• 

• 

• 

Requirements 
Gathering 

Feasibility Study 

TEAM FORMATION 

Project 
Specification 
PREPARATION 

ANALYSIS & 
DESIGN 

ASSESSMENT 

CODE UNIT 
TEST 

INTEGRATION & 
SYSTEM 
TESTING 

DELIVERY/INS 
TALLATION 

ACCEPTANCE 
TEST 

TRAINING Umbrell
a 



45  

 

 

Fig no. 9.2 Requirements Gathering stage 

 

These requirements are fully described in the primary deliverables for this stage: the 

Requirements Document and the Requirements Traceability Matrix (RTM). The 

requirements document contains complete descriptions of each requirement, including 

diagrams and references to external documents as necessary. Note that detailed listings of 

database tables and fields are not included in the requirements document. 

The title of each requirement is also placed into the first version of the RTM, along with 

the title of each goal from the project plan. The purpose of the RTM is to show that the 

product components developed during each stage of the software development lifecycle 

are formally connected to the components developed in prior stages. 

In the requirements stage, the RTM consists of a list of high-level requirements, or goals, 

by title, with a listing of associated requirements for each goal, listed by requirement title. 

In this hierarchical listing, the RTM shows that each requirement developed during this 

stage is formally linked to a specific product goal. In this format, each requirement can be 

traced to a specific product goal, hence the term requirements traceability. 

The outputs of the requirements definition stage include the requirements document, the 

RTM, and an updated project plan. 

Feasibility study is all about identification of problems in a project, number of staff 

required to handle a project is represented as Team Formation, in this case only modules 



46  

are individual tasks will be assigned to employees who are working for that project. 

Project Specifications are all about representing of various possible inputs submitting to 

the server and corresponding outputs along with reports maintained by administrator. 

9.2  Analysis Stage 

 
The planning stage establishes a bird's eye view of the intended software product, and 

uses this to establish the basic project structure, evaluate feasibility and risks associated 

with the project, and describe appropriate management and technical approaches. 

 

 

Fig no. 9.3 Analysis stage 

 

The most critical section of the project plan is a listing of high-level product requirements, 

also referred to as goals. All of the software product requirements to be developed during 

the requirements definition stage flow from one or more of these goals. The minimum 

information for each goal consists of a title and textual description, although additional 

information and references to external documents may be included. The outputs of the 

project planning stage are the configuration management plan, the quality assurance plan, 

and the project plan and schedule, with a detailed listing of scheduled activities for the 

upcoming Requirements stage, and high level estimates of effort for the out stages. 



47  

9.3  Designing Stage 

 
The design stage takes as its initial input the requirements identified in the approved 

requirements document. For each requirement, a set of one or more design elements will 

be produced as a result of interviews, workshops, and/or prototype efforts. Design 

elements describe the desired software features in detail, and generally include functional 

hierarchy diagrams, screen layout diagrams, tables of business rules, business process 

diagrams, pseudo code, and a complete entity-relationship diagram with a full data 

dictionary. These design elements are intended to describe the software in sufficient detail 

that skilled programmers may develop the software with minimal additional input. 

 

 

 

 

 

Fig no. 9.4 Designing stage 

 

When the design document is finalized and accepted, the RTM is updated to show that 

each design element is formally associated with a specific requirement. The outputs of the 

design stage are the design document, an updated RTM, and an updated project plan. 

9.4  Development (Coding) Stage 

 
The development stage takes as its primary input the design elements described in the 

approved design document. For each design element, a set of one or more software 

artifacts will be produced. Software artifacts include but are not limited to menus, dialogs, 

data management forms, data reporting formats, and specialized procedures and 



48  

functions. Appropriate test cases will be developed for each set of functionally related 

software artifacts, and an online help system will be developed to guide users in their 

interactions with the software. 

 

 

Fig no. 9.5 Coding stage 

9.5 Integration & Test Stage 

 

During the integration and test stage, the software artifacts, online help, and test data are 

migrated from the development environment to a separate test environment. At this point, 

all test cases are run to verify the correctness and completeness of the software. Successful 

execution of the test suite 

 

Fig no. 9.6 Integration and Testing Stage 



49  

confirms a robust and complete migration capability. During this stage, reference data is 

finalized for production use and production users are identified and linked to their 

appropriate roles. The final reference data (or links to reference data source files) and 

production user list are compiled into the Production Initiation Plan. 

9.6 Installation & Acceptance Test 

 
During the installation and acceptance stage, the software artifacts, online help, and initial 

production data are loaded onto the production server. At this point, all test cases are run 

to verify the correctness and completeness of the software. Successful execution of the 

test suite is a prerequisite to acceptance of the software by the customer. 

After customer personnel have verified that the initial production data load is correct and 

the test suite has been executed with satisfactory results, the customer formally accepts 

the delivery of the software. 

 

 

Fig no.9.7 Installation 

 

9.7 Maintenance 

 
Outer rectangle represents maintenance of a project, Maintenance team will start with 

requirement study, understanding of documentation later employees will be assigned 

work and they will undergo training on that particular assigned category. 



50  

10. SYSTEM TESTING 

10.1 TESTING 

Testing is the process where the test data is prepared and is used for testing the modules 

individually and later the validation given for the fields. Then the system testing takes 

place which makes sure that all components of the system property functions as a unit. 

The test data should be chosen such that it passed through all possible condition. The 

following is the description of the testing strategies, which were carried out during the 

testing period. 

10.2 SYSTEM TESTING 

Testing has become an integral part of any system or project especially in the field of 

information technology. The importance of testing is a method of justifying, if one is ready 

to move further, be it to be check if one is capable to with stand the rigors of a particular 

situation cannot be underplayed and that is why testing before development is so critical. 

When the software is developed before it is given to user to user the software must be 

tested whether it is solving the purpose for which it is developed. This testing involves 

various types through which one can ensure the software is reliable. The program was 

tested logically and pattern of execution of the program for a set of data are repeated. Thus 

the code was exhaustively checked for all possible correct data and the outcomes were 

also checked. 

10.3 MODULE TESTING 

To locate errors, each module is tested individually. This enables us to detect error and 

correct it without affecting any other modules. Whenever the program is not satisfying the 

required function, it must be corrected to get the required result. Thus all the modules are 

individually tested from bottom up starting with the smallest and lowest modules and 

proceeding to the next level. Each module in the system is tested separately. For example 

the job classification module is tested separately. This module is tested with different job 

and its approximate execution time and the result of the test is compared with the results 

that are prepared manually. Each module in the system is tested separately. 

 

    



51  

In this system the resource classification and job scheduling modules are tested separately 

and their corresponding results are obtained which reduces the process waiting time. 

10.4 INTEGRATION TESTING 

After the module testing, the integration testing is applied. When linking the modules 

there may be chance for errors to occur, these errors are corrected by using this testing. In 

this system all modules are connected and tested. The testing results are very correct. Thus 

the mapping of jobs with resources is done correctly by the system 

10.5 ACCEPTANCE TESTING 

When that user fined no major problems with its accuracy, the system passers through a 

final acceptance test. This test confirms that the system needs the original goals, objectives 

and requirements established during analysis without actual execution which elimination 

wastage of time and money acceptance tests on the shoulders of users and management, 

it is finally acceptable and ready for the operation. 



52  

11.SOURCE CODE 
 

@app.route("/") 

def home(): 

    return render_template('home.html')  # Render home page for all users 

 

@app.route("/index") 

def index(): 

    return render_template('index.html') 

 

@app.route('/register', methods=['GET', 'POST']) 

def register(): 

    if request.method == 'POST': 

        username = request.form['username'] 

        password = generate_password_hash(request.form['password']) 

        add_user(username, password) 

        return redirect(url_for('login'))  # Redirect to login after registration 

    return render_template('register.html') 

 

@app.route('/login', methods=['GET', 'POST']) 

def login(): 

    if request.method == 'POST': 

        username = request.form['username'] 

        password = request.form['password'] 

        user = get_user(username) 

        if user and check_password_hash(user[2], password):  # Validate credentials 

            session['username'] = username  # Store username in session 

            return redirect(url_for('index'))  # Redirect to home after successful login 

        else: 

            return render_template('login.html', error='Invalid credentials')  # Pass error 

message to the template 

    return render_template('login.html')  # Show login form 

 

@app.route('/logout') 

def logout(): 



53  

    session.pop('username', None)  # Clear session 

    return redirect(url_for('home'))  # Redirect to home page after logout 

 

@app.route('/result', methods=['GET', 'POST']) 

def predict(): 

    if 'username' not in session:  # Check if user is logged in 

        return redirect(url_for('login'))  # Redirect to login if not 

 

    if request.method == "POST": 

        # Extract features from the form 

        gender_Male = int(request.form['gender']) 

        age = int(request.form['age']) 

        hypertension_1 = int(request.form['hypertension']) 

        heart_disease_1 = int(request.form['disease']) 

        ever_married_Yes = int(request.form['married']) 

        work = int(request.form['work']) 

        Residence_type_Urban = int(request.form['residence']) 

        avg_glucose_level = float(request.form['avg_glucose_level']) 

        bmi = float(request.form['bmi']) 

        smoking = int(request.form['smoking']) 

 

        # Work type encoding 

        work_type_Never_worked = 1 if work == 1 else 0 

        work_type_Private = 1 if work == 2 else 0 

        work_type_Self_employed = 1 if work == 3 else 0 

        work_type_children = 1 if work == 4 else 0 

         

        # Smoking status encoding 

        smoking_status_formerly_smoked = 1 if smoking == 1 else 0 

        smoking_status_never_smoked = 1 if smoking == 2 else 0 

        smoking_status_smokes = 1 if smoking == 3 else 0 

 

        # Prepare input features for prediction 

       input_features = [age, avg_glucose_level, bmi, gender_Male, hypertension_1,    

heart_disease_1,ever_married_Yes, work_type_Never_worked, work_type_Private,  



54  

work_type_Self_employed, work_type_children, 

Residence_type_Urban,smoking_status_formerly_smoked, 

smoking_status_never_smoked, smoking_status_smokes] 

 

  # Create DataFrame for prediction 

        df = pd.DataFrame([input_features], columns=['age', 'avg_glucose_level', 'bmi',    

'gender_Male',  'hypertension_1', 'heart_disease_1', 'ever_married_Yes',   

'work_type_Never_worked', 'work_type_Private', 'work_type_Self-employed', 

'work_type_children', 'Residence_type_Urban', 'smoking_status_formerly 

smoked''smoking_status_never smoked', 'smoking_status_smokes']) 

 

        # Make prediction 

        prediction = model.predict(df)[0] 

        # Save the user input and prediction to the database 

        username = session['username'] 

        save_user_input(username, gender_Male, age, hypertension_1, heart_disease_1,  

ever_married_Yes,   Residence_type_Urban, avg_glucose_level, bmi, smoking, 

prediction) 

        # Render prediction result 

        if prediction == 1: 

            return render_template('index.html', prediction_text='Patient has stroke risk') 

        else: 

            return render_template('index.html', prediction_text='Congratulations, patient 

does not have stroke risk') 

if __name__ == "__main__": 

    app.run(debug=True)  # Run the app in debug mode for better error messages 

import sqlite3 

def init_db(): 

    try: 

        with sqlite3.connect('users.db') as conn: 

            c = conn.cursor() 

            # Create users table if not exists 

            c.execute(''' 

                CREATE TABLE IF NOT EXISTS users ( 

                    id INTEGER PRIMARY KEY AUTOINCREMENT, 



55  

                    username TEXT NOT NULL UNIQUE, 

                    password TEXT NOT NULL 

                ) 

            ''') 

            # Create user_inputs table to store prediction inputs 

            c.execute(''' 

           INSERT INTO user_inputs (username, gender, age, h     

ypertension,heart_disease, ever_married,work, residence, avg_glucose_level, bmi, 

smoking, prediction) 

                VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?) 

            ''', (username, gender, age, hypertension, heart_disease, ever_married, work, 

residence, avg_glucose_level, 

                  bmi, smoking, prediction)) 

            conn.commit() 

    except sqlite3.Error as e: 

        print(f"An error occurred while saving user input: {e}") 

 

                CREATE TABLE IF NOT EXISTS user_inputs ( 

                    id INTEGER PRIMARY KEY AUTOINCREMENT, 

                    username TEXT, 

                    gender INTEGER, 

                    age INTEGER, 

                    hypertension INTEGER, 

                    heart_disease INTEGER, 

                    ever_married INTEGER, 

                    work INTEGER, 

                    residence INTEGER, 

                    avg_glucose_level REAL, 

                    bmi REAL, 

                    smoking INTEGER, 

                    prediction INTEGER, 

                    FOREIGN KEY (username) REFERENCES users(username) 

                ) 

            ''') 

            conn.commit() 



56  

    except sqlite3.Error as e: 

        print(f"An error occurred while initializing the database: {e}") 

 

def add_user(username, password): 

    try: 

        with sqlite3.connect('users.db') as conn: 

            c = conn.cursor() 

            c.execute('INSERT INTO users (username, password) VALUES (?, ?)', 

(username, password)) 

            conn.commit() 

    except sqlite3.Error as e: 

        print(f"An error occurred while adding a user: {e}") 

                     def get_user(username): 

    try: 

        with sqlite3.connect('users.db') as conn: 

            c = conn.cursor() 

            c.execute('SELECT * FROM users WHERE username = ?', (username,)) 

            user = c.fetchone() 

            return user 

    except sqlite3.Error as e: 

        print(f"An error occurred while fetching the user: {e}") 

        return None 

def save_user_input(username, gender, age, hypertension, heart_disease, ever_married, 

work, residence, 

                     avg_glucose_level, bmi, smoking, prediction): 

    try: 

        with sqlite3.connect('users.db') as conn: 

            c = conn.cursor() 

            c.execute(''' 

                INSERT INTO user_inputs (username, gender, age, hypertension, 

heart_disease, ever_married, work, residence, avg_glucose_level, bmi, smoking, 

prediction)        

# Import necessary libraries 

import numpy as np 

import pandas as pd 



57  

from sklearn.model_selection import train_test_split 

from sklearn.preprocessing import StandardScaler, LabelEncoder 

from sklearn.metrics import accuracy_score, classification_report, confusion_matrix 

from sklearn.tree import DecisionTreeClassifier 

from sklearn.naive_bayes import GaussianNB 

from tensorflow.keras.models import Sequential 

from tensorflow.keras.layers import Dense 

# Load the dataset 

df = pd.read_csv("healthcare-dataset-stroke-data.csv") 

# Check for missing values and fill or drop as appropriate 

df.fillna(df.mean(), inplace=True) 

# Encode categorical features 

label_encoder = LabelEncoder() 

df['gender'] = label_encoder.fit_transform(df['gender']) 

df['ever_married'] = label_encoder.fit_transform(df['ever_married']) 

df['work_type'] = label_encoder.fit_transform(df['work_type']) 

df['Residence_type'] = label_encoder.fit_transform(df['Residence_type']) 

df['smoking_status'] = label_encoder.fit_transform(df['smoking_status']) 

# Split the dataset into features and target 

X = df.drop('stroke', axis=1)  # Features 

y = df['stroke']               # Target variable 

# Split data into training and test sets 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, 

random_state=42) 

# Standardize the features 

scaler = StandardScaler() 

X_train = scaler.fit_transform(X_train) 

X_test = scaler.transform(X_test) 

### Decision Tree Classifier 

dt_model = DecisionTreeClassifier(random_state=42) 

dt_model.fit(X_train, y_train) 

dt_pred = dt_model.predict(X_test) 

print("Decision Tree Accuracy:", accuracy_score(y_test, dt_pred)) 

print(classification_report(y_test, dt_pred)) 

### Naive Bayes Classifier 



58  

nb_model = GaussianNB() 

nb_model.fit(X_train, y_train) 

nb_pred = nb_model.predict(X_test) 

print("Naive Bayes Accuracy:", accuracy_score(y_test, nb_pred)) 

print(classification_report(y_test, nb_pred)) 

### Artificial Neural Network (ANN) 

ann_model = Sequential() 

ann_model.add(Dense(32, activation='relu', input_shape=(X_train.shape[1],))) 

ann_model.add(Dense(16, activation='relu')) 

ann_model.add(Dense(1, activation='sigmoid')) 

 

# Compile the model 

ann_model.compile(optimizer='adam', loss='binary_crossentropy', 

metrics=['accuracy']) 

# Train the model 

ann_model.fit(X_train, y_train, epochs=50, batch_size=32, validation_split=0.2) 

# Evaluate the model 

ann_pred = (ann_model.predict(X_test) > 0.5).astype("int32") 

print("ANN Accuracy:", accuracy_score(y_test, ann_pred)) 

print(classification_report(y_test, ann_pred)) 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

                 



59  

                                         12. RESULTS AND DISCUSSIONS 

 
12.1 Implementation Description 

                 12.1.1 Machine Learning Model Training and Evaluation  

Purpose: This module is used for training and evaluating the machine learning models 

that predict stroke risk. Although it may not be part of the running system, this module is 

crucial for the initial system setup and improvement. 

Key Components: 

• Model Training: Trains machine learning models like ANN, Decision Tree, and 

Naive Bayes on historical health data. 

• Model Evaluation: Evaluates the models’ accuracy and performance using 

appropriate metrics (e.g., accuracy, precision, recall). 

• Model Saving: Saves the trained models to disk using pickle, so they can be 

loaded and used by the prediction module. 

12.1.2 User Registration and Authentication  

Purpose: This module allows users to register and log in to the system securely. It stores        

user credentials, hashes the passwords for security, and handles user authentication during 

login. 

Key Components: 

• Registration Page: Where new users can sign up by entering a username and 

password. 

• Login Page: Allows users to log in using their credentials. 

• Password Hashing and Validation: Ensures secure handling of user 

passwords using hashing techniques. 

• Session Management: Manages user sessions, storing user information in 

session variables to maintain the user’s logged-in status. 

                   12.1.3 Stroke Prediction Module 

                      Purpose: This model uses machine learning Models to predict the risk 

                       Key Components: 

• Model Loading: Loads the pre-trained machine learning models from disk 



60  

(pickle files) 

• Data Transformation: Converts the user input into a format that the model can 

process (like a pandas Data Frame).Prediction Execution: Runs the input data 

through the machine learning models to obtain a prediction (stroke risk or no 

stroke risk). 

• Output Display: Displays the result of the prediction to the user, indicating 

whether the patient has a stroke risk. 

            

               12.2 Results 

                                     
 

 

 

 

 

 

Fig:12.1  Home page

 



61  

               

 

Fig.12.2 User Login Page 
 

 

                 

 

              

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 12.3 Prediction Page  



62  

   

 

Fig:12.4 Result Page 
 

 

 

                            
 

 
                                                                          Fig.12.5 Result Page



63  

                                 13. CONCLUSION AND FUTURE SCOPE 

              13.1 Conclusion 

In this project, a comprehensive stroke prediction system has been developed using 

machine learning algorithms. The goal of the system is to predict the likelihood of a person 

having a stroke based on a set of health and lifestyle factors, which could serve as an early 

warning mechanism to help individuals take proactive measures in preventing stroke-

related complications. The system integrates three different machine learning algorithms 

Artificial Neural Networks (ANN), Decision Tree, and Naive Bayes — to predict the 

stroke risk with high accuracy. Each of these models was trained using relevant features, 

including age, BMI, blood glucose levels, smoking habits, and work type, among others. 

The ensemble approach of using multiple models enhances the reliability and robustness 

of the system by reducing the risk of misclassification and improving generalization across 

different types of data.The Artificial Neural Network model provided excellent results in 

detecting complex relationships within the dataset, demonstrating the power of deep 

learning techniques in medical prediction tasks. The Decision Tree model, with its 

transparent and interpretable structure, was able to classify the data efficiently by making 

decisions based on feature importance. Meanwhile, the **Naive Bayes** classifier, with 

its simplicity and speed, delivered reliable predictions and proved effective in dealing with 

large amounts of data with minimal computational overhead. 

                     Contributions and Advantages 

• It promotes awareness and provides valuable insights for early diagnosis, which can 

help individuals take preventive measures, seek medical attention, or follow lifestyle 

changes to mitigate the risk of stroke. 

• The modularity of the system makes it flexible for future enhancements. Additional 

models, more features, or even a mobile application version could be integrated to 

extend its utility. 

 

               13.2 Future Scope 

To enhance the precision of predictions, more sophisticated models, such as ensemble 

methods or hybrid machine learning approaches, could be explored. Real-time data 

integration through mobile apps or wearable devices could be incorporated to provide 

dynamic predictions based on ongoing health measurements. The system could be 

expanded to include more comprehensive health-related data (e.g., medical history, family 

history) to provide more detailed and personalized risk assessments. 



64  

References 

 

[1] K. Yazhini and D. Loganathan, "A State of Art Approaches on Deep Learning Models 

in Healthcare: An Application Perspective", 3rd International Conference on Trends in 

Electronics and Informatics (ICOEI), 2020. 

[2] Suresh K. Peddoju, Himanshu Upadhyay and Shekhar Bhansali, "Health Monitoring 

with Low Power IoT Devices using Anomaly Detection Algorithm", Fourth 

International Conference on Fog and Mobile Edge Computing (FMEC), 2021. 

[3] Pattanapong Chantamit and Madhu Goyal, "Prediction of Stroke Using Deep Learning 

Model" in ICONIP, Springer International Publishing, pp. 774-781, 2020.  

[4] Heo JoonNyung and G. Yoon Jihoon, "Machine Learning-Based Model for Prediction 

of Outcomes in Acute Stroke", American Heart Association, vol. 50, pp. 00-00, 2020. 

[5] X. Zhang, X. Wei, F. Li, F. Hu, W. Jia and C. Wang, "Fuzzy Support Vector Machine 

with Imbalanced Regulator and its Application in Stroke Classification,4–9 April 2022. 

[6] Songhee Cheon, Jungyoon Kim and Jihye Lim, The Use of Deep Learning to Predict 

Stroke Patient Mortality, Korea:Department of Physical Therapy, Youngsan University, 

Yangsan, pp. 626-790, April 2021. 

[7] Alharbi, W. Alosaimi, R. Sahal and H. Saleh, "Real-time system prediction for heart 

rate using deep learning and stream processing platforms", Complexity, vol. 2021, 

2021. 

[8] L. Ding, C. Liu, Z. Li and Y. Wang, "Incorporating artificial intelligence into stroke 

care and research", Stroke, vol. 51, no. 12, pp. e351-e354, 2020. 

[9] S. Dev, H. Wang, C. S. Nwosu, N. Jain, B. Veeravalli and D. John, "A predictive 

analytics approach for stroke prediction using machine learning and neural networks", 

Healthcare Analytics, vol. 2, pp. 100032, 2022. 

[10]  K. Kim, Y. J. Choo and M. C. Chang, "Prediction of motor function in stroke patients 

using machine learning algorithm: Development of practical models", Journal of Stroke 

and Cerebrovascular Diseases, vol. 30, no. 8, pp. 105856, 2021. 

 


