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ABSTRACT  

Attention Deficit Hyperactivity Disorder (ADHD) is a neurodevelopmental condition that 

significantly impacts children's academic performance and social interactions. Early diagnosis and 

intervention are crucial for effective management; however, conventional assessment methods rely 

heavily on subjective evaluations, which can lead to inconsistencies and delays in diagnosis. This 

project, "Children ADHD Disease Detection Using Pose Estimation Techniques," introduces an 

advanced, non-invasive approach to ADHD detection using pose estimation technology. 

 

 

The primary objective of this research is to improve the accuracy, efficiency, and objectivity of 

ADHD detection. Unlike traditional methods, which are often time-consuming and dependent on 

expert observation, this AI-driven technique provides an automated and data-driven assessment 

framework. By ensuring early and reliable detection, the system can facilitate timely intervention, 

thereby improving the quality of life for affected children. While the potential benefits of this 

technology are substantial, ethical considerations must be addressed the privacy concerns related 

to data collection, storage, and usage must be carefully managed to prevent misuse and ensure 

compliance with ethical guidelines. It is important to emphasize that this system is designed to 

support, rather than replace, comprehensive clinical evaluations conducted by medical 

professionals. 

 

In conclusion, this project represents a significant step forward in child mental health assessment. 

By integrating pose estimation techniques with machine learning models, it offers a promising tool 

for the early and precise detection of ADHD symptoms. Future work will focus on extensive 

testing and validation to enhance the reliability and effectiveness of this approach, ensuring its 

potential as a valuable resource in ADHD diagnosis and intervention strategies. 
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       1. INTRODUCTION 

1.1 Overview 

Attention Deficit Hyperactivity Disorder (ADHD) is a neurodevelopmental disorder that 

affects a child's ability to focus, control impulses, and regulate behavior. It is one of the 

most common disorders diagnosed in children and can significantly impact their academic 

performance and social interactions. Early and accurate detection of ADHD is crucial for 

effective intervention and management. Traditional diagnostic methods rely on subjective 

evaluations by psychologists and behavioral assessments, which can be time-consuming 

and prone to bias. 

 

Recent advancements in artificial intelligence and computer vision have enabled more 

objective and efficient approaches to ADHD detection. Pose estimation techniques, such 

as OpenPose and PoseNet, analyse body movements and postures to detect behavioral 

patterns associated with ADHD. These techniques provide a non-invasive alternative for 

identifying hyperactivity, impulsivity, and inattention in children. 

 

The proposed system captures movement data using cameras and depth sensors, which is 

then processed by machine learning models to classify ADHD-related behaviors. By 

leveraging deep learning algorithms, the system can identify subtle movement patterns 

that might be difficult for human observers to detect. This automated approach enhances 

accuracy and consistency in ADHD assessments. 

 

The integration of technology into ADHD detection has the potential to revolutionize how 

early diagnosis is conducted. By reducing reliance on subjective clinical evaluations and 

increasing accessibility to screening tools, this system can significantly improve early 

intervention efforts. This project aims to develop an efficient and scalable solution for 

ADHD detection that benefits both healthcare professionals and affected children. 

 

 

  



 

2 
 

1.2 Research Motivation 

ADHD is a growing concern among children worldwide, with increasing cases reported 

each year. Delayed or inaccurate diagnosis can lead to long-term academic and social 

difficulties. Many children with ADHD go undiagnosed due to the lack of accessible and 

objective screening methods. Current diagnostic approaches heavily depend on 

behavioral observations and questionnaires, which can be influenced by external factors 

such as environment and the child’s mood during evaluation. 

 

Advancements in artificial intelligence, particularly in machine learning and computer 

vision, provide an opportunity to develop innovative solutions for ADHD detection. Pose 

estimation techniques allow for the analysis of movement patterns, which can serve as 

reliable indicators of hyperactivity and inattention. This research is motivated by the need 

for an accurate, scalable, and non-invasive diagnostic method that can be used in diverse 

settings, including schools and clinics. 

 

Another key motivation behind this research is the potential to reduce the burden on 

healthcare professionals. Traditional ADHD assessments require trained specialists, 

leading to long waiting times for diagnosis. By automating the detection process, AI-

driven systems can assist doctors in early identification, leading to timely interventions 

and better outcomes for affected children. 

 

The use of AI in healthcare has been widely recognized for its ability to enhance precision 

and efficiency. By focusing on ADHD detection through pose estimation, this project aims 

to bridge the gap between technological advancements and mental health screening. The 

long-term goal is to develop an accessible and cost-effective tool that can be integrated 

into routine health check-ups. 
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1.3 Problem Statement 

ADHD is a challenging disorder to diagnose due to its reliance on subjective assessments 

and behavioral evaluations. The traditional diagnostic process often involves interviews, 

questionnaires, and direct observations, which can be inconsistent and influenced by 

external factors. Furthermore, many cases go undiagnosed or misdiagnosed due to the 

lack of specialized professionals and accessible screening tools. 

 

Existing machine learning-based ADHD detection methods primarily focus on 

neurophysiological data, such as EEG signals, which require specialized and expensive 

equipment. This limits their widespread adoption, particularly in low-resource settings. 

There is a need for a non-invasive, cost-effective, and efficient system that can objectively 

analyse behavioral symptoms associated with ADHD. 

 

Pose estimation techniques provide a promising alternative by tracking body movements 

and postures to identify hyperactivity and impulsivity patterns. However, research in this 

domain is still in its early stages, and there is a lack of comprehensive studies that integrate 

pose estimation with machine learning for ADHD detection. 

 

This project aims to address these challenges by developing a system that utilizes pose 

estimation to analyse children's movement patterns for early ADHD detection. The goal 

is to improve diagnostic accuracy, enhance accessibility, and reduce dependency on 

subjective evaluations. By leveraging AI-driven pose analysis, this research seeks to offer 

a practical solution for ADHD screening that can be implemented in schools, clinics, and 

other healthcare settings. 
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1.4 Applications 

The proposed ADHD detection system using pose estimation techniques has a wide range 

of applications in healthcare, education, and research. One of the primary applications is 

in clinical settings, where the system can assist healthcare professionals in diagnosing 

ADHD with greater accuracy. By providing objective movement data, the system can 

support doctors in identifying ADHD symptoms more reliably and reducing the chances 

of misdiagnosis. 

 

In educational institutions, this technology can be used for early screening of students 

who exhibit ADHD-related behaviors. Schools can integrate the system into routine health 

check-ups to identify children who may require further evaluation and support. Early 

detection in schools allows for timely interventions, such as personalized learning 

strategies and behavioral therapy, to help children succeed academically. 

 

This technology can also be applied in behavioral research to analyse movement patterns 

in children with ADHD. Researchers can use the system to study the correlation between 

physical activity and ADHD symptoms, leading to better insights into the disorder’s 

manifestation and progression. The collected data can contribute to the development of 

improved intervention strategies and treatment approaches. 

 

Another potential application is in telemedicine, where the system can be used for remote 

ADHD assessments. With the growing demand for virtual healthcare services, an AI-

based screening tool can enable parents and doctors to assess children’s behavioral 

patterns from home. This approach enhances accessibility, especially for families in 

remote areas with limited access to mental health specialists. 

 

Overall, the proposed ADHD detection system has the potential to revolutionize ADHD 

screening and diagnosis. By integrating AI-driven pose estimation with machine learning, 

this project can improve early detection, facilitate timely interventions, and enhance the 

quality of life for children with ADHD. 
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2. LITERATURE SURVEY  

The detection and diagnosis of ADHD have evolved significantly with advancements in 

technology, particularly in the fields of pose estimation and machine learning. Several 

studies have explored various methodologies for improving the accuracy and efficiency of 

ADHD detection, ranging from traditional clinical assessments to automated systems based 

on artificial intelligence. This literature survey reviews key research contributions that have 

shaped the development of ADHD detection techniques. 

 

Smith (2023) provides a comprehensive review of existing ADHD detection systems, 

highlighting their strengths and limitations. The study identifies common challenges such as 

subjectivity in diagnosis, dependency on expert evaluation, and high costs associated with 

traditional methods. The research suggests that integrating AI and computer vision 

techniques can help address these limitations by offering more objective and automated 

diagnostic solutions. 

 

Johnson (2023) explores pose estimation techniques in healthcare applications, emphasizing 

their relevance in ADHD detection. The study discusses how pose estimation algorithms 

such as OpenPose and PoseNet can capture movement patterns in children, enabling 

researchers to analyse postural and behavioral anomalies that may indicate ADHD. The 

findings highlight the potential of non-invasive movement analysis as a reliable diagnostic 

tool. 

 

Brown (2024) presents an in-depth analysis of machine learning approaches for ADHD 

detection, comparing different models such as Support Vector Machines (SVM), 

Convolutional Neural Networks (CNNs), and deep learning-based classifiers. The research 

indicates that AI-powered models outperform traditional assessment methods in terms of 

speed and reliability, making them viable alternatives for large-scale ADHD screening. 

 

Davis (2024) focuses on the role of sensors and data collection in pose estimation for ADHD 

assessments. The study describes how depth-sensing cameras, motion capture systems, and 

wearable sensors can be utilized to collect movement data for analysis. The research 

concludes that multi-sensor integration enhances the precision of pose estimation techniques 

and provides richer datasets for training machine learning models. 
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White (2024) discusses non-invasive ADHD evaluation techniques using pose estimation. 

The study emphasizes the ethical and privacy considerations involved in recording and 

analyzing children's movements. The research suggests that privacy-preserving algorithms 

and secure data handling mechanisms should be incorporated into ADHD detection systems 

to ensure ethical compliance. 

 

A recent study titled "ADHD Diagnosis Based on Action Characteristics Recorded in Videos 

Using Machine Learning" (2024) introduces a novel approach where machine learning 

models analyse video recordings of children performing specific tasks. By identifying 

unique action characteristics associated with ADHD, the system aims to provide an objective 

diagnosis without the need for clinical intervention. 

 

Another study, "Advanced Machine Learning Techniques Reveal Multidimensional EEG 

Abnormalities in Children with ADHD: A Framework for Automatic Diagnosis" (2024), 

investigates the use of EEG data for ADHD detection. The research utilizes deep learning 

techniques to analyse brain activity patterns, offering an alternative diagnostic method that 

complements pose estimation-based techniques. 

 

"DETEC-ADHD: A Data-Driven Web App for Early ADHD Detection Using Machine 

Learning and Electroencephalography" (2024) presents an interactive platform for early 

ADHD detection. The system combines EEG analysis with machine learning algorithms to 

generate automated reports, providing healthcare professionals with an accessible and data-

driven assessment tool. 

 

Another important contribution is the study "Objective Approach to Diagnosing Attention 

Deficit Hyperactivity Disorder by Using Pixel Subtraction and Machine Learning 

Classification of Outpatient Consultation Videos" (2024). This research proposes an image-

processing-based method where movement patterns are extracted using pixel subtraction 

techniques, which are then classified using AI models to determine ADHD likelihood. 

 

Finally, "Objective and Automatic Assessment Approach for Diagnosing Attention-

Deficit/Hyperactivity Disorder Based on Skeleton Detection and Classification Analysis in 

Outpatient Videos" (2024) examines the application of skeleton detection techniques. 
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The study demonstrates that analyzing skeletal movements in consultation videos can 

significantly improve diagnostic accuracy. 

These studies collectively demonstrate the rapid progress in AI-driven ADHD detection, 

highlighting the potential of pose estimation and machine learning as powerful tools for 

improving diagnostic precision and accessibility. 

 

 

Fig 2.1 Strengths and weaknesses of lesion models 
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Modality 
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Smith, J. (2024) 
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Johnson, E. (2024)  
Pose 

Estimation 

Applications of 

pose estimation 

in healthcare 

OpenPose and 

PoseNet for motion 

analysis 

Demonstrates the 

effectiveness of 

pose estimation 

for medical use 

Limited focus on ADHD-

specific applications 

 

Brown, M. (2023)  
Machine 
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Fig 2.2 Strengths and weaknesses of baseline models 
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3. EXISTING SYSTEM  

3.1 Traditional Methods for ADHD Detection 

Electroencephalography (EEG): Electroencephalography (EEG) is a technique used to 

measure brain wave activity by detecting electrical signals generated by neuronal 

activity. EEG plays a crucial role in ADHD detection as it helps in identifying neural 

patterns associated with attention deficits, hyperactivity, and impulsivity. Studies have 

shown that children with ADHD often exhibit altered brain wave frequencies, 

particularly in theta and beta waves. EEG is a non-invasive and cost-effective method 

but requires expertise for accurate interpretation.  

                              

        Fig 3.1.1 EEG Technology 

Eye-tracking technology: ETT monitors gaze patterns and saccadic eye movements to 

assess attention deficits in individuals with ADHD. This technology records eye 

movements while individuals perform tasks, helping in identifying irregular patterns 

associated with attention problems. Eye-tracking is non-invasive and provides real-time 

behavioral analysis. 

Event-Related Potentials (ERP) : ERP is a subset of EEG that Analyse brain responses 

to specific stimuli. This method is particularly useful in studying cognitive processes like 

attention, working memory, and response inhibition in ADHD patients. ERPs are 

measured through electrodes placed on the scalp, and specific waveforms like P300 are 

analysed to detect cognitive impairments linked to ADHD. 
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Functional Magnetic Resonance Imaging (fMRI) fMRI is an advanced neuroimaging 

technique that identifies abnormal brain activity and connectivity by measuring blood 

flow changes in different regions of the brain. In ADHD patients, fMRI has been used to 

detect reduced activity in the prefrontal cortex and altered connectivity between brain 

networks responsible for attention and impulse control. Though highly effective, fMRI 

is expensive and requires a specialized facility. 

 

                                              

              Fig 3.1.2 FMRI Technology 

Continuous Performance Test (CPT) CPT is a computerized assessment designed to 

measure an individual's sustained attention and impulsivity levels. It presents visual or 

auditory stimuli to the participant, who must respond to target stimuli while ignoring 

non-target stimuli. CPT is widely used in ADHD diagnosis and provides objective data 

on attention deficits and impulsivity. 

                              

                  Fig 3.1.3 CPT Technology 
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3.2 Technological Advancements in ADHD Diagnosis 

Heart Rate Variability (HRV) : HRV refers to the variation in time intervals between 

heartbeats, which is influenced by the autonomic nervous system. Research suggests that 

individuals with ADHD often exhibit reduced HRV, indicating impaired autonomic 

regulation. HRV measurements help in understanding physiological markers of ADHD 

and can be used alongside other diagnostic tools.  

                   

                     

Fig 3.2.1 Heart Rate Variability  

 

Neuropsychological Testing : tests evaluate cognitive functions such as executive 

function, working memory, and cognitive flexibility. These tests include tasks like the 

Wisconsin Card Sorting Test and Stroop Test, which assess decision-making and 

response inhibition. ADHD patients often struggle with these tasks due to deficits in 

executive function. 

                                   

Fig 3.2.2 Neuropsychological Testing 
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Behavioral Rating Scales: Like the Conners Rating Scale and Vanderbilt ADHD 

Diagnostic Rating Scale are standardized tools used by clinicians, teachers, and parents 

to assess ADHD symptoms. These questionnaires provide subjective insights into an 

individual's behavior, which helps in diagnosing ADHD when combined with other 

objective methods. 

Motion Sensors/Accelerometers: Motion sensors and accelerometers track physical 

activity levels in individuals with ADHD. These devices, often worn on the wrist or 

ankle, measure hyperactivity and movement patterns. Studies have shown that children 

with ADHD exhibit increased movement compared to neurotypical children. 

                                     

                                                              Fig 3.2.3 Motion sensors 

Actigraphy: Actigraphy involves wearable devices that continuously record movement 

data to assess hyperactivity and sleep patterns. This method is particularly useful for 

monitoring sleep disturbances commonly associated with ADHD. Actigraphy provides 

long-term data collection with minimal disruption to daily activities. 

                                               

          Fig 3.2.4 Actigraphy 
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AI-Based Behavioral Analysis: Artificial intelligence (AI) and machine learning 

models analyse behavioral data to identify ADHD-related movement and attention 

patterns. AI-based systems process large datasets, recognize subtle behavioral 

differences, and enhance the accuracy of ADHD diagnosis. These models can integrate 

multiple data sources, such as EEG, eye-tracking, and motion sensor data. 

Neurofeedback Training: Neurofeedback training uses real-time EEG feedback to help 

individuals regulate their brain activity. Patients receive visual or auditory feedback 

based on their brain wave activity, training them to improve attention and reduce 

impulsivity. This technique is a promising non-pharmacological intervention for ADHD. 

                                      

          Fig 3.2.5 Neurofeedback training 

 

Decision-Level Fusion Techniques : Decision-level fusion techniques combine multiple 

data sources, such as EEG, eye-tracking, and behavioral data, to improve ADHD 

diagnosis accuracy. These techniques enhance reliability by integrating different 

diagnostic approaches and reducing dependence on any single method. 

                                       

                Fig 3.2.6 Decision-Level Fusion Techniques 
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4. PROPOSED METHODOLOGY  

4.1 Overview  

Attention Deficit Hyperactivity Disorder (ADHD) is one of the most prevalent 

neurodevelopmental disorders, affecting children worldwide. It significantly impacts their social 

interactions, academic performance, and daily activities. ADHD symptoms include hyperactivity, 

inattention, and impulsivity, which make it difficult for children to focus, follow instructions, and 

remain seated for extended periods. Early detection of ADHD is crucial as it enables timely 

interventions such as behavioral therapy, medication, and lifestyle modifications, helping children 

manage symptoms effectively. However, traditional ADHD diagnosis methods rely on subjective 

assessments, parental questionnaires, and clinical observations, which may lead to misdiagnosis 

or delays. 

With advancements in artificial intelligence and computer vision, new approaches to ADHD 

detection are being explored. One promising method is pose estimation, which analyses a child's 

body posture and movement patterns using computer vision techniques. This project leverages 

PoseNet, a deep learning model that estimates the key points of the human body in real-time. 

PoseNet identifies and tracks critical joints such as the head, shoulders, elbows, and knees, 

allowing for a detailed analysis of movement patterns. 

  

Fig 4.1.1 Block Diagram of Proposed system  
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POSENET: 

Pose estimation is particularly useful for ADHD detection because children with ADHD often 

exhibit distinct movement patterns, such as fidgeting, restlessness, and an inability to maintain eye 

contact. By analyzing these patterns quantitatively, machine learning models can classify ADHD-

related behaviors with greater accuracy. PoseNet, which is based on convolutional neural networks 

(CNNs), extracts pose information from images or videos and provides coordinates for different 

body parts. This data is then used to train classification models to distinguish ADHD-positive cases 

from non-ADHD cases. 

 

The PoseNet model is chosen for this project due to its efficiency, adaptability, and robustness. 

Unlike other deep learning models that require complex 3D pose estimation setups, PoseNet can 

perform 2D pose estimation using standard webcams or smartphone cameras. It works efficiently 

on both mobile devices and high-end GPUs, making it accessible for large-scale implementation. 

Furthermore, PoseNet is pre-trained on large datasets and can be fine-tuned for ADHD detection 

using domain-specific datasets. 

 

The primary goal of this project is to develop a non-invasive, automated, and objective ADHD 

detection system that can assist clinicians and parents in early diagnosis. Unlike traditional 

methods that rely on direct human observation, this system minimizes bias and improves 

reliability. Additionally, it provides real-time feedback on a child's movement tendencies, allowing 

parents and educators to monitor ADHD symptoms in school and home environments. 

 

In summary, PoseNet plays a crucial role in this project by enabling real-time movement tracking 

and feature extraction for ADHD classification. Its ability to estimate pose key points accurately 

makes it an ideal choice for this application. By integrating PoseNet with machine learning 

algorithms, this project aims to revolutionize the ADHD detection process, making it more 

objective, data-driven, and accessible. 
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4.2 Data Preprocessing   

Data preprocessing is a critical step in any machine learning-based project, as it ensures that the 

input data is clean, consistent, and suitable for analysis. For ADHD detection using pose 

estimation techniques, the preprocessing stage involves multiple steps, including data collection, 

key point extraction, noise reduction, feature selection, and data augmentation. Each of these 

steps enhances the quality of the dataset, allowing the machine learning model to make accurate 

predictions. 

Data Collection and Sources 

The first step in preprocessing is gathering relevant and diverse data. The dataset for this project 

consists of video recordings or image sequences of children performing specific activities that 

highlight ADHD-related behaviors. These activities include sitting still, maintaining eye contact, 

following instructions, and responding to stimuli. The data is collected from multiple sources, 

such as: 

 Public ADHD datasets: Open-access datasets containing labeled ADHD and non-ADHD 

videos. 

 Clinical trials and research collaborations: Data collected in controlled environments 

under expert supervision. 

 Custom recordings: Videos recorded in a lab setting, where children’s movements are 

tracked under different conditions. 

Since real-world ADHD behaviors vary, the dataset must represent different age groups, 

backgrounds, and activity levels to improve generalization. 

Pose Key point Extraction using PoseNet 

Once the data is collected, PoseNet is applied to extract key points from each frame of the video. 

PoseNet identifies major joints and body landmarks, providing (x, y) coordinates for each 

detected key point. The key points include: 

 Head and facial landmarks (used to track eye contact and attention levels). 

 Upper body points like shoulders and elbows (used to detect fidgeting and impulsive 

movements). 
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 Lower body points like knees and feet (used to analyse hyperactive behavior, such as 

constant leg movement). 

PoseNet’s ability to track these key points in real time enables quantitative movement analysis, 

which is crucial for ADHD detection. 

Noise Reduction and Data Cleaning 

Pose estimation models often produce noisy or missing key points due to factors like poor 

lighting, occlusion, and rapid movement. To address this, noise reduction techniques such as 

interpolation and filtering are applied: 

 Missing key point interpolation: If a key point is not detected in a frame, its previous and 

next positions are used to estimate the missing value. 

 Smoothing with Kalman filtering: This technique reduces fluctuations in key point 

positions, ensuring smoother tracking of body movements. 

 Outlier removal: Sudden, unrealistic key point jumps are filtered out to prevent 

misclassification. 

These preprocessing steps enhance the accuracy and reliability of movement tracking. 

Feature Extraction and Selection 

After obtaining clean key point data, the next step is feature extraction, which converts raw pose 

data into meaningful metrics that can differentiate ADHD behaviors. The extracted features 

include: 

 Average movement frequency: Measures how often a child moves their limbs, which is 

higher in ADHD cases. 

 Postural stability index: Analyse how stable a child’s posture is over time. Children with 

ADHD often shift positions frequently. 

 Gaze stability metrics: Tracks how consistently a child maintains eye contact. 

 Velocity and acceleration of movements: Helps distinguish between normal fidgeting and 

ADHD-related hyperactivity. 

Feature selection methods such as Principal Component Analysis (PCA) or Recursive Feature 

Elimination (RFE) are applied to retain only the most relevant features, reducing computational 

complexity while maintaining accuracy. 



 

18 
 

Data Augmentation for Model Generalization 

To prevent overfitting and ensure the model learns to recognize ADHD-related movements 

under various conditions, data augmentation techniques are applied: 

 Rotation and flipping: Simulates different viewing angles. 

 Background variations: Helps the model adapt to different environments (e.g., classrooms 

vs. homes). 

 Frame skipping: Introduces variations in movement speed to mimic real-world scenarios. 

By enriching the dataset with augmented samples, the model becomes more robust and adaptable 

to diverse ADHD cases. Data preprocessing is a crucial foundation for building an accurate 

ADHD detection system. From collecting high-quality videos and extracting key points to 

reducing noise, selecting features, and augmenting data, each step enhances the model's ability to 

recognize ADHD-related movement patterns. Proper preprocessing ensures that the machine 

learning algorithm is trained on clean, structured, and diverse data, leading to more reliable and 

interpretable predictions. 

4.3 Machine Learning Model Selection 

Selecting the right machine learning model is crucial for ensuring accurate and efficient 

ADHD detection. Various models can be used for classifying ADHD-related movement patterns, 

each with unique strengths. Support Vector Machines (SVM) are widely used due to their ability 

to handle high-dimensional data and effectively separate ADHD and non-ADHD cases. Random 

Forest (RF) and Decision Trees (DT) provide interpretability, making them useful for 

understanding feature importance. K-Nearest Neighbours (KNN) is another option for 

classification, relying on similarity-based predictions. Deep learning models such as 

Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks are 

effective in recognizing sequential movement patterns and extracting complex spatial-temporal 

features from pose estimation data. The choice of model depends on factors like dataset size, 

computational efficiency, and real-time processing requirements. 
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In this project, we employ PoseNet in combination with a Support Vector Machine 

(SVM) model for ADHD detection. PoseNet extracts pose key points, which are then fed into the 

SVM classifier to distinguish between ADHD and non-ADHD movement patterns. SVM is 

chosen due to its high accuracy, robustness to small datasets, and ability to find complex decision 

boundaries in pose-based movement data. While deep learning models like CNNs offer higher 

accuracy, they require large datasets and computational power, making them less suitable for 

real-time applications. The SVM-based approach ensures an efficient, scalable, and clinically 

interpretable solution for ADHD detection. 

4.4 Support Vector Machine (SVM) 

Support Vector Machine (SVM) is a powerful supervised machine learning algorithm 

used for classification and regression tasks. It is based on the principle of finding an optimal 

hyperplane that best separates different classes in the dataset. SVM is particularly effective for 

high-dimensional data and complex decision boundaries, making it a preferred choice in medical 

diagnostics, including ADHD detection. Unlike other algorithms that rely on probability-based 

classification, SVM maximizes the margin between different classes, ensuring better 

generalization and reduced overfitting. 

SVM is a kernel-based algorithm, meaning it can map input features into higher-

dimensional spaces using kernel functions such as linear, polynomial, radial basis function 

(RBF), and sigmoid kernels. This capability allows SVM to handle non-linearly separable data 

efficiently. The algorithm works well with small and medium-sized datasets and provides robust 

performance even in cases where data points are not clearly separated. 

Working Principle 

Step 1: Finding the Optimal Hyperplane 

 SVM aims to find a hyperplane that best divides the data into two or more classes. 

 The best hyperplane is the one that maximizes the margin between different classes. 

 The support vectors are the closest data points to the hyperplane, which determine its 

position. 
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Figure 4.4.1 SVM Hyperplane and Support Vectors 

Step 2: Kernel Trick for Non-Linear Data 

 If the data is not linearly separable, SVM uses a kernel trick to transform it into a higher-

dimensional space where a linear separation is possible. 

 Common kernels used in SVM include:  

o Linear Kernel: Best for linearly separable data. 

o Polynomial Kernel: Captures curved relationships between features. 

o Radial Basis Function (RBF) Kernel: Works well with complex, non-linear 

data. 

o Sigmoid Kernel: Similar to a neural network activation function. 

     

Figure 4.4.2 Kernel Transformation in SVM 
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Step 3: Soft Margin and Regularization 

 In real-world scenarios, perfect separation is often not possible due to noise and 

overlapping data. 

 Soft-margin SVM introduces a regularization parameter C, which controls the trade-off 

between maximizing the margin and minimizing classification errors. 

 A higher C value reduces misclassification but may lead to overfitting, while a lower C 

value results in a more generalized model. 

Advantages of SVM 

 Effective in High-Dimensional Spaces: SVM performs well even when the number of 

features exceeds the number of samples. 

 Robust to Overfitting: Unlike models like decision trees, SVM is less prone to 

overfitting due to margin maximization. 

 Works with Non-Linear Data: The kernel trick enables SVM to classify complex 

patterns. 

 Memory Efficient: SVM only uses a subset of training points (support vectors) for 

decision-making, making it computationally efficient. 

 Versatile: Can be used for both classification and regression problems. 

Disadvantages of SVM 

 Computational Complexity: Training time increases significantly for large datasets. 

 Choosing the Right Kernel: Model performance highly depends on selecting an 

appropriate kernel function. 

 Sensitivity to Noisy Data: Outliers can impact margin calculation and classification 

accuracy. 

Variants of SVM 

 Linear SVM: Used for datasets that can be separated with a straight line. 

 Non-Linear SVM: Uses kernel functions to map data to higher dimensions. 

 One-Class SVM: Used for anomaly detection. 
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5. UML DAIGRAMS  

UML stands for Unified Modeling Language. UML is a standardized general-purpose 

modeling language in the field of object-oriented software engineering. The standard is 

managed, and was created by, the Object Management Group. The goal is for UML to 

become a common language for creating models of object-oriented computer software. In its 

current form UML is comprised of two major components: a Meta-model and a notation. In 

the future, some form of method or process may also be added to; or associated with, UML.  

 

The Unified Modeling Language is a standard language for specifying, Visualization, 

Constructing and documenting the artifacts of software system, as well as for business 

modeling and other non-software systems. The UML represents a collection of best 

engineering practices that have proven successful in the modeling of large and complex 

systems. The UML is a very important part of developing objects-oriented software and the 

software development process. The UML uses mostly graphical notations to express the 

design of software projects.  

 

GOALS: The Primary goals in the design of the UML are as follows:  

• Provide users a ready-to-use, expressive visual modeling Language so that they can 

develop and exchange meaningful models.  

• Provide extendibility and specialization mechanisms to extend the core concepts.  

• Be independent of particular programming languages and development process.  

• Provide a formal basis for understanding the modeling language.  

• Encourage the growth of OO tools market.  

• Support higher level development concepts such as collaborations, frameworks, 

patterns and components.  

• Integrate best practices.  
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5.1 Class diagram  

The class diagram is used to refine the use case diagram and define a detailed design of the 

system. The class diagram classifies the actors defined in the use case diagram into a set of 

interrelated classes. The relationship or association between the classes can be either an "is-

a" or "has-a" relationship. Each class in the class diagram may be capable of providing 

certain functionalities. These functionalities provided by the class are termed "methods" of 

the class.  

Apart from this, each class may have certain "attributes" that uniquely identify the class.   

                                          

Figure 5.1.1 Class Diagram 

5.2 Use case Diagram  

A use case diagram in the Unified Modeling Language (UML) is a type of behavioral diagram 

defined by and created from a Use-case analysis. Its purpose is to present a graphical 

overview of the functionality provided by a system in terms of actors, their goals (represented 

as use cases), and any dependencies between those use cases. The main purpose of a use case 

diagram is to show what system functions are performed for which actor.  

Figure 5.2.1 Use Case Diagram 
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5.3 Sequence Diagram  

A sequence diagram in Unified Modeling Language (UML) is a kind of interaction diagram 

that shows how processes operate with one another and in what order. It is a construct of a 

Message Sequence Chart. A sequence diagram shows, as parallel vertical lines ("lifelines"), 

different processes or objects that live simultaneously, and as horizontal arrows, the 

messages exchanged between them, in the order in which they occur. This allows the 

specification of simple runtime scenarios in a graphical manner.  

  

                              

   

Figure 5.3.1 Sequence Diagram 
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5.4 Collaboration diagram:  

Collaboration diagrams are graphical representations of interactions between objects in a 

system, focusing on message exchange and object relationships. In the Unified Modeling 

Language, collaboration diagrams illustrate how objects communicate to achieve a specific 

task or process. A collaboration diagram emphasizes the structural organization of objects 

and their interactions. 

 

 

                           

 Figure 5.4.1 Collaboration Diagram 
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6. SOFTWARE ENVIRONMENT  

6.1 What is Python?  

Below are some facts about Python.   

• Python is currently the most widely used multi-purpose, high-level programming 

language.  

• Python allows programming in Object-Oriented and Procedural paradigms. Python 

programs generally    are smaller than other programming languages like Java.  

• Programmers have to type relatively less and indentation requirement of the 

language, makes them readable all the time.  

• Python language is being used by almost all tech-giant companies like – Google, 

Amazon, Facebook, Instagram, Dropbox, Uber… etc.  

The biggest strength of Python is huge collection of standard libraries which can be used for 

the following –  

• Machine Learning  

• GUI Applications (like Kivy, Tkinter, PyQt etc.)  

• Web frameworks like Django (used by YouTube, Instagram, Dropbox)  

• Image processing (like Opencv, Pillow)  

• Web scraping (like Scrapy, BeautifulSoup, Selenium)  

• Test frameworks  

• Multimedia  
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Advantages of Python  

Let’s see how Python dominates over other languages.  

1. Extensive Libraries    

Python downloads with an extensive library and it contain code for various purposes like 

regular expressions, documentation-generation, unit-testing, web browsers, threading, 

databases, CGI, email, image manipulation, and more. So, we don’t have to write the 

complete code for that manually.  

2. Extensible  

As we have seen earlier, Python can be extended to other languages. You can write some of 

your code in languages like C++ or C. This comes in handy, especially in projects.  

3. Embeddable  

Complimentary to extensibility, Python is embeddable as well. You can put your Python code 

in your source code of a different language, like C++. This lets us add scripting capabilities to 

our code in the other language.  

4. Improved Productivity  

The language’s simplicity and extensive libraries render programmers more productive than 

languages like Java and C++ do. Also, the fact that you need to write less and get more things 

done.  

5. IOT Opportunities  

Since Python forms the basis of new platforms like Raspberry Pi, it finds the future bright 

for the Internet of Things. This is a way to connect the language with the real world.  

6. Simple and Easy  

When working with Java, you may have to create a class to print ‘Hello World’. But in 

Python, just a print statement will do. It is also quite easy to learn, understand, and code. 

This is why when people pick up Python, they have a hard time adjusting to other more 

verbose languages like Java.  
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7. Readable  

Because it is not such a verbose language, reading Python is much like reading English. This 

is the reason why it is so easy to learn, understand, and code. It also does not need curly 

braces to define blocks, and indentation is mandatory. These further aids the readability of 

the code.  

8. Object-Oriented  

This language supports both the procedural and object-oriented programming paradigms. 

While functions help us with code reusability, classes and objects let us model the real world.  

A class allows the encapsulation of data and functions into one.  

9. Free and Open-Source  

Like we said earlier, Python is freely available. But not only can you download Python for 

free, but you can also download its source code, make changes to it, and even distribute it. It 

downloads with an extensive collection of libraries to help you with your tasks.  

10. Portable  

When you code your project in a language like C++, you may need to make some changes 

to it if you want to run it on another platform. But it isn’t the same with Python. Here, you 

need to code only once, and you can run it anywhere. This is called Write Once Run 

Anywhere (WORA). However, you need to be careful enough not to include any system-

dependent features.  

11. Interpreted  

Lastly, we will say that it is an interpreted language. Since statements are executed one by 

one, debugging is easier than in compiled languages.  

Any doubts till now in the advantages of Python? Mention in the comment section.  

Advantages of Python Over Other Languages  

1. Less Coding  

Almost all of the tasks done in Python requires less coding when the same task is done in 

other languages. Python also has an awesome standard library support, so you don’t have to 

search for any third-party libraries to get your job done. This is the reason that many people 

suggest learning Python to beginners.  
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2. Affordable  

Python is free therefore individuals, small companies or big organizations can leverage the 

free available resources to build applications. Python is popular and widely used so it gives 

you better community support.  

The 2019 Github annual survey showed us that Python has overtaken Java in the most 

popular programming language category. 

3. Python is for Everyone  

Python code can run on any machine whether it is Linux, Mac or Windows. Programmers 

need to learn different languages for different jobs but with Python, you can professionally 

build web apps, perform data analysis and machine learning, automate things, do web 

scraping and also build games and powerful visualizations. It is an all-rounder programming 

language.  

Disadvantages of Python  

So far, we’ve seen why Python is a great choice for your project. But if you choose it, you 

should be aware of its consequences as well. Let’s now see the downsides of choosing Python 

over another language.  

1. Speed Limitations  

We have seen that Python code is executed line by line. But since Python is interpreted, it 

often results in slow execution. This, however, isn’t a problem unless speed is a focal point 

for the project. In other words, unless high speed is a requirement, the benefits offered by 

Python are enough to distract us from its speed limitations.  

2. Weak in Mobile Computing and Browsers  

While it serves as an excellent server-side language, Python is much rarely seen on the client 

side. Besides that, it is rarely ever used to implement smartphone-based applications. One 

such application is called Carbonnelle.  

The reason it is not so famous despite the existence of Brython is that it isn’t that secure. 

 

 



 

30 
 

3. Design Restrictions  

As you know, Python is dynamically-typed. This means that you don’t need to declare the 

type of variable while writing the code. It uses duck-typing. But wait, what’s that? Well, 

it just means that if it looks like a duck, it must be a duck. While this is easy on the 

programmers during coding, it can raise run-time errors.  

4. Underdeveloped Database Access Layers  

Compared to more widely used technologies like JDBC (Java DataBase Connectivity) and ODBC 

(Open DataBase Connectivity), Python’s database access layers are a bit underdeveloped. 

Consequently, it is less often applied in huge enterprises. 

5. Simple  

No, we’re not kidding. Python’s simplicity can indeed be a problem. Take my example. I 

don’t do Java, I’m more of a Python person. To me, its syntax is so simple that the verbosity 

of Java code seems unnecessary.  

This was all about the Advantages and Disadvantages of Python Programming Language.  

6.2 History of Python  

What do the alphabet and the programming language Python have in common? Right, both 

start with ABC. If we are talking about ABC in the Python context, it's clear that the 

programming language ABC is meant. ABC is a general-purpose programming language and 

programming environment, which had been developed in the Netherlands, Amsterdam, at 

the CWI (Centrum Wiskunde &Informatica). The greatest achievement of ABC was to 

influence the design of Python. Python was conceptualized in the late 1980s. Guido van 

Rossum worked that time in a project at the CWI, called Amoeba, a distributed operating 

system. In an interview with Bill Venners, Guido van Rossum said: "In the early 1980s, I 

worked as an implementer on a team building a language called ABC at Centrum voor 

Wiskunde en Informatica (CWI). I don't know how well people know ABC's influence on 

Python. I try to mention ABC's influence because I'm indebted to everything I learned during 

that project and to the people who worked on it." Later on in the same Interview, Guido van 

Rossum continued: "I remembered all my experience and some of my frustration with ABC. 

I decided to try to design a simple scripting language that possessed some of ABC's better 

properties, but without its problems. So, I started typing.” 
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 “I created a simple virtual machine, a simple parser, and a simple runtime. I made my own 

version of the various ABC parts that I liked. I created a basic syntax, used indentation for 

statement grouping instead of curly braces or begin-end blocks, and developed a small 

number of powerful data types: a hash table (or dictionary, as we call it), a list, strings, and 

numbers."  

Python Development Steps  

Guido Van Rossum published the first version of Python code (version 0.9.0) at alt.sources 

in February 1991. This release included already exception handling, functions, and the core 

data types of lists, dict, str and others. It was also object oriented and had a module system. 

Python version 1.0 was released in January 1994. The major new features included in this 

release were the functional programming tools lambda, map, filter and reduce, which Guido 

Van Rossum never liked. Six and a half years later in October 2000, Python 2.0 was 

introduced. This release included list comprehensions, a full garbage collector and it was 

supporting unicode. Python flourished for another 8 years in the versions 2.x before the next 

major release as Python 3.0 (also known as "Python 3000" and "Py3K") was released. Python 

3 is not backwards compatible with Python 2.x. The emphasis in Python 3 had been on the 

removal of duplicate programming constructs and modules, thus fulfilling or coming close 

to fulfilling the 13th law of the Zen of Python: "There should be one -- and preferably only 

one -- obvious way to do it." Some changes in Python 7.3:  

• Print is now a function.  

• Views and iterators instead of lists  

• The rules for ordering comparisons have been simplified. E.g., a heterogeneous list 

cannot be sorted, because all the elements of a list must be comparable to each other.  

• There is only one integer type left, i.e., int. long is int as well.  

• The division of two integers returns a float instead of an integer. "//" can be used to 

have the "old" behaviour.  

• Text Vs. Data Instead of Unicode Vs. 8-bit  

Purpose  

We demonstrated that our approach enables successful segmentation of intra-retinal layers— 

even with low-quality images containing speckle noise, low contrast, and different intensity 

ranges throughout—with the assistance of the ANIS feature.  
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Python  

Python is an interpreted high-level programming language for general-purpose 

programming. Created by Guido van Rossum and first released in 1991, Python has a design 

philosophy that emphasizes code readability, notably using significant whitespace.   

Python features a dynamic type system and automatic memory management. It supports 

multiple programming paradigms, including object-oriented, imperative, functional and 

procedural, and has a large and comprehensive standard library.   

• Python is Interpreted − Python is processed at runtime by the interpreter. You do not 

need to compile your program before executing it. This is similar to PERL and PHP.   

• Python is Interactive − you can actually sit at a Python prompt and interact with the 

interpreter directly to write your programs.   

 

Python also acknowledges that speed of development is important. Readable and terse code 

is part of this, and so is access to powerful constructs that avoid tedious repetition of code. 

Maintainability also ties into this may be an all but useless metric, but it does say something 

about how much code you have to scan, read and/or understand to troubleshoot problems or 

tweak behaviors. This speed of development, the ease with which a programmer of other 

languages can pick up basic Python skills and the huge standard library is key to another area 

where Python excels. All its tools have been quick to implement, saved a lot of time, and 

several of them have later been patched and updated by people with no Python background 

- without breaking.  

6.3 Modules Used in Project  

TensorFlow  

TensorFlow is a free and open-source software library for dataflow and differentiable 

programming across a range of tasks. It is a symbolic math library and is also used for 

machine learning applications such as neural networks. It is used for both research and 

production at Google. TensorFlow was developed by the Google Brain team for internal 

Google use. It was released under the Apache 2.0 open-source license on November 9, 2015.  
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NumPy  

NumPy is a general-purpose array-processing package. It provides a high-performance 

multidimensional array object, and tools for working with these arrays. It is the fundamental 

package for scientific computing with Python. It contains various features including these 

important ones:  

• A powerful N-dimensional array object  

• Sophisticated (broadcasting) functions  

• Tools for integrating C/C++ and Fortran code  

• Useful linear algebra, Fourier transform, and random number capabilities  

Besides its obvious scientific uses, NumPy can also be used as an efficient multi-dimensional 

container of generic data. Arbitrary datatypes can be defined using NumPy which allows 

NumPy to seamlessly and speedily integrate with a wide variety of databases.  

Pandas  

Pandas is an open-source Python Library providing high-performance data manipulation and 

analysis tool using its powerful data structures. Python was majorly used for data munging 

and preparation. It had very little contribution towards data analysis. Pandas solved this 

problem. Using Pandas, we can accomplish five typical steps in the processing and analysis 

of data, regardless of the origin of data load, prepare, manipulate, model, and analyse. Python 

with Pandas is used in a wide range of fields including academic and commercial domains 

including finance, economics, Statistics, analytics, etc.  

Matplotlib  

Matplotlib is a Python 2D plotting library which produces publication quality figures in a 

variety of hardcopy formats and interactive environments across platforms. Matplotlib can 

be used in Python scripts, the Python and IPython shells, the Jupyter Notebook, web 

application servers, and four graphical user interface toolkits. Matplotlib tries to make easy 

things easy and hard things possible. You can generate plots, histograms, power spectra, bar 

charts, error charts, scatter plots, etc., with just a few lines of code. For examples, see the 

sample plots and thumbnail gallery.  



 

34 
 

Scikit – learn  

Scikit-learn provides a range of supervised and unsupervised learning algorithms via a 

consistent interface in Python. It is licensed under a permissive simplified BSD license and 

is distributed under many Linux distributions, encouraging academic and commercial use. 

Python is an interpreted high-level programming language for general-purpose 

programming. Created by Guido van Rossum and first released in 1991, Python has a design 

philosophy that emphasizes code readability, notably using significant whitespace.   

Python features a dynamic type system and automatic memory management. It supports 

multiple programming paradigms, including object-oriented, imperative, functional and 

procedural, and has a large and comprehensive standard library.   

• Python is Interpreted − Python is processed at runtime by the interpreter. You do not 

need to compile your program before executing it. This is similar to PERL and PHP.   

• Python is Interactive − you can actually sit at a Python prompt and interact with the 

interpreter directly to write your programs.   

 

Python also acknowledges that speed of development is important. Readable and terse code 

is part of this, and so is access to powerful constructs that avoid tedious repetition of code. 

Maintainability also ties into this may be an all but useless metric. 

It does say something about how much code you have to scan, read and/or understand to 

troubleshoot problems or tweak behaviors. This speed of development, the ease with which 

a programmer of other languages can pick up basic Python skills and the huge standard 

library is key to another area where Python excels. All its tools have been quick to implement, 

saved a lot of time, and several of them have later been patched and updated by people with 

no Python background - without breaking.   
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6.4 Install Python Step-by-Step in Windows and Mac  

Python a versatile programming language doesn’t come pre-installed on your computer 

devices. Python was first released in the year 1991 and until today it is a very popular 

highlevel programming language. Its style philosophy emphasizes code readability with its 

notable use of great whitespace.  

The object-oriented approach and language construct provided by Python enables 

programmers to write both clear and logical code for projects. This software does not come 

pre-packaged with Windows.  

 

How to Install Python on Windows and Mac  

There have been several updates in the Python version over the years. The question is how 

to install Python? It might be confusing for the beginner who is willing to start learning 

Python but this tutorial will solve your query. The latest or the newest version of Python is 

version 3.7.4 or in other words, it is Python 3.  

Note: The python version 3.7.4 cannot be used on Windows XP or earlier devices.  

Before you start with the installation process of Python. First, you need to know about your 

System Requirements. Based on your system type i.e., operating system and based processor, 

you must download the python version. My system type is a Windows 64-bit operating 

system. So, the steps below are to install python version 3.7.4 on Windows 7 device or to 

install Python 3. Download the Python Cheatsheet here. The steps on how to install Python 

on Windows 10, 8 and 7 are divided into 4 parts to help understand better. 
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Download the Correct version into the system  

Step 1: Go to the official site to download and install python using Google Chrome or any 

other web browser. OR Click on the following link: https://www.python.org  

 

  

Now, check for the latest and the correct version for your operating system. 

Step 2: Click on the Download Tab. 

 

                          

 

Step 3: You can either select the Download Python for windows 3.7.4 button in Yellow Color 

or you can scroll further down and click on download with respective to their version. Here, 

we are downloading the most recent python version for windows 3.7.4  

https://www.python.org/
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Step 4: Scroll down the page until you find the Files option.  

Step 5: Here you see a different version of python along with the operating system.  

  

• To download Windows 32-bit python, you can select any one from the three options: 

Windows x86 embeddable zip file, Windows x86 executable installer or Windows 

x86 web-based installer.   

• To download Windows 64-bit python, you can select any one from the three options: 

Windows x86-64 embeddable zip file, Windows x86-64 executable installer or 

Windows x86-64 web-based installer.  

Here we will install Windows x86-64 web-based installer. Here your first part regarding 

which version of python is to be downloaded is completed. Now we move ahead with the 

second part in installing python i.e., Installation  

Note: To know the changes or updates that are made in the version you can click on the 

Release Note Option.  
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Installation of Python  

Step 1: Go to Download and Open the downloaded python version to carry out the installation 

process.  

  

Step 2: Before you click on Install Now, make sure to put a tick on Add Python 3.7 to PATH.  

  

Step 3: Click on Install NOW After the installation is successful. Click on Close.  
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With these above three steps on python installation, you have successfully and correctly 

installed Python. Now is the time to verify the installation.  

Note: The installation process might take a couple of minutes.  

Verify the Python Installation  

Step 1: Click on Start  

Step 2: In the Windows Run Command, type “cmd”.  

  

Step 3: Open the Command prompt option.  

Step 4: Let us test whether the python is correctly installed. Type python –V and press Enter.  

  

Step 5: You will get the answer as 3.7.4  

Note: If you have any of the earlier versions of Python already installed. You must first 

uninstall the earlier version and then install the new one.   
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Check how the Python IDLE works  

Step 1: Click on Start  

Step 2: In the Windows Run command, type “python idle”.  

  

Step 3: Click on IDLE (Python 3.7 64-bit) and launch the program  

Step 4: To go ahead with working in IDLE you must first save the file. Click on File > Click 

on Save        

                

 

Step 5: Name the file and save as type should be Python files. Click on SAVE. Here I have 

named the files as Hey World.  
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Step 6: Now for e.g., enter print (“Hey World”) and Press Enter.  

              

You will see that the command given is launched. With this, we end our tutorial on how to 

install Python. You have learned how to download python for windows into your respective 

operating system.  

Note: Unlike Java, Python does not need semicolons at the end of the statements otherwise 

it won’t work.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

42 
 

7. SYSTEM REQUIREMENTS SPECIFICATIONS  

7.1 Software Requirements  

The functional requirements or the overall description documents include the product 

perspective and features, operating system and operating environment, graphics 

requirements, design constraints and user documentation.  

The appropriation of requirements and implementation constraints gives the general 

overview of the project in regard to what the areas of strength and deficit are and how to 

tackle them.  

• Python IDLE 3.7 version (or)  

• Anaconda 3.7 (or)  

• Jupiter (or)  

• Google colab  

 

7.2 Hardware Requirements  

Minimum hardware requirements are very dependent on the particular software being 

developed by a given Enthought Python / Canopy / VS Code user. Applications that need to 

store large arrays/objects in memory will require more RAM, whereas applications that need 

to perform numerous calculations or tasks more quickly will require a faster processor.  

Operating system         :  Windows, Linux Processor    

Minimum intel             :    i3  

Ram         :   Minimum 4 GB  

Hard disk          :  Minimum 250GB  
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8. FUNCTIONAL REQUIREMENTS  

8.1 Output Design  

Outputs from computer systems are required primarily to communicate the results of 

processing to users. They are also used to provides a permanent copy of the results for later 

consultation. The various types of outputs in general are:  

• External Outputs, whose destination is outside the organization  

• Internal Outputs whose destination is within organization and they are the User’s 

main interface with the computer.  

• Operational outputs whose use is purely within the computer department.  

• Interface outputs, which involve the user in communicating directly.  

 

Output Definition  

The outputs should be defined in terms of the following points:  

• Type of the output  

• Content of the output  

• Format of the output  

• Location of the output  

• Frequency of the output  

• Volume of the output  

• Sequence of the output  

It is not always desirable to print or display data as it is held on a computer. It should be 

decided as which form of the output is the most suitable.  
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8.2 Input Design  

Input design is a part of overall system design.  The main objective during the input design 

is as given below:  

• To produce a cost-effective method of input.  

• To achieve the highest possible level of accuracy.  

• To ensure that the input is acceptable and understood by the user.  

Input Stages  

The main input stages can be listed as below:  

• Data recording  

• Data transcription  

• Data conversion  

• Data verification  

• Data control  

• Data transmission  

• Data validation  

• Data correction  

Input Types  

It is necessary to determine the various types of inputs.  Inputs can be categorized as follows:  

 External inputs, which are prime inputs for the system.  

 Internal inputs, which are user communications with the system.  

 Operational, which are computer department’s communications to the system?  

 Interactive, which are inputs entered during a dialogue.  

Input Media  

At this stage choice has to be made about the input media.  To conclude about the input media 

consideration has to be given to:       

• Type of input  
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• Flexibility of format  

• Speed  

• Accuracy  

• Verification methods  

• Rejection rates  

• Ease of correction  

• Storage and handling requirements   

• Security  

• Easy to use  

• Portability  

Keeping in view the above description of the input types and input media, it can be said that 

most of the inputs are of the form of internal and interactive.   

As Input data is to be the directly keyed in by the user, the keyboard can be considered to be 

the most suitable input device.  

Error Avoidance  

At this stage care is to be taken to ensure that input data remains accurate form the stage at 

which it is recorded up to the stage in which the data is accepted by the system.  This can be 

achieved only by means of careful control each time the data is handled.  

Error Detection  

Even though every effort is made to avoid the occurrence of errors, still a small proportion 

of errors is always likely to occur, these types of errors can be discovered by using validations 

to check the input data.  

Data Validation  

Procedures are designed to detect errors in data at a lower level of detail.  Data validations 

have been included in the system in almost every area where there is a possibility for the user 

to commit errors.  The system will not accept invalid data.  
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8.3 User Interface Design  

It is essential to consult the system users and discuss their needs while designing the user 

interface:  

User Interface Systems Can Be Broadly Classified As:  

• User initiated interface : the user is in charge, controlling the progress of the 

user/computer dialogue.  

• Computer initiated interfaces : In the computer-initiated interface, the computer 

selects the next stage in the interaction.  

In the computer-initiated interfaces the computer guides the progress of the user/computer 

dialogue.  Information is displayed and the user response of the computer takes action or 

displays further information.  

User Initiated Interfaces : 

User initiated interfaces fall into two approximate classes:  

• Command driven interfaces: In this type of interface the user inputs commands or 

queries which are interpreted by the computer.  

• Forms oriented interface: The user calls up an image of the form to his/her screen 

and fills in the form.  The forms-oriented interface is chosen because it is the best 

choice.  

Computer-Initiated Interfaces: 

The following computer – initiated interfaces were used:  

• The menu system for the user is presented with a list of alternatives and the user 

chooses one; of alternatives.  

• Questions – answer type dialog system where the computer asks question and takes 

action based on the basis of the users reply.  

Right from the start the system is going to be menu driven, the opening menu displays the 

available options.  Choosing one option gives another popup menu with more options.  In 

this way every option leads the users to data entry form where the user can key in the data.  
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Error Message Design  

The design of error messages is an important part of the user interface design.  As user is 

bound to commit some errors or other while designing a system the system should be 

designed to be helpful by providing the user with information regarding the error he/she has 

committed.  

This application must be able to produce output at different modules for different inputs.  

 

8.4 Performance Requirements  

Performance is measured in terms of the output provided by the application. Requirement 

specification plays an important part in the analysis of a system. Only when the requirement 

specifications are properly given, it is possible to design a system, which will fit into required 

environment.  It rests largely in the part of the users of the existing system to give the 

requirement specifications because they are the people who finally use the system.   

This is because the requirements have to be known during the initial stages so that the system 

can be designed according to those requirements.  It is very difficult to change the system 

once it has been designed and on the other hand designing a system, which does not cater to 

the requirements of the user, is of no use.  

The requirement specification for any system can be broadly stated as given below:  

• The system should be able to interface with the existing system   

• The system should be accurate  

• The system should be better than the existing system  

• The existing system is completely dependent on the user to perform all the duties.  
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9. SOURCE CODE  

from tkinter import messagebox 

from tkinter import * 

from tkinter import simpledialog 

import tkinter 

import matplotlib.pyplot as plt 

import numpy as np 

from tkinter import ttk 

from tkinter import filedialog 

import pandas as pd 

from sklearn.model_selection import train_test_split 

import os 

import cv2 

from sklearn.preprocessing import StandardScaler 

from sklearn.metrics import accuracy_score 

from sklearn import svm 

from sklearn.metrics import accuracy_score 

from sklearn.metrics import f1_score 

from sklearn.metrics import precision_score 

from sklearn.metrics import recall_score 

import matplotlib.pyplot as plt 

import seaborn as sns 

import os 

from sklearn.metrics import confusion_matrix 
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main = Tk() 

main.title("Children ADHD Disease Detection using Pose Extimation Technique") 

main.geometry("1300x1200") 

 

global filename 

global X, Y 

global X_train, X_test, y_train, y_test, scaler, svm_cls 

global dataset 

proto_File = "Models/pose_deploy_linevec.prototxt" 

weights_File = "Models/pose_iter_440000.caffemodel" 

n_Points = 18 

POSE_PAIRS = [ 

[1,0],[1,2],[1,5],[2,3],[3,4],[5,6],[6,7],[1,8],[8,9],[9,10],[1,11],[11,12],[12,13],[0,14],[0,1

5],[14,16],[15,17]] 

in_Width = 368 

in_Height = 368 

threshold = 0.1 

POSE_NAMES = ["Head", "Neck", "RShoulder", "RElbow", "RWrist", "LShoulder", 

"LElbow", "LWrist", "RHip", "RKnee", 

              "RAnkle", "LHip", "LKnee", "LAnkle", "Chest", "Background"] 

 

net = cv2.dnn.readNetFromCaffe(proto_File, weights_File) 

net.setPreferableBackend(cv2.dnn.DNN_TARGET_CPU) 

 

def uploadDataset():  

    global filename, dataset 

    filename = filedialog.askopenfilename(initialdir="ADHDDataset") 
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    text.delete('1.0', END) 

    text.insert(END,filename+" loaded\n\n") 

    dataset = pd.read_csv(filename) 

    text.insert(END,str(dataset.head())) 

 

def processDataset(): 

    global dataset, X, Y, scaler 

    text.delete('1.0', END) 

    data = dataset.values 

    X = data[:,0:data.shape[1]-1] 

    Y = data[:,data.shape[1]-1] 

    indices = np.arange(X.shape[0]) #shuffling dataset values 

    np.random.shuffle(indices) 

    X = X[indices] 

    Y = Y[indices] 

    scaler = StandardScaler() 

    X = scaler.fit_transform(X) 

    text.insert(END,"Dataset Processing, Shuffling & Normalization Completed\n\n") 

    text.insert(END,"Normalized Dataset Values = "+str(X)) 

 

def splitDataset(): 

    text.delete('1.0', END) 

    global X, Y, X_train, X_test, y_train, y_test 

    X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.2) 

    text.insert(END,"Total records found in Dataset : "+str(X.shape[0])+"\n") 

    text.insert(END,"Total features found in each record : "+str(X.shape[1])+"\n") 
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    text.insert(END,"Dataset Train & Test Split\n") 

    text.insert(END,"80% dataset size used to train algorithms : 

"+str(X_train.shape[0])+"\n") 

    text.insert(END,"20% dataset size used to test algorithms : 

"+str(X_test.shape[0])+"\n") 

 

def calculateMetrics(algorithm, predict, y_test): 

    label = ['Normal', 'ADHD Disease'] 

    a = accuracy_score(y_test,predict)*100 

    p = precision_score(y_test, predict,average='macro') * 100 

    r = recall_score(y_test, predict,average='macro') * 100 

    f = f1_score(y_test, predict,average='macro') * 100 

    text.insert(END,algorithm+" Accuracy  :  "+str(a)+"\n") 

    text.insert(END,algorithm+" Precision : "+str(p)+"\n") 

    text.insert(END,algorithm+" Recall    : "+str(r)+"\n") 

    text.insert(END,algorithm+" FScore    : "+str(f)+"\n")     

    conf_matrix = confusion_matrix(y_test, predict)  

    plt.figure(figsize =(6, 3))  

    ax = sns.heatmap(conf_matrix, xticklabels = label, yticklabels = label, annot = True, 

cmap="viridis" ,fmt ="g"); 

    ax.set_ylim([0,len(label)]) 

    plt.title(algorithm+" Confusion matrix")  

    plt.xticks(rotation=90) 

    plt.ylabel('True class')  

    plt.xlabel('Predicted class')  

    plt.show()     
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def trainSVM(): 

    global svm_cls 

    text.delete('1.0', END) 

    global X_train, X_test, y_train, y_test 

    svm_cls = svm.SVC(kernel="rbf", C = 12, probability=True, gamma="auto") 

    svm_cls.fit(X_train, y_train) 

    predict = svm_cls.predict(X_test) 

    calculateMetrics("SVM", predict, y_test) 

 

def predictADHD(testData): 

    values = [] 

    testData = np.asarray(testData) 

    values.append(testData) 

    testData = np.asarray(values) 

    testData = scaler.transform(testData) 

    predict = svm_cls.predict(testData) 

    return int(predict[0]) 

 

def detectDisease(frame): 

    global net 

    frame_Width = frame.shape[1] 

    frame_Height = frame.shape[0] 

    img = np.zeros((frame_Height,frame_Width,3), dtype=np.uint8) 

    inp_Blob = cv2.dnn.blobFromImage(frame, 1.0 / 255, (in_Width, in_Height), (0, 0, 

0), swapRB=False, crop=False) 

    net.setInput(inp_Blob) 
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    output = net.forward() 

    H = output.shape[2] 

    W = output.shape[3] 

    points = [] 

    testData = [] 

    for i in range(n_Points): 

        probMap = output[0, i, :, :] 

        minVal, prob, minLoc, point = cv2.minMaxLoc(probMap) 

        x = (frame_Width * point[0]) / W 

        y = (frame_Height * point[1]) / H 

        if prob > threshold : 

            cv2.circle(frame, (int(x), int(y)), 8, (0, 255, 255), thickness=-1, 

lineType=cv2.FILLED) 

            cv2.putText(frame, "{}".format(i), (int(x), int(y)), 

cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2, lineType=cv2.LINE_AA) 

            points.append((int(x), int(y))) 

            testData.append(x) 

            testData.append(y) 

        else : 

            points.append(None) 

            testData.append(0) 

            testData.append(0) 

    predict = predictADHD(testData)         

    for pair in POSE_PAIRS: 

        partA = pair[0] 

        partB = pair[1] 
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        print(str(pair[0])+" "+str(pair[1])+" "+str(partA)+" "+str(partB)) 

        if points[partA] and points[partB]: 

            cv2.line(img, points[partA], points[partB], (0, 255, 255), 3, 

lineType=cv2.LINE_AA) 

            cv2.line(frame, points[partA], points[partB], (0, 255, 255), 3, 

lineType=cv2.LINE_AA) 

            cv2.circle(frame, points[partA], 8, (0, 0, 255), thickness=-1, 

lineType=cv2.FILLED) 

            cv2.circle(frame, points[partB], 8, (0, 0, 255), thickness=-1, 

lineType=cv2.FILLED) 

    return frame, img, predict 

 

def imageDetect(): 

    text.delete('1.0', END) 

    global scaler, svm_cls 

    filename = filedialog.askopenfilename(initialdir="images") 

    frame = cv2.imread(filename) 

    frame, img, predict = detectDisease(frame) 

    frame = cv2.resize(frame, (400, 400)) 

    img = cv2.resize(img, (400, 400)) 

    label = ['Normal', 'ADHD Disease'] 

    print(predict) 

    cv2.putText(frame, 'Predicted As : '+label[predict], (10, 

25),  cv2.FONT_HERSHEY_SIMPLEX,0.7, (0, 0, 255), 2) 

    cv2.imshow("Pose Estimated Image", frame) 

    cv2.imshow("Pose Image", img) 

    cv2.waitKey(0) 



 

55 
 

 

def videoDetect(): 

    text.delete('1.0', END) 

    global scaler, svm_cls 

    filename = filedialog.askopenfilename(initialdir="videos") 

    normal_count = 0 

    abnormal_count = 0 

    video = cv2.VideoCapture(filename) 

    count = 0 

    while(True): 

        ret, frame = video.read() 

        if ret == True: 

            filename = "temp.png" 

            frame, img, predict = detectDisease(frame) 

            if predict == 0: 

                normal_count += 1 

            else: 

                abnormal_count + 1                 

            cv2.imshow("Estimated Pose", frame) 

            if cv2.waitKey(5) & 0xFF == ord('q'): 

                break 

            count = count + 1 

            if count > 20: 

                break 

        else: 

            break 
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    video.release() 

    cv2.destroyAllWindows() 

    if normal_count >= abnormal_count: 

        text.insert(END,"Pose in Video Predicted as : NORMAL\n") 

    else: 

        text.insert(END,"Pose in Video Predicted as : ADHD Disease\n") 

                 

font = ('times', 15, 'bold') 

title = Label(main, text='Children ADHD Disease Detection using Pose Extimation 

Technique') 

title.config(bg='darkviolet', fg='gold')   

title.config(font=font)            

title.config(height=3, width=120)        

title.place(x=0,y=5) 

font1 = ('times', 13, 'bold') 

ff = ('times', 12, 'bold') 

 

uploadButton = Button(main, text="Upload ADHD Pose Dataset", 

command=uploadDataset) 

uploadButton.place(x=20,y=100) 

uploadButton.config(font=ff) 

 

processButton = Button(main, text="Preprocess Dataset", command=processDataset) 

processButton.place(x=20,y=150) 

processButton.config(font=ff) 
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splitButton = Button(main, text="Split Dataset Train & Test", command=splitDataset) 

splitButton.place(x=20,y=200) 

splitButton.config(font=ff) 

 

svmButton = Button(main, text="Train SVM Algorithm", command=trainSVM) 

svmButton.place(x=20,y=250) 

svmButton.config(font=ff) 

 

imageDetectionButton = Button(main, text="Disease Detection from Test Image", 

command=imageDetect) 

imageDetectionButton.place(x=20,y=300) 

imageDetectionButton.config(font=ff) 

 

videoDetectionButton = Button(main, text="Disease Detection from Video", 

command=videoDetect) 

videoDetectionButton.place(x=20,y=350) 

videoDetectionButton.config(font=ff) 

font1 = ('times', 12, 'bold') 

text=Text(main,height=30,width=110) 

scroll=Scrollbar(text) 

text.configure(yscrollcommand=scroll.set) 

text.place(x=360,y=100) 

text.config(font=font1) 

main.config(bg='forestgreen') 

main.mainloop() 
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10. RESULTS AND DISCUSSION  

Attention Deficit Hyperactivity Disorder (ADHD) disease mostly found in children’s and 

this disease can be detected by analysing children’s pose estimation. Currently no such 

technique exists to detect ADHD automatically and can be detected using manual 

monitoring but this technique is error pone and difficult to detect. 

To overcome from above issue we are employing machine learning SVM algorithm which 

will get trained on normal and abnormal children’s poses and then it will analyse pose 

from new test images or videos to predict weather children post is normal or contains 

ADHD abnormal poses. 

To train SVM we have used below pose dataset which contains children motions 

 

           Fig 10.1 Dataset Screens 

In above dataset screen first row represents dataset column names and remaining rows 

represents dataset values and in last column we have class labels as 0 or 1 where 0 

represents NORMAL and 1 represents ADHD disease. 

To implement this project we have designed following modules 

1) Upload ADHD Pose Dataset: using this module we will upload dataset and to application 

and then read all dataset values 

2) Pre-process Dataset: using this module we will clean, normalized and shuffle dataset values 
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3) Split Dataset Train & Test: using this module dataset will be split into train and test where 

application using 80% dataset records for training and 20% for testing 

4) Train SVM Algorithm: 80% dataset will be input to SVM algorithm to train a model and 

this model will be applied on 20% test data to calculate prediction accuracy 

5) Disease Detection from Test Image: using this module we will upload test image and then 

calculate or estimate poses and then applied SVM algorithm to predict weather image is 

normal or abnormal 

6) Disease Detection from Video: using this module we can predict ADHD from videos also 

SCREEN SHOTS OF OUTPUT: 

To run project double click on run.bat file to get below screen 

 

 

                      Fig 10.2 Upload ADHD Pose Dataset 

In above screen click on ‘Upload ADHD Pose Dataset’ button to upload dataset and get 

below output 
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Fig 10.3 Selecting ADHD Dataset 

In above screen selecting and uploading dataset and then click on ‘Open’ button to load 

dataset and get below output 

 

         Fig 10.4 Pre-processing Dataset  

In above screen dataset loaded and now click on ‘Pre-process Dataset’ button to clean, 

normalized and shuffle dataset values 



 

61 
 

 

Fig 10.5 Normalization of Data 

In above screen we can see dataset is normalized and now click on ‘Split Dataset Train & 

Test’ button to split dataset into train and test and then will get below output 

 

Fig 10.6 Split Dataset to Train & Test  

In above screen can see dataset total size and then can see training and testing size and 

now click on ‘Train SVM Algorithm’ button to train SVM and get below output 
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Fig 10.7 Train SVM Algorithm 

In above screen SVM training completed and it got 96% accuracy and can see other 

metrics like precision, recall and FCSORE. In above confusion matrix graph x-axis 

represents Predicted Labels and y-axis represents True Labels and green and yellow boxes 

contains correct prediction count and all blue boxes represents incorrect prediction which 

are very few. Now close above graph and then click on ‘Disease Detection from Test 

Image’ button to upload test image and get below output 

Fig 10.8 Disease Detection from Test Image 



 

63 
 

In above screen selecting and uploading test image and then click on ‘Open’ button to get 

below output 

 

Fig 10.9 Pose Estimation and Prediction 

In above screen pose is estimated and that estimated pose drawn in black window also 

and image predicted as Normal and similarly you can upload and test other images 

 

Fig 10.10 Pose Estimation and Prediction 

In above screen can see another image output 
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Fig 10.11 Disease Detection from Video 

In above screen from pose ADHD disease detected and now click on ‘Disease Detection 

from Video’ button to upload video and get below output 

 

Fig 10.12 Pose Estimation 

In above screen uploading video and then application will analyse all poses from video 

and then give prediction output 
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Fig 10.13 Pose Prediction 

In above screen can see application start estimating poses from video and after completing 

video playing will get below output 

 

Fig 10.14 Pose Estimation and Prediction Output 

In above screen in blue colour text can see estimated poses from video detected as 

‘Normal’. Similarly by following above screens you can detect ADHD from any child 

image or video. 
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11. CONCLUSION AND FUTURE SCOPE  

CONCLUSION  

In conclusion, the Children ADHD Disease Detection Using Pose Estimation Techniques 

project represents a significant step forward in improving the accuracy and efficiency of ADHD 

diagnosis. By harnessing the capabilities of artificial intelligence, this system has the potential to 

augment clinical assessments, leading to more objective evaluations, better intervention strategies, 

and ultimately, improved outcomes for children. It addresses the limitations of traditional 

subjective diagnosis, such as observational biases, while also providing access to real-time 

behavioral analysis, ensuring that medical professionals stay informed with the latest 

developments in ADHD research. This project underscores the transformative role of AI in 

pediatric mental health and sets the stage for further innovation in early diagnosis and intervention. 

FUTURE SCOPE 

Looking to the future, the scope for this application is promising. Firstly, continuous refinement 

and expansion of the model’s dataset will be essential to improve accuracy and adapt to diverse 

behavioral patterns. Integration with emerging technologies, such as speech and facial recognition, 

could further enhance the system's diagnostic capabilities. Additionally, the application could be 

adapted for remote ADHD assessments, enabling telehealth consultations and expanding access to 

pediatric mental healthcare, particularly in underserved areas. Collaboration with medical 

professionals and institutions for data validation and ethical compliance will be crucial for the 

system’s ongoing development. Moreover, the principles and techniques developed in this project 

could serve as a blueprint for similar AI-based diagnostic tools in other neurological disorders, 

ushering in a new era of intelligent healthcare solutions. Ultimately, the future scope involves not 

only the continual advancement of this specific application but also its potential to revolutionize 

pediatric mental health diagnostics. 
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