
i

 A

 Major Project Report

 On

Children ADHD Disease Detection Using Pose

Estimation Techniques

 Submitted to CMREC, HYDERABAD

 In Partial Fulfillment of the requirements for the Award of Degree of

 BACHELOR OF TECHNOLOGY

 IN

 COMPUTER SCIENCE AND ENGINEERING (DATA SCIENCE)

 Submitted

 By

 K. Bhavana (218R1A6730)

 Ch. Swaran (218R1A6720)

 M. Srikanth (218R1A6746)

 A. Chandrashekar (218R1A6708)

 Under the Esteemed guidance of

 Mrs. T. VIRAJITHA

 Assistant Professor, Department of CSE (Data Science)

Department of Computer Science & Engineering (Data Science)

 CMR ENGINEERING COLLEGE
 UGC AUTONOMOUS

(Approved by AICTE, NEW DELHI, Affiliated to JNTU, Hyderabad)

Kandlakoya, Medchal Road, R.R. Dist. Hyderabad-501 401.

 2024-2025

ii

 CMR ENGINEERING COLLEGE

 UGC AUTONOMOUS

 (Accredited by NBA,Approved by AICTE NEW DELHI, Affiliated to JNTU, Hyderabad)
 Kandlakoya, Medchal Road, Hyderabad-501 401

Department of Computer Science & Engineering (Data Science)

 CERTIFICATE

This is to certify that the project entitled “Children ADHD Disease Detection Using Pose

Estimation Techniques” is a bonafide work carried out by

 K. Bhavana (218R1A6730)

 Ch. Swaran (218R1A6720)

 M. Srikanth (218R1A6746)

 A. Chandrashekar (218R1A6708)

in partial fulfillment of the requirement for the award of the degree of BACHELOR OF

TECHNOLOGY in COMPUTER SCIENCE AND ENGINEERING (DATA SCIENCE)

from CMR Engineering College, affiliated to JNTU, Hyderabad, under our guidance and

supervision.

The results presented in this Major project have been verified and are found to be satisfactory.

The results embodied in this Major project have not been submitted to any other university for

the award of any other degree or diploma.

Internal Guide Major Project Coordinator Head of the Department External Examiner

Mrs.T.Virajitha Mrs. G. Shruthi Dr. M. Laxmaiah

Assistant Professor Assistant Professor Professor & H.O.D

CSE (Data Science),

CMREC

CSE (Data Science),

CMREC

CSE (Data Science),

CMREC

iii

 DECLARATION

This is to certify that the work reported in the present Major project entitled " Children ADHD

Disease Detection Using Pose Estimation Techniques” is a record of bonafide work done by

us in the Department of Computer Science and Engineering (Data Science), CMR Engineering

College, JNTU Hyderabad. The reports are based on the project work done entirely by us and

not copied from any other source. We submit our project for further development by any

interested students who share similar interests to improve the project in the future.

The results embodied in this Major project report have not been submitted to any other University

or Institute for the award of any degree or diploma to the best of our knowledge and belief.

 K. Bhavana (218R1A6730)

 Ch. Swaran (218R1A6720)

 M. Srikanth (218R1A6746)

 A. Chandrashekar (218R1A6708)

iv

 ACKNOWLEDGMENT

We are extremely grateful to Dr. A. Srinivasula Reddy, Principal and Dr. M. Laxmaiah, HOD,

Department of CSE (Data Science), CMR Engineering College for their constant support.

We are extremely thankful to Mrs. T. Virajitha, Assistant Professor, Internal Guide,

Department of CSE(DS), for her constant guidance, encouragement and moral support

throughout the project.

 We will be failing in duty if We do not acknowledge with grateful thanks to the authors of

the references and other literatures referred in this Project.

We thank Mrs. G. Shruthi, Assistant Professor, CSE(DS) Department, Major Project

Coordinator for her constant support in carrying out the project activities and reviews.

We express my thanks to all staff members and friends for all the help and co-ordination

extended in bringing out this project successfully in time.

Finally, We are very much thankful to our parents who guided me for every step.

 K. Bhavana (218R1A6730)

 Ch. Swaran (218R1A6720)

 M. Srikanth (218R1A6746)

A. Chandrashekar (218R1A6708)

v

ABSTRACT

Attention Deficit Hyperactivity Disorder (ADHD) is a neurodevelopmental condition that

significantly impacts children's academic performance and social interactions. Early diagnosis and

intervention are crucial for effective management; however, conventional assessment methods rely

heavily on subjective evaluations, which can lead to inconsistencies and delays in diagnosis. This

project, "Children ADHD Disease Detection Using Pose Estimation Techniques," introduces an

advanced, non-invasive approach to ADHD detection using pose estimation technology.

The primary objective of this research is to improve the accuracy, efficiency, and objectivity of

ADHD detection. Unlike traditional methods, which are often time-consuming and dependent on

expert observation, this AI-driven technique provides an automated and data-driven assessment

framework. By ensuring early and reliable detection, the system can facilitate timely intervention,

thereby improving the quality of life for affected children. While the potential benefits of this

technology are substantial, ethical considerations must be addressed the privacy concerns related

to data collection, storage, and usage must be carefully managed to prevent misuse and ensure

compliance with ethical guidelines. It is important to emphasize that this system is designed to

support, rather than replace, comprehensive clinical evaluations conducted by medical

professionals.

In conclusion, this project represents a significant step forward in child mental health assessment.

By integrating pose estimation techniques with machine learning models, it offers a promising tool

for the early and precise detection of ADHD symptoms. Future work will focus on extensive

testing and validation to enhance the reliability and effectiveness of this approach, ensuring its

potential as a valuable resource in ADHD diagnosis and intervention strategies.

vi

CONTENTS

 TOPIC PAGENO

 ABSTRACT v

LIST OF FIGURES vii

1. INTRODUCTION

1.1 Overview 1

1.2 Research Motivation 2

1.3 Problem Statement 3

1.4 Applications 4

2. LITERATURE SURVEY 5

3. EXISTING SYSTEM

3.1 Traditional Methods for ADHD Detection 9

3.2 Technological Advancements in ADHD Diagnosis 11

4. PROPOSED METHODOLOGY

4.1 Overview 14

4.2 Data Preprocessing 16

4.3 Machine Learning Model Selection 18

4.4 Support Vector Machine(SVM) 19

5. UML DIAGRAMS

5.1 Class Diagram 23

5.2 Use Case Diagram 23

5.3 Sequence Diagram 24

5.4 Collaboration diagram 25

6. SOFTWARE ENVIRONMENT

6.1 What is python and its Advantages and Disadvantages 26

6.2 History of python 30

6.3 Modules used in project 32

6.4 Install Python Step-by-Step in Windows and Mac 35

7. SYSTEM REQUIREMENTS SPECIFICATIONS

 7.1 Software Requirements 42

7.2 Hardware Requirements 42

8. FUNCTIONAL REQUIREMENTS

 8.1 Output Design and Definition 43

 8.2 Input Design, Stages, Types, Media 44

 8.3 User Interface Design 46

 8.4 Performance Requirements 47

9. SOURCE CODE 48

10. RESULTS AND DISCUSSION 58

11. CONCLUSION AND REFERENCES 66

vii

 LIST OF FIGURES

FIG.NO DESCRIPTION PAGENO

 2.1 Strengths and Weaknesses of Lesion Models 07

 2.2 Strengths and Weaknesses of Baseline Models 08

3.1.1 EEG Technology 09

3.1.2 FMRI Technology 10

3.1.3 CPT Technology 10

3.2.1 Heart Rate Variability 11

3.2.2 Neuropsychological Testing 11

3.2.3 Motion Sensors 12

3.2.4 Actigraphy 12

3.2.5 Neurofeedback training 13

3.2.6 Decision-Level Fusion Techniques 13

4.1.1 Block diagram of proposed system 14

4.4.1 SVM Hyperplane and Support Vectors 20

4.4.2 Kernel Transformation in SVM 20

5.1.1 Class Diagram 23

5.2.1 Use Case Diagram 23

5.3.1 Sequence Diagram 24

5.4.1 Collaboration Diagram 25

 6 Python installation Diagrams 36

viii

 LIST OF SCREENSHOTS

FIG.NO DESCRIPTION PAGENO

10.1 Dataset Screens 58

10.2 Upload ADHD Pose Dataset 59

10.3 Selecting ADHD Dataset 60

10.4 Pre-processing Dataset 60

10.5 Normalization of Data 61

10.6 Split Dataset to Train & Test 61

10.7 Train SVM Algorithm 62

10.8 Disease Detection from Test Image 62

10.9 Pose Estimation and Prediction 63

10.10 Pose Estimation and Prediction 63

10.11 Disease Detection from Video 64

 10.12 Pose Estimation 64

10.13 Pose Prediction 65

10.14 Pose Estimation and Prediction Output 65

1

 1. INTRODUCTION

1.1 Overview

Attention Deficit Hyperactivity Disorder (ADHD) is a neurodevelopmental disorder that

affects a child's ability to focus, control impulses, and regulate behavior. It is one of the

most common disorders diagnosed in children and can significantly impact their academic

performance and social interactions. Early and accurate detection of ADHD is crucial for

effective intervention and management. Traditional diagnostic methods rely on subjective

evaluations by psychologists and behavioral assessments, which can be time-consuming

and prone to bias.

Recent advancements in artificial intelligence and computer vision have enabled more

objective and efficient approaches to ADHD detection. Pose estimation techniques, such

as OpenPose and PoseNet, analyse body movements and postures to detect behavioral

patterns associated with ADHD. These techniques provide a non-invasive alternative for

identifying hyperactivity, impulsivity, and inattention in children.

The proposed system captures movement data using cameras and depth sensors, which is

then processed by machine learning models to classify ADHD-related behaviors. By

leveraging deep learning algorithms, the system can identify subtle movement patterns

that might be difficult for human observers to detect. This automated approach enhances

accuracy and consistency in ADHD assessments.

The integration of technology into ADHD detection has the potential to revolutionize how

early diagnosis is conducted. By reducing reliance on subjective clinical evaluations and

increasing accessibility to screening tools, this system can significantly improve early

intervention efforts. This project aims to develop an efficient and scalable solution for

ADHD detection that benefits both healthcare professionals and affected children.

2

1.2 Research Motivation

ADHD is a growing concern among children worldwide, with increasing cases reported

each year. Delayed or inaccurate diagnosis can lead to long-term academic and social

difficulties. Many children with ADHD go undiagnosed due to the lack of accessible and

objective screening methods. Current diagnostic approaches heavily depend on

behavioral observations and questionnaires, which can be influenced by external factors

such as environment and the child’s mood during evaluation.

Advancements in artificial intelligence, particularly in machine learning and computer

vision, provide an opportunity to develop innovative solutions for ADHD detection. Pose

estimation techniques allow for the analysis of movement patterns, which can serve as

reliable indicators of hyperactivity and inattention. This research is motivated by the need

for an accurate, scalable, and non-invasive diagnostic method that can be used in diverse

settings, including schools and clinics.

Another key motivation behind this research is the potential to reduce the burden on

healthcare professionals. Traditional ADHD assessments require trained specialists,

leading to long waiting times for diagnosis. By automating the detection process, AI-

driven systems can assist doctors in early identification, leading to timely interventions

and better outcomes for affected children.

The use of AI in healthcare has been widely recognized for its ability to enhance precision

and efficiency. By focusing on ADHD detection through pose estimation, this project aims

to bridge the gap between technological advancements and mental health screening. The

long-term goal is to develop an accessible and cost-effective tool that can be integrated

into routine health check-ups.

3

1.3 Problem Statement

ADHD is a challenging disorder to diagnose due to its reliance on subjective assessments

and behavioral evaluations. The traditional diagnostic process often involves interviews,

questionnaires, and direct observations, which can be inconsistent and influenced by

external factors. Furthermore, many cases go undiagnosed or misdiagnosed due to the

lack of specialized professionals and accessible screening tools.

Existing machine learning-based ADHD detection methods primarily focus on

neurophysiological data, such as EEG signals, which require specialized and expensive

equipment. This limits their widespread adoption, particularly in low-resource settings.

There is a need for a non-invasive, cost-effective, and efficient system that can objectively

analyse behavioral symptoms associated with ADHD.

Pose estimation techniques provide a promising alternative by tracking body movements

and postures to identify hyperactivity and impulsivity patterns. However, research in this

domain is still in its early stages, and there is a lack of comprehensive studies that integrate

pose estimation with machine learning for ADHD detection.

This project aims to address these challenges by developing a system that utilizes pose

estimation to analyse children's movement patterns for early ADHD detection. The goal

is to improve diagnostic accuracy, enhance accessibility, and reduce dependency on

subjective evaluations. By leveraging AI-driven pose analysis, this research seeks to offer

a practical solution for ADHD screening that can be implemented in schools, clinics, and

other healthcare settings.

4

1.4 Applications

The proposed ADHD detection system using pose estimation techniques has a wide range

of applications in healthcare, education, and research. One of the primary applications is

in clinical settings, where the system can assist healthcare professionals in diagnosing

ADHD with greater accuracy. By providing objective movement data, the system can

support doctors in identifying ADHD symptoms more reliably and reducing the chances

of misdiagnosis.

In educational institutions, this technology can be used for early screening of students

who exhibit ADHD-related behaviors. Schools can integrate the system into routine health

check-ups to identify children who may require further evaluation and support. Early

detection in schools allows for timely interventions, such as personalized learning

strategies and behavioral therapy, to help children succeed academically.

This technology can also be applied in behavioral research to analyse movement patterns

in children with ADHD. Researchers can use the system to study the correlation between

physical activity and ADHD symptoms, leading to better insights into the disorder’s

manifestation and progression. The collected data can contribute to the development of

improved intervention strategies and treatment approaches.

Another potential application is in telemedicine, where the system can be used for remote

ADHD assessments. With the growing demand for virtual healthcare services, an AI-

based screening tool can enable parents and doctors to assess children’s behavioral

patterns from home. This approach enhances accessibility, especially for families in

remote areas with limited access to mental health specialists.

Overall, the proposed ADHD detection system has the potential to revolutionize ADHD

screening and diagnosis. By integrating AI-driven pose estimation with machine learning,

this project can improve early detection, facilitate timely interventions, and enhance the

quality of life for children with ADHD.

5

2. LITERATURE SURVEY

The detection and diagnosis of ADHD have evolved significantly with advancements in

technology, particularly in the fields of pose estimation and machine learning. Several

studies have explored various methodologies for improving the accuracy and efficiency of

ADHD detection, ranging from traditional clinical assessments to automated systems based

on artificial intelligence. This literature survey reviews key research contributions that have

shaped the development of ADHD detection techniques.

Smith (2023) provides a comprehensive review of existing ADHD detection systems,

highlighting their strengths and limitations. The study identifies common challenges such as

subjectivity in diagnosis, dependency on expert evaluation, and high costs associated with

traditional methods. The research suggests that integrating AI and computer vision

techniques can help address these limitations by offering more objective and automated

diagnostic solutions.

Johnson (2023) explores pose estimation techniques in healthcare applications, emphasizing

their relevance in ADHD detection. The study discusses how pose estimation algorithms

such as OpenPose and PoseNet can capture movement patterns in children, enabling

researchers to analyse postural and behavioral anomalies that may indicate ADHD. The

findings highlight the potential of non-invasive movement analysis as a reliable diagnostic

tool.

Brown (2024) presents an in-depth analysis of machine learning approaches for ADHD

detection, comparing different models such as Support Vector Machines (SVM),

Convolutional Neural Networks (CNNs), and deep learning-based classifiers. The research

indicates that AI-powered models outperform traditional assessment methods in terms of

speed and reliability, making them viable alternatives for large-scale ADHD screening.

Davis (2024) focuses on the role of sensors and data collection in pose estimation for ADHD

assessments. The study describes how depth-sensing cameras, motion capture systems, and

wearable sensors can be utilized to collect movement data for analysis. The research

concludes that multi-sensor integration enhances the precision of pose estimation techniques

and provides richer datasets for training machine learning models.

6

White (2024) discusses non-invasive ADHD evaluation techniques using pose estimation.

The study emphasizes the ethical and privacy considerations involved in recording and

analyzing children's movements. The research suggests that privacy-preserving algorithms

and secure data handling mechanisms should be incorporated into ADHD detection systems

to ensure ethical compliance.

A recent study titled "ADHD Diagnosis Based on Action Characteristics Recorded in Videos

Using Machine Learning" (2024) introduces a novel approach where machine learning

models analyse video recordings of children performing specific tasks. By identifying

unique action characteristics associated with ADHD, the system aims to provide an objective

diagnosis without the need for clinical intervention.

Another study, "Advanced Machine Learning Techniques Reveal Multidimensional EEG

Abnormalities in Children with ADHD: A Framework for Automatic Diagnosis" (2024),

investigates the use of EEG data for ADHD detection. The research utilizes deep learning

techniques to analyse brain activity patterns, offering an alternative diagnostic method that

complements pose estimation-based techniques.

"DETEC-ADHD: A Data-Driven Web App for Early ADHD Detection Using Machine

Learning and Electroencephalography" (2024) presents an interactive platform for early

ADHD detection. The system combines EEG analysis with machine learning algorithms to

generate automated reports, providing healthcare professionals with an accessible and data-

driven assessment tool.

Another important contribution is the study "Objective Approach to Diagnosing Attention

Deficit Hyperactivity Disorder by Using Pixel Subtraction and Machine Learning

Classification of Outpatient Consultation Videos" (2024). This research proposes an image-

processing-based method where movement patterns are extracted using pixel subtraction

techniques, which are then classified using AI models to determine ADHD likelihood.

Finally, "Objective and Automatic Assessment Approach for Diagnosing Attention-

Deficit/Hyperactivity Disorder Based on Skeleton Detection and Classification Analysis in

Outpatient Videos" (2024) examines the application of skeleton detection techniques.

7

The study demonstrates that analyzing skeletal movements in consultation videos can

significantly improve diagnostic accuracy.

These studies collectively demonstrate the rapid progress in AI-driven ADHD detection,

highlighting the potential of pose estimation and machine learning as powerful tools for

improving diagnostic precision and accessibility.

Fig 2.1 Strengths and weaknesses of lesion models

Study
Image

Modality
Task Method Strengths Weaknesses

Smith, J. (2024)
EEG

Signals

Review of

ADHD

detection

systems and

limitations

Comparative

analysis of existing

methods

Highlights gaps in

current ADHD

detection methods

Lacks implementation of

a new approach

Johnson, E. (2024)
Pose

Estimation

Applications of

pose estimation

in healthcare

OpenPose and

PoseNet for motion

analysis

Demonstrates the

effectiveness of

pose estimation

for medical use

Limited focus on ADHD-

specific applications

Brown, M. (2023)
Machine

Learning

ADHD

detection using

AI models

CNN, RNN, and

hybrid deep learning

techniques

Improves

classification

accuracy for

ADHD diagnosis

Requires large labeled

datasets for training

Davis, S. (2023)

Motion

Sensors

Data collection

for ADHD

movement

analysis

Wearable sensor-

based tracking with

feature extraction

Non-invasive and

cost-effective

approach

Less effective in real-time

monitoring without

additional support

8

Fig 2.2 Strengths and weaknesses of baseline models

Study
Image

Modality
Task Method Strengths Weaknesses

Ying Mao EEG Data

ADHD detection

based on brain

connectivity

Deep learning

on EEG

signals

Identifies complex

EEG patterns linked to

ADHD

Requires access to

EEG devices,

which may be

expensive

Ismael Santarrosa-

López

EEG + Web

App

Early ADHD

detection system

Machine

learning with

EEG feature

extraction

Provides an accessible

web-based diagnosis

system

Accuracy is limited

by EEG signal

quality and device

calibration

Yi-Hung Chiu Video Data

ADHD

classification

through video

analysis

Image

subtraction

and ML-based

classification

Non-invasive approach

based on outpatient

videos

Requires

standardization of

video recording

conditions

Chen-Sen Ouyang
Pose

Estimation

ADHD movement

analysis using

skeleton tracking

Pose-based

classification

with deep

learning

Improves ADHD

detection accuracy

through movement

analysis

High

computational cost

for real-time

analysis

White, D. (2023)

Pose

Estimation

ADHD evaluation

using body

movement tracking

Pose-based

analysis with

SVM

classification

Objective assessment

reducing subjective

bias

High dependency

on video quality

and controlled

conditions

9

3. EXISTING SYSTEM

3.1 Traditional Methods for ADHD Detection

Electroencephalography (EEG): Electroencephalography (EEG) is a technique used to

measure brain wave activity by detecting electrical signals generated by neuronal

activity. EEG plays a crucial role in ADHD detection as it helps in identifying neural

patterns associated with attention deficits, hyperactivity, and impulsivity. Studies have

shown that children with ADHD often exhibit altered brain wave frequencies,

particularly in theta and beta waves. EEG is a non-invasive and cost-effective method

but requires expertise for accurate interpretation.

 Fig 3.1.1 EEG Technology

Eye-tracking technology: ETT monitors gaze patterns and saccadic eye movements to

assess attention deficits in individuals with ADHD. This technology records eye

movements while individuals perform tasks, helping in identifying irregular patterns

associated with attention problems. Eye-tracking is non-invasive and provides real-time

behavioral analysis.

Event-Related Potentials (ERP) : ERP is a subset of EEG that Analyse brain responses

to specific stimuli. This method is particularly useful in studying cognitive processes like

attention, working memory, and response inhibition in ADHD patients. ERPs are

measured through electrodes placed on the scalp, and specific waveforms like P300 are

analysed to detect cognitive impairments linked to ADHD.

10

Functional Magnetic Resonance Imaging (fMRI) fMRI is an advanced neuroimaging

technique that identifies abnormal brain activity and connectivity by measuring blood

flow changes in different regions of the brain. In ADHD patients, fMRI has been used to

detect reduced activity in the prefrontal cortex and altered connectivity between brain

networks responsible for attention and impulse control. Though highly effective, fMRI

is expensive and requires a specialized facility.

 Fig 3.1.2 FMRI Technology

Continuous Performance Test (CPT) CPT is a computerized assessment designed to

measure an individual's sustained attention and impulsivity levels. It presents visual or

auditory stimuli to the participant, who must respond to target stimuli while ignoring

non-target stimuli. CPT is widely used in ADHD diagnosis and provides objective data

on attention deficits and impulsivity.

 Fig 3.1.3 CPT Technology

11

3.2 Technological Advancements in ADHD Diagnosis

Heart Rate Variability (HRV) : HRV refers to the variation in time intervals between

heartbeats, which is influenced by the autonomic nervous system. Research suggests that

individuals with ADHD often exhibit reduced HRV, indicating impaired autonomic

regulation. HRV measurements help in understanding physiological markers of ADHD

and can be used alongside other diagnostic tools.

Fig 3.2.1 Heart Rate Variability

Neuropsychological Testing : tests evaluate cognitive functions such as executive

function, working memory, and cognitive flexibility. These tests include tasks like the

Wisconsin Card Sorting Test and Stroop Test, which assess decision-making and

response inhibition. ADHD patients often struggle with these tasks due to deficits in

executive function.

Fig 3.2.2 Neuropsychological Testing

12

Behavioral Rating Scales: Like the Conners Rating Scale and Vanderbilt ADHD

Diagnostic Rating Scale are standardized tools used by clinicians, teachers, and parents

to assess ADHD symptoms. These questionnaires provide subjective insights into an

individual's behavior, which helps in diagnosing ADHD when combined with other

objective methods.

Motion Sensors/Accelerometers: Motion sensors and accelerometers track physical

activity levels in individuals with ADHD. These devices, often worn on the wrist or

ankle, measure hyperactivity and movement patterns. Studies have shown that children

with ADHD exhibit increased movement compared to neurotypical children.

 Fig 3.2.3 Motion sensors

Actigraphy: Actigraphy involves wearable devices that continuously record movement

data to assess hyperactivity and sleep patterns. This method is particularly useful for

monitoring sleep disturbances commonly associated with ADHD. Actigraphy provides

long-term data collection with minimal disruption to daily activities.

 Fig 3.2.4 Actigraphy

13

AI-Based Behavioral Analysis: Artificial intelligence (AI) and machine learning

models analyse behavioral data to identify ADHD-related movement and attention

patterns. AI-based systems process large datasets, recognize subtle behavioral

differences, and enhance the accuracy of ADHD diagnosis. These models can integrate

multiple data sources, such as EEG, eye-tracking, and motion sensor data.

Neurofeedback Training: Neurofeedback training uses real-time EEG feedback to help

individuals regulate their brain activity. Patients receive visual or auditory feedback

based on their brain wave activity, training them to improve attention and reduce

impulsivity. This technique is a promising non-pharmacological intervention for ADHD.

 Fig 3.2.5 Neurofeedback training

Decision-Level Fusion Techniques : Decision-level fusion techniques combine multiple

data sources, such as EEG, eye-tracking, and behavioral data, to improve ADHD

diagnosis accuracy. These techniques enhance reliability by integrating different

diagnostic approaches and reducing dependence on any single method.

 Fig 3.2.6 Decision-Level Fusion Techniques

14

4. PROPOSED METHODOLOGY

4.1 Overview

Attention Deficit Hyperactivity Disorder (ADHD) is one of the most prevalent

neurodevelopmental disorders, affecting children worldwide. It significantly impacts their social

interactions, academic performance, and daily activities. ADHD symptoms include hyperactivity,

inattention, and impulsivity, which make it difficult for children to focus, follow instructions, and

remain seated for extended periods. Early detection of ADHD is crucial as it enables timely

interventions such as behavioral therapy, medication, and lifestyle modifications, helping children

manage symptoms effectively. However, traditional ADHD diagnosis methods rely on subjective

assessments, parental questionnaires, and clinical observations, which may lead to misdiagnosis

or delays.

With advancements in artificial intelligence and computer vision, new approaches to ADHD

detection are being explored. One promising method is pose estimation, which analyses a child's

body posture and movement patterns using computer vision techniques. This project leverages

PoseNet, a deep learning model that estimates the key points of the human body in real-time.

PoseNet identifies and tracks critical joints such as the head, shoulders, elbows, and knees,

allowing for a detailed analysis of movement patterns.

Fig 4.1.1 Block Diagram of Proposed system

15

POSENET:

Pose estimation is particularly useful for ADHD detection because children with ADHD often

exhibit distinct movement patterns, such as fidgeting, restlessness, and an inability to maintain eye

contact. By analyzing these patterns quantitatively, machine learning models can classify ADHD-

related behaviors with greater accuracy. PoseNet, which is based on convolutional neural networks

(CNNs), extracts pose information from images or videos and provides coordinates for different

body parts. This data is then used to train classification models to distinguish ADHD-positive cases

from non-ADHD cases.

The PoseNet model is chosen for this project due to its efficiency, adaptability, and robustness.

Unlike other deep learning models that require complex 3D pose estimation setups, PoseNet can

perform 2D pose estimation using standard webcams or smartphone cameras. It works efficiently

on both mobile devices and high-end GPUs, making it accessible for large-scale implementation.

Furthermore, PoseNet is pre-trained on large datasets and can be fine-tuned for ADHD detection

using domain-specific datasets.

The primary goal of this project is to develop a non-invasive, automated, and objective ADHD

detection system that can assist clinicians and parents in early diagnosis. Unlike traditional

methods that rely on direct human observation, this system minimizes bias and improves

reliability. Additionally, it provides real-time feedback on a child's movement tendencies, allowing

parents and educators to monitor ADHD symptoms in school and home environments.

In summary, PoseNet plays a crucial role in this project by enabling real-time movement tracking

and feature extraction for ADHD classification. Its ability to estimate pose key points accurately

makes it an ideal choice for this application. By integrating PoseNet with machine learning

algorithms, this project aims to revolutionize the ADHD detection process, making it more

objective, data-driven, and accessible.

16

4.2 Data Preprocessing

Data preprocessing is a critical step in any machine learning-based project, as it ensures that the

input data is clean, consistent, and suitable for analysis. For ADHD detection using pose

estimation techniques, the preprocessing stage involves multiple steps, including data collection,

key point extraction, noise reduction, feature selection, and data augmentation. Each of these

steps enhances the quality of the dataset, allowing the machine learning model to make accurate

predictions.

Data Collection and Sources

The first step in preprocessing is gathering relevant and diverse data. The dataset for this project

consists of video recordings or image sequences of children performing specific activities that

highlight ADHD-related behaviors. These activities include sitting still, maintaining eye contact,

following instructions, and responding to stimuli. The data is collected from multiple sources,

such as:

 Public ADHD datasets: Open-access datasets containing labeled ADHD and non-ADHD

videos.

 Clinical trials and research collaborations: Data collected in controlled environments

under expert supervision.

 Custom recordings: Videos recorded in a lab setting, where children’s movements are

tracked under different conditions.

Since real-world ADHD behaviors vary, the dataset must represent different age groups,

backgrounds, and activity levels to improve generalization.

Pose Key point Extraction using PoseNet

Once the data is collected, PoseNet is applied to extract key points from each frame of the video.

PoseNet identifies major joints and body landmarks, providing (x, y) coordinates for each

detected key point. The key points include:

 Head and facial landmarks (used to track eye contact and attention levels).

 Upper body points like shoulders and elbows (used to detect fidgeting and impulsive

movements).

17

 Lower body points like knees and feet (used to analyse hyperactive behavior, such as

constant leg movement).

PoseNet’s ability to track these key points in real time enables quantitative movement analysis,

which is crucial for ADHD detection.

Noise Reduction and Data Cleaning

Pose estimation models often produce noisy or missing key points due to factors like poor

lighting, occlusion, and rapid movement. To address this, noise reduction techniques such as

interpolation and filtering are applied:

 Missing key point interpolation: If a key point is not detected in a frame, its previous and

next positions are used to estimate the missing value.

 Smoothing with Kalman filtering: This technique reduces fluctuations in key point

positions, ensuring smoother tracking of body movements.

 Outlier removal: Sudden, unrealistic key point jumps are filtered out to prevent

misclassification.

These preprocessing steps enhance the accuracy and reliability of movement tracking.

Feature Extraction and Selection

After obtaining clean key point data, the next step is feature extraction, which converts raw pose

data into meaningful metrics that can differentiate ADHD behaviors. The extracted features

include:

 Average movement frequency: Measures how often a child moves their limbs, which is

higher in ADHD cases.

 Postural stability index: Analyse how stable a child’s posture is over time. Children with

ADHD often shift positions frequently.

 Gaze stability metrics: Tracks how consistently a child maintains eye contact.

 Velocity and acceleration of movements: Helps distinguish between normal fidgeting and

ADHD-related hyperactivity.

Feature selection methods such as Principal Component Analysis (PCA) or Recursive Feature

Elimination (RFE) are applied to retain only the most relevant features, reducing computational

complexity while maintaining accuracy.

18

Data Augmentation for Model Generalization

To prevent overfitting and ensure the model learns to recognize ADHD-related movements

under various conditions, data augmentation techniques are applied:

 Rotation and flipping: Simulates different viewing angles.

 Background variations: Helps the model adapt to different environments (e.g., classrooms

vs. homes).

 Frame skipping: Introduces variations in movement speed to mimic real-world scenarios.

By enriching the dataset with augmented samples, the model becomes more robust and adaptable

to diverse ADHD cases. Data preprocessing is a crucial foundation for building an accurate

ADHD detection system. From collecting high-quality videos and extracting key points to

reducing noise, selecting features, and augmenting data, each step enhances the model's ability to

recognize ADHD-related movement patterns. Proper preprocessing ensures that the machine

learning algorithm is trained on clean, structured, and diverse data, leading to more reliable and

interpretable predictions.

4.3 Machine Learning Model Selection

Selecting the right machine learning model is crucial for ensuring accurate and efficient

ADHD detection. Various models can be used for classifying ADHD-related movement patterns,

each with unique strengths. Support Vector Machines (SVM) are widely used due to their ability

to handle high-dimensional data and effectively separate ADHD and non-ADHD cases. Random

Forest (RF) and Decision Trees (DT) provide interpretability, making them useful for

understanding feature importance. K-Nearest Neighbours (KNN) is another option for

classification, relying on similarity-based predictions. Deep learning models such as

Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks are

effective in recognizing sequential movement patterns and extracting complex spatial-temporal

features from pose estimation data. The choice of model depends on factors like dataset size,

computational efficiency, and real-time processing requirements.

19

In this project, we employ PoseNet in combination with a Support Vector Machine

(SVM) model for ADHD detection. PoseNet extracts pose key points, which are then fed into the

SVM classifier to distinguish between ADHD and non-ADHD movement patterns. SVM is

chosen due to its high accuracy, robustness to small datasets, and ability to find complex decision

boundaries in pose-based movement data. While deep learning models like CNNs offer higher

accuracy, they require large datasets and computational power, making them less suitable for

real-time applications. The SVM-based approach ensures an efficient, scalable, and clinically

interpretable solution for ADHD detection.

4.4 Support Vector Machine (SVM)

Support Vector Machine (SVM) is a powerful supervised machine learning algorithm

used for classification and regression tasks. It is based on the principle of finding an optimal

hyperplane that best separates different classes in the dataset. SVM is particularly effective for

high-dimensional data and complex decision boundaries, making it a preferred choice in medical

diagnostics, including ADHD detection. Unlike other algorithms that rely on probability-based

classification, SVM maximizes the margin between different classes, ensuring better

generalization and reduced overfitting.

SVM is a kernel-based algorithm, meaning it can map input features into higher-

dimensional spaces using kernel functions such as linear, polynomial, radial basis function

(RBF), and sigmoid kernels. This capability allows SVM to handle non-linearly separable data

efficiently. The algorithm works well with small and medium-sized datasets and provides robust

performance even in cases where data points are not clearly separated.

Working Principle

Step 1: Finding the Optimal Hyperplane

 SVM aims to find a hyperplane that best divides the data into two or more classes.

 The best hyperplane is the one that maximizes the margin between different classes.

 The support vectors are the closest data points to the hyperplane, which determine its

position.

20

Figure 4.4.1 SVM Hyperplane and Support Vectors

Step 2: Kernel Trick for Non-Linear Data

 If the data is not linearly separable, SVM uses a kernel trick to transform it into a higher-

dimensional space where a linear separation is possible.

 Common kernels used in SVM include:

o Linear Kernel: Best for linearly separable data.

o Polynomial Kernel: Captures curved relationships between features.

o Radial Basis Function (RBF) Kernel: Works well with complex, non-linear

data.

o Sigmoid Kernel: Similar to a neural network activation function.

Figure 4.4.2 Kernel Transformation in SVM

21

Step 3: Soft Margin and Regularization

 In real-world scenarios, perfect separation is often not possible due to noise and

overlapping data.

 Soft-margin SVM introduces a regularization parameter C, which controls the trade-off

between maximizing the margin and minimizing classification errors.

 A higher C value reduces misclassification but may lead to overfitting, while a lower C

value results in a more generalized model.

Advantages of SVM

 Effective in High-Dimensional Spaces: SVM performs well even when the number of

features exceeds the number of samples.

 Robust to Overfitting: Unlike models like decision trees, SVM is less prone to

overfitting due to margin maximization.

 Works with Non-Linear Data: The kernel trick enables SVM to classify complex

patterns.

 Memory Efficient: SVM only uses a subset of training points (support vectors) for

decision-making, making it computationally efficient.

 Versatile: Can be used for both classification and regression problems.

Disadvantages of SVM

 Computational Complexity: Training time increases significantly for large datasets.

 Choosing the Right Kernel: Model performance highly depends on selecting an

appropriate kernel function.

 Sensitivity to Noisy Data: Outliers can impact margin calculation and classification

accuracy.

Variants of SVM

 Linear SVM: Used for datasets that can be separated with a straight line.

 Non-Linear SVM: Uses kernel functions to map data to higher dimensions.

 One-Class SVM: Used for anomaly detection.

22

5. UML DAIGRAMS

UML stands for Unified Modeling Language. UML is a standardized general-purpose

modeling language in the field of object-oriented software engineering. The standard is

managed, and was created by, the Object Management Group. The goal is for UML to

become a common language for creating models of object-oriented computer software. In its

current form UML is comprised of two major components: a Meta-model and a notation. In

the future, some form of method or process may also be added to; or associated with, UML.

The Unified Modeling Language is a standard language for specifying, Visualization,

Constructing and documenting the artifacts of software system, as well as for business

modeling and other non-software systems. The UML represents a collection of best

engineering practices that have proven successful in the modeling of large and complex

systems. The UML is a very important part of developing objects-oriented software and the

software development process. The UML uses mostly graphical notations to express the

design of software projects.

GOALS: The Primary goals in the design of the UML are as follows:

• Provide users a ready-to-use, expressive visual modeling Language so that they can

develop and exchange meaningful models.

• Provide extendibility and specialization mechanisms to extend the core concepts.

• Be independent of particular programming languages and development process.

• Provide a formal basis for understanding the modeling language.

• Encourage the growth of OO tools market.

• Support higher level development concepts such as collaborations, frameworks,

patterns and components.

• Integrate best practices.

23

5.1 Class diagram

The class diagram is used to refine the use case diagram and define a detailed design of the

system. The class diagram classifies the actors defined in the use case diagram into a set of

interrelated classes. The relationship or association between the classes can be either an "is-

a" or "has-a" relationship. Each class in the class diagram may be capable of providing

certain functionalities. These functionalities provided by the class are termed "methods" of

the class.

Apart from this, each class may have certain "attributes" that uniquely identify the class.

Figure 5.1.1 Class Diagram

5.2 Use case Diagram

A use case diagram in the Unified Modeling Language (UML) is a type of behavioral diagram

defined by and created from a Use-case analysis. Its purpose is to present a graphical

overview of the functionality provided by a system in terms of actors, their goals (represented

as use cases), and any dependencies between those use cases. The main purpose of a use case

diagram is to show what system functions are performed for which actor.

Figure 5.2.1 Use Case Diagram

24

5.3 Sequence Diagram

A sequence diagram in Unified Modeling Language (UML) is a kind of interaction diagram

that shows how processes operate with one another and in what order. It is a construct of a

Message Sequence Chart. A sequence diagram shows, as parallel vertical lines ("lifelines"),

different processes or objects that live simultaneously, and as horizontal arrows, the

messages exchanged between them, in the order in which they occur. This allows the

specification of simple runtime scenarios in a graphical manner.

Figure 5.3.1 Sequence Diagram

25

5.4 Collaboration diagram:

Collaboration diagrams are graphical representations of interactions between objects in a

system, focusing on message exchange and object relationships. In the Unified Modeling

Language, collaboration diagrams illustrate how objects communicate to achieve a specific

task or process. A collaboration diagram emphasizes the structural organization of objects

and their interactions.

 Figure 5.4.1 Collaboration Diagram

26

6. SOFTWARE ENVIRONMENT

6.1 What is Python?

Below are some facts about Python.

• Python is currently the most widely used multi-purpose, high-level programming

language.

• Python allows programming in Object-Oriented and Procedural paradigms. Python

programs generally are smaller than other programming languages like Java.

• Programmers have to type relatively less and indentation requirement of the

language, makes them readable all the time.

• Python language is being used by almost all tech-giant companies like – Google,

Amazon, Facebook, Instagram, Dropbox, Uber… etc.

The biggest strength of Python is huge collection of standard libraries which can be used for

the following –

• Machine Learning

• GUI Applications (like Kivy, Tkinter, PyQt etc.)

• Web frameworks like Django (used by YouTube, Instagram, Dropbox)

• Image processing (like Opencv, Pillow)

• Web scraping (like Scrapy, BeautifulSoup, Selenium)

• Test frameworks

• Multimedia

27

Advantages of Python

Let’s see how Python dominates over other languages.

1. Extensive Libraries

Python downloads with an extensive library and it contain code for various purposes like

regular expressions, documentation-generation, unit-testing, web browsers, threading,

databases, CGI, email, image manipulation, and more. So, we don’t have to write the

complete code for that manually.

2. Extensible

As we have seen earlier, Python can be extended to other languages. You can write some of

your code in languages like C++ or C. This comes in handy, especially in projects.

3. Embeddable

Complimentary to extensibility, Python is embeddable as well. You can put your Python code

in your source code of a different language, like C++. This lets us add scripting capabilities to

our code in the other language.

4. Improved Productivity

The language’s simplicity and extensive libraries render programmers more productive than

languages like Java and C++ do. Also, the fact that you need to write less and get more things

done.

5. IOT Opportunities

Since Python forms the basis of new platforms like Raspberry Pi, it finds the future bright

for the Internet of Things. This is a way to connect the language with the real world.

6. Simple and Easy

When working with Java, you may have to create a class to print ‘Hello World’. But in

Python, just a print statement will do. It is also quite easy to learn, understand, and code.

This is why when people pick up Python, they have a hard time adjusting to other more

verbose languages like Java.

28

7. Readable

Because it is not such a verbose language, reading Python is much like reading English. This

is the reason why it is so easy to learn, understand, and code. It also does not need curly

braces to define blocks, and indentation is mandatory. These further aids the readability of

the code.

8. Object-Oriented

This language supports both the procedural and object-oriented programming paradigms.

While functions help us with code reusability, classes and objects let us model the real world.

A class allows the encapsulation of data and functions into one.

9. Free and Open-Source

Like we said earlier, Python is freely available. But not only can you download Python for

free, but you can also download its source code, make changes to it, and even distribute it. It

downloads with an extensive collection of libraries to help you with your tasks.

10. Portable

When you code your project in a language like C++, you may need to make some changes

to it if you want to run it on another platform. But it isn’t the same with Python. Here, you

need to code only once, and you can run it anywhere. This is called Write Once Run

Anywhere (WORA). However, you need to be careful enough not to include any system-

dependent features.

11. Interpreted

Lastly, we will say that it is an interpreted language. Since statements are executed one by

one, debugging is easier than in compiled languages.

Any doubts till now in the advantages of Python? Mention in the comment section.

Advantages of Python Over Other Languages

1. Less Coding

Almost all of the tasks done in Python requires less coding when the same task is done in

other languages. Python also has an awesome standard library support, so you don’t have to

search for any third-party libraries to get your job done. This is the reason that many people

suggest learning Python to beginners.

29

2. Affordable

Python is free therefore individuals, small companies or big organizations can leverage the

free available resources to build applications. Python is popular and widely used so it gives

you better community support.

The 2019 Github annual survey showed us that Python has overtaken Java in the most

popular programming language category.

3. Python is for Everyone

Python code can run on any machine whether it is Linux, Mac or Windows. Programmers

need to learn different languages for different jobs but with Python, you can professionally

build web apps, perform data analysis and machine learning, automate things, do web

scraping and also build games and powerful visualizations. It is an all-rounder programming

language.

Disadvantages of Python

So far, we’ve seen why Python is a great choice for your project. But if you choose it, you

should be aware of its consequences as well. Let’s now see the downsides of choosing Python

over another language.

1. Speed Limitations

We have seen that Python code is executed line by line. But since Python is interpreted, it

often results in slow execution. This, however, isn’t a problem unless speed is a focal point

for the project. In other words, unless high speed is a requirement, the benefits offered by

Python are enough to distract us from its speed limitations.

2. Weak in Mobile Computing and Browsers

While it serves as an excellent server-side language, Python is much rarely seen on the client

side. Besides that, it is rarely ever used to implement smartphone-based applications. One

such application is called Carbonnelle.

The reason it is not so famous despite the existence of Brython is that it isn’t that secure.

30

3. Design Restrictions

As you know, Python is dynamically-typed. This means that you don’t need to declare the

type of variable while writing the code. It uses duck-typing. But wait, what’s that? Well,

it just means that if it looks like a duck, it must be a duck. While this is easy on the

programmers during coding, it can raise run-time errors.

4. Underdeveloped Database Access Layers

Compared to more widely used technologies like JDBC (Java DataBase Connectivity) and ODBC

(Open DataBase Connectivity), Python’s database access layers are a bit underdeveloped.

Consequently, it is less often applied in huge enterprises.

5. Simple

No, we’re not kidding. Python’s simplicity can indeed be a problem. Take my example. I

don’t do Java, I’m more of a Python person. To me, its syntax is so simple that the verbosity

of Java code seems unnecessary.

This was all about the Advantages and Disadvantages of Python Programming Language.

6.2 History of Python

What do the alphabet and the programming language Python have in common? Right, both

start with ABC. If we are talking about ABC in the Python context, it's clear that the

programming language ABC is meant. ABC is a general-purpose programming language and

programming environment, which had been developed in the Netherlands, Amsterdam, at

the CWI (Centrum Wiskunde &Informatica). The greatest achievement of ABC was to

influence the design of Python. Python was conceptualized in the late 1980s. Guido van

Rossum worked that time in a project at the CWI, called Amoeba, a distributed operating

system. In an interview with Bill Venners, Guido van Rossum said: "In the early 1980s, I

worked as an implementer on a team building a language called ABC at Centrum voor

Wiskunde en Informatica (CWI). I don't know how well people know ABC's influence on

Python. I try to mention ABC's influence because I'm indebted to everything I learned during

that project and to the people who worked on it." Later on in the same Interview, Guido van

Rossum continued: "I remembered all my experience and some of my frustration with ABC.

I decided to try to design a simple scripting language that possessed some of ABC's better

properties, but without its problems. So, I started typing.”

31

 “I created a simple virtual machine, a simple parser, and a simple runtime. I made my own

version of the various ABC parts that I liked. I created a basic syntax, used indentation for

statement grouping instead of curly braces or begin-end blocks, and developed a small

number of powerful data types: a hash table (or dictionary, as we call it), a list, strings, and

numbers."

Python Development Steps

Guido Van Rossum published the first version of Python code (version 0.9.0) at alt.sources

in February 1991. This release included already exception handling, functions, and the core

data types of lists, dict, str and others. It was also object oriented and had a module system.

Python version 1.0 was released in January 1994. The major new features included in this

release were the functional programming tools lambda, map, filter and reduce, which Guido

Van Rossum never liked. Six and a half years later in October 2000, Python 2.0 was

introduced. This release included list comprehensions, a full garbage collector and it was

supporting unicode. Python flourished for another 8 years in the versions 2.x before the next

major release as Python 3.0 (also known as "Python 3000" and "Py3K") was released. Python

3 is not backwards compatible with Python 2.x. The emphasis in Python 3 had been on the

removal of duplicate programming constructs and modules, thus fulfilling or coming close

to fulfilling the 13th law of the Zen of Python: "There should be one -- and preferably only

one -- obvious way to do it." Some changes in Python 7.3:

• Print is now a function.

• Views and iterators instead of lists

• The rules for ordering comparisons have been simplified. E.g., a heterogeneous list

cannot be sorted, because all the elements of a list must be comparable to each other.

• There is only one integer type left, i.e., int. long is int as well.

• The division of two integers returns a float instead of an integer. "//" can be used to

have the "old" behaviour.

• Text Vs. Data Instead of Unicode Vs. 8-bit

Purpose

We demonstrated that our approach enables successful segmentation of intra-retinal layers—

even with low-quality images containing speckle noise, low contrast, and different intensity

ranges throughout—with the assistance of the ANIS feature.

32

Python

Python is an interpreted high-level programming language for general-purpose

programming. Created by Guido van Rossum and first released in 1991, Python has a design

philosophy that emphasizes code readability, notably using significant whitespace.

Python features a dynamic type system and automatic memory management. It supports

multiple programming paradigms, including object-oriented, imperative, functional and

procedural, and has a large and comprehensive standard library.

• Python is Interpreted − Python is processed at runtime by the interpreter. You do not

need to compile your program before executing it. This is similar to PERL and PHP.

• Python is Interactive − you can actually sit at a Python prompt and interact with the

interpreter directly to write your programs.

Python also acknowledges that speed of development is important. Readable and terse code

is part of this, and so is access to powerful constructs that avoid tedious repetition of code.

Maintainability also ties into this may be an all but useless metric, but it does say something

about how much code you have to scan, read and/or understand to troubleshoot problems or

tweak behaviors. This speed of development, the ease with which a programmer of other

languages can pick up basic Python skills and the huge standard library is key to another area

where Python excels. All its tools have been quick to implement, saved a lot of time, and

several of them have later been patched and updated by people with no Python background

- without breaking.

6.3 Modules Used in Project

TensorFlow

TensorFlow is a free and open-source software library for dataflow and differentiable

programming across a range of tasks. It is a symbolic math library and is also used for

machine learning applications such as neural networks. It is used for both research and

production at Google. TensorFlow was developed by the Google Brain team for internal

Google use. It was released under the Apache 2.0 open-source license on November 9, 2015.

33

NumPy

NumPy is a general-purpose array-processing package. It provides a high-performance

multidimensional array object, and tools for working with these arrays. It is the fundamental

package for scientific computing with Python. It contains various features including these

important ones:

• A powerful N-dimensional array object

• Sophisticated (broadcasting) functions

• Tools for integrating C/C++ and Fortran code

• Useful linear algebra, Fourier transform, and random number capabilities

Besides its obvious scientific uses, NumPy can also be used as an efficient multi-dimensional

container of generic data. Arbitrary datatypes can be defined using NumPy which allows

NumPy to seamlessly and speedily integrate with a wide variety of databases.

Pandas

Pandas is an open-source Python Library providing high-performance data manipulation and

analysis tool using its powerful data structures. Python was majorly used for data munging

and preparation. It had very little contribution towards data analysis. Pandas solved this

problem. Using Pandas, we can accomplish five typical steps in the processing and analysis

of data, regardless of the origin of data load, prepare, manipulate, model, and analyse. Python

with Pandas is used in a wide range of fields including academic and commercial domains

including finance, economics, Statistics, analytics, etc.

Matplotlib

Matplotlib is a Python 2D plotting library which produces publication quality figures in a

variety of hardcopy formats and interactive environments across platforms. Matplotlib can

be used in Python scripts, the Python and IPython shells, the Jupyter Notebook, web

application servers, and four graphical user interface toolkits. Matplotlib tries to make easy

things easy and hard things possible. You can generate plots, histograms, power spectra, bar

charts, error charts, scatter plots, etc., with just a few lines of code. For examples, see the

sample plots and thumbnail gallery.

34

Scikit – learn

Scikit-learn provides a range of supervised and unsupervised learning algorithms via a

consistent interface in Python. It is licensed under a permissive simplified BSD license and

is distributed under many Linux distributions, encouraging academic and commercial use.

Python is an interpreted high-level programming language for general-purpose

programming. Created by Guido van Rossum and first released in 1991, Python has a design

philosophy that emphasizes code readability, notably using significant whitespace.

Python features a dynamic type system and automatic memory management. It supports

multiple programming paradigms, including object-oriented, imperative, functional and

procedural, and has a large and comprehensive standard library.

• Python is Interpreted − Python is processed at runtime by the interpreter. You do not

need to compile your program before executing it. This is similar to PERL and PHP.

• Python is Interactive − you can actually sit at a Python prompt and interact with the

interpreter directly to write your programs.

Python also acknowledges that speed of development is important. Readable and terse code

is part of this, and so is access to powerful constructs that avoid tedious repetition of code.

Maintainability also ties into this may be an all but useless metric.

It does say something about how much code you have to scan, read and/or understand to

troubleshoot problems or tweak behaviors. This speed of development, the ease with which

a programmer of other languages can pick up basic Python skills and the huge standard

library is key to another area where Python excels. All its tools have been quick to implement,

saved a lot of time, and several of them have later been patched and updated by people with

no Python background - without breaking.

35

6.4 Install Python Step-by-Step in Windows and Mac

Python a versatile programming language doesn’t come pre-installed on your computer

devices. Python was first released in the year 1991 and until today it is a very popular

highlevel programming language. Its style philosophy emphasizes code readability with its

notable use of great whitespace.

The object-oriented approach and language construct provided by Python enables

programmers to write both clear and logical code for projects. This software does not come

pre-packaged with Windows.

How to Install Python on Windows and Mac

There have been several updates in the Python version over the years. The question is how

to install Python? It might be confusing for the beginner who is willing to start learning

Python but this tutorial will solve your query. The latest or the newest version of Python is

version 3.7.4 or in other words, it is Python 3.

Note: The python version 3.7.4 cannot be used on Windows XP or earlier devices.

Before you start with the installation process of Python. First, you need to know about your

System Requirements. Based on your system type i.e., operating system and based processor,

you must download the python version. My system type is a Windows 64-bit operating

system. So, the steps below are to install python version 3.7.4 on Windows 7 device or to

install Python 3. Download the Python Cheatsheet here. The steps on how to install Python

on Windows 10, 8 and 7 are divided into 4 parts to help understand better.

36

Download the Correct version into the system

Step 1: Go to the official site to download and install python using Google Chrome or any

other web browser. OR Click on the following link: https://www.python.org

Now, check for the latest and the correct version for your operating system.

Step 2: Click on the Download Tab.

Step 3: You can either select the Download Python for windows 3.7.4 button in Yellow Color

or you can scroll further down and click on download with respective to their version. Here,

we are downloading the most recent python version for windows 3.7.4

https://www.python.org/

37

Step 4: Scroll down the page until you find the Files option.

Step 5: Here you see a different version of python along with the operating system.

• To download Windows 32-bit python, you can select any one from the three options:

Windows x86 embeddable zip file, Windows x86 executable installer or Windows

x86 web-based installer.

• To download Windows 64-bit python, you can select any one from the three options:

Windows x86-64 embeddable zip file, Windows x86-64 executable installer or

Windows x86-64 web-based installer.

Here we will install Windows x86-64 web-based installer. Here your first part regarding

which version of python is to be downloaded is completed. Now we move ahead with the

second part in installing python i.e., Installation

Note: To know the changes or updates that are made in the version you can click on the

Release Note Option.

38

Installation of Python

Step 1: Go to Download and Open the downloaded python version to carry out the installation

process.

Step 2: Before you click on Install Now, make sure to put a tick on Add Python 3.7 to PATH.

Step 3: Click on Install NOW After the installation is successful. Click on Close.

39

With these above three steps on python installation, you have successfully and correctly

installed Python. Now is the time to verify the installation.

Note: The installation process might take a couple of minutes.

Verify the Python Installation

Step 1: Click on Start

Step 2: In the Windows Run Command, type “cmd”.

Step 3: Open the Command prompt option.

Step 4: Let us test whether the python is correctly installed. Type python –V and press Enter.

Step 5: You will get the answer as 3.7.4

Note: If you have any of the earlier versions of Python already installed. You must first

uninstall the earlier version and then install the new one.

40

Check how the Python IDLE works

Step 1: Click on Start

Step 2: In the Windows Run command, type “python idle”.

Step 3: Click on IDLE (Python 3.7 64-bit) and launch the program

Step 4: To go ahead with working in IDLE you must first save the file. Click on File > Click

on Save

Step 5: Name the file and save as type should be Python files. Click on SAVE. Here I have

named the files as Hey World.

41

Step 6: Now for e.g., enter print (“Hey World”) and Press Enter.

You will see that the command given is launched. With this, we end our tutorial on how to

install Python. You have learned how to download python for windows into your respective

operating system.

Note: Unlike Java, Python does not need semicolons at the end of the statements otherwise

it won’t work.

42

7. SYSTEM REQUIREMENTS SPECIFICATIONS

7.1 Software Requirements

The functional requirements or the overall description documents include the product

perspective and features, operating system and operating environment, graphics

requirements, design constraints and user documentation.

The appropriation of requirements and implementation constraints gives the general

overview of the project in regard to what the areas of strength and deficit are and how to

tackle them.

• Python IDLE 3.7 version (or)

• Anaconda 3.7 (or)

• Jupiter (or)

• Google colab

7.2 Hardware Requirements

Minimum hardware requirements are very dependent on the particular software being

developed by a given Enthought Python / Canopy / VS Code user. Applications that need to

store large arrays/objects in memory will require more RAM, whereas applications that need

to perform numerous calculations or tasks more quickly will require a faster processor.

Operating system : Windows, Linux Processor

Minimum intel : i3

Ram : Minimum 4 GB

Hard disk : Minimum 250GB

43

8. FUNCTIONAL REQUIREMENTS

8.1 Output Design

Outputs from computer systems are required primarily to communicate the results of

processing to users. They are also used to provides a permanent copy of the results for later

consultation. The various types of outputs in general are:

• External Outputs, whose destination is outside the organization

• Internal Outputs whose destination is within organization and they are the User’s

main interface with the computer.

• Operational outputs whose use is purely within the computer department.

• Interface outputs, which involve the user in communicating directly.

Output Definition

The outputs should be defined in terms of the following points:

• Type of the output

• Content of the output

• Format of the output

• Location of the output

• Frequency of the output

• Volume of the output

• Sequence of the output

It is not always desirable to print or display data as it is held on a computer. It should be

decided as which form of the output is the most suitable.

44

8.2 Input Design

Input design is a part of overall system design. The main objective during the input design

is as given below:

• To produce a cost-effective method of input.

• To achieve the highest possible level of accuracy.

• To ensure that the input is acceptable and understood by the user.

Input Stages

The main input stages can be listed as below:

• Data recording

• Data transcription

• Data conversion

• Data verification

• Data control

• Data transmission

• Data validation

• Data correction

Input Types

It is necessary to determine the various types of inputs. Inputs can be categorized as follows:

 External inputs, which are prime inputs for the system.

 Internal inputs, which are user communications with the system.

 Operational, which are computer department’s communications to the system?

 Interactive, which are inputs entered during a dialogue.

Input Media

At this stage choice has to be made about the input media. To conclude about the input media

consideration has to be given to:

• Type of input

45

• Flexibility of format

• Speed

• Accuracy

• Verification methods

• Rejection rates

• Ease of correction

• Storage and handling requirements

• Security

• Easy to use

• Portability

Keeping in view the above description of the input types and input media, it can be said that

most of the inputs are of the form of internal and interactive.

As Input data is to be the directly keyed in by the user, the keyboard can be considered to be

the most suitable input device.

Error Avoidance

At this stage care is to be taken to ensure that input data remains accurate form the stage at

which it is recorded up to the stage in which the data is accepted by the system. This can be

achieved only by means of careful control each time the data is handled.

Error Detection

Even though every effort is made to avoid the occurrence of errors, still a small proportion

of errors is always likely to occur, these types of errors can be discovered by using validations

to check the input data.

Data Validation

Procedures are designed to detect errors in data at a lower level of detail. Data validations

have been included in the system in almost every area where there is a possibility for the user

to commit errors. The system will not accept invalid data.

46

8.3 User Interface Design

It is essential to consult the system users and discuss their needs while designing the user

interface:

User Interface Systems Can Be Broadly Classified As:

• User initiated interface : the user is in charge, controlling the progress of the

user/computer dialogue.

• Computer initiated interfaces : In the computer-initiated interface, the computer

selects the next stage in the interaction.

In the computer-initiated interfaces the computer guides the progress of the user/computer

dialogue. Information is displayed and the user response of the computer takes action or

displays further information.

User Initiated Interfaces :

User initiated interfaces fall into two approximate classes:

• Command driven interfaces: In this type of interface the user inputs commands or

queries which are interpreted by the computer.

• Forms oriented interface: The user calls up an image of the form to his/her screen

and fills in the form. The forms-oriented interface is chosen because it is the best

choice.

Computer-Initiated Interfaces:

The following computer – initiated interfaces were used:

• The menu system for the user is presented with a list of alternatives and the user

chooses one; of alternatives.

• Questions – answer type dialog system where the computer asks question and takes

action based on the basis of the users reply.

Right from the start the system is going to be menu driven, the opening menu displays the

available options. Choosing one option gives another popup menu with more options. In

this way every option leads the users to data entry form where the user can key in the data.

47

Error Message Design

The design of error messages is an important part of the user interface design. As user is

bound to commit some errors or other while designing a system the system should be

designed to be helpful by providing the user with information regarding the error he/she has

committed.

This application must be able to produce output at different modules for different inputs.

8.4 Performance Requirements

Performance is measured in terms of the output provided by the application. Requirement

specification plays an important part in the analysis of a system. Only when the requirement

specifications are properly given, it is possible to design a system, which will fit into required

environment. It rests largely in the part of the users of the existing system to give the

requirement specifications because they are the people who finally use the system.

This is because the requirements have to be known during the initial stages so that the system

can be designed according to those requirements. It is very difficult to change the system

once it has been designed and on the other hand designing a system, which does not cater to

the requirements of the user, is of no use.

The requirement specification for any system can be broadly stated as given below:

• The system should be able to interface with the existing system

• The system should be accurate

• The system should be better than the existing system

• The existing system is completely dependent on the user to perform all the duties.

48

9. SOURCE CODE

from tkinter import messagebox

from tkinter import *

from tkinter import simpledialog

import tkinter

import matplotlib.pyplot as plt

import numpy as np

from tkinter import ttk

from tkinter import filedialog

import pandas as pd

from sklearn.model_selection import train_test_split

import os

import cv2

from sklearn.preprocessing import StandardScaler

from sklearn.metrics import accuracy_score

from sklearn import svm

from sklearn.metrics import accuracy_score

from sklearn.metrics import f1_score

from sklearn.metrics import precision_score

from sklearn.metrics import recall_score

import matplotlib.pyplot as plt

import seaborn as sns

import os

from sklearn.metrics import confusion_matrix

49

main = Tk()

main.title("Children ADHD Disease Detection using Pose Extimation Technique")

main.geometry("1300x1200")

global filename

global X, Y

global X_train, X_test, y_train, y_test, scaler, svm_cls

global dataset

proto_File = "Models/pose_deploy_linevec.prototxt"

weights_File = "Models/pose_iter_440000.caffemodel"

n_Points = 18

POSE_PAIRS = [

[1,0],[1,2],[1,5],[2,3],[3,4],[5,6],[6,7],[1,8],[8,9],[9,10],[1,11],[11,12],[12,13],[0,14],[0,1

5],[14,16],[15,17]]

in_Width = 368

in_Height = 368

threshold = 0.1

POSE_NAMES = ["Head", "Neck", "RShoulder", "RElbow", "RWrist", "LShoulder",

"LElbow", "LWrist", "RHip", "RKnee",

 "RAnkle", "LHip", "LKnee", "LAnkle", "Chest", "Background"]

net = cv2.dnn.readNetFromCaffe(proto_File, weights_File)

net.setPreferableBackend(cv2.dnn.DNN_TARGET_CPU)

def uploadDataset():

 global filename, dataset

 filename = filedialog.askopenfilename(initialdir="ADHDDataset")

50

 text.delete('1.0', END)

 text.insert(END,filename+" loaded\n\n")

 dataset = pd.read_csv(filename)

 text.insert(END,str(dataset.head()))

def processDataset():

 global dataset, X, Y, scaler

 text.delete('1.0', END)

 data = dataset.values

 X = data[:,0:data.shape[1]-1]

 Y = data[:,data.shape[1]-1]

 indices = np.arange(X.shape[0]) #shuffling dataset values

 np.random.shuffle(indices)

 X = X[indices]

 Y = Y[indices]

 scaler = StandardScaler()

 X = scaler.fit_transform(X)

 text.insert(END,"Dataset Processing, Shuffling & Normalization Completed\n\n")

 text.insert(END,"Normalized Dataset Values = "+str(X))

def splitDataset():

 text.delete('1.0', END)

 global X, Y, X_train, X_test, y_train, y_test

 X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.2)

 text.insert(END,"Total records found in Dataset : "+str(X.shape[0])+"\n")

 text.insert(END,"Total features found in each record : "+str(X.shape[1])+"\n")

51

 text.insert(END,"Dataset Train & Test Split\n")

 text.insert(END,"80% dataset size used to train algorithms :

"+str(X_train.shape[0])+"\n")

 text.insert(END,"20% dataset size used to test algorithms :

"+str(X_test.shape[0])+"\n")

def calculateMetrics(algorithm, predict, y_test):

 label = ['Normal', 'ADHD Disease']

 a = accuracy_score(y_test,predict)*100

 p = precision_score(y_test, predict,average='macro') * 100

 r = recall_score(y_test, predict,average='macro') * 100

 f = f1_score(y_test, predict,average='macro') * 100

 text.insert(END,algorithm+" Accuracy : "+str(a)+"\n")

 text.insert(END,algorithm+" Precision : "+str(p)+"\n")

 text.insert(END,algorithm+" Recall : "+str(r)+"\n")

 text.insert(END,algorithm+" FScore : "+str(f)+"\n")

 conf_matrix = confusion_matrix(y_test, predict)

 plt.figure(figsize =(6, 3))

 ax = sns.heatmap(conf_matrix, xticklabels = label, yticklabels = label, annot = True,

cmap="viridis" ,fmt ="g");

 ax.set_ylim([0,len(label)])

 plt.title(algorithm+" Confusion matrix")

 plt.xticks(rotation=90)

 plt.ylabel('True class')

 plt.xlabel('Predicted class')

 plt.show()

52

def trainSVM():

 global svm_cls

 text.delete('1.0', END)

 global X_train, X_test, y_train, y_test

 svm_cls = svm.SVC(kernel="rbf", C = 12, probability=True, gamma="auto")

 svm_cls.fit(X_train, y_train)

 predict = svm_cls.predict(X_test)

 calculateMetrics("SVM", predict, y_test)

def predictADHD(testData):

 values = []

 testData = np.asarray(testData)

 values.append(testData)

 testData = np.asarray(values)

 testData = scaler.transform(testData)

 predict = svm_cls.predict(testData)

 return int(predict[0])

def detectDisease(frame):

 global net

 frame_Width = frame.shape[1]

 frame_Height = frame.shape[0]

 img = np.zeros((frame_Height,frame_Width,3), dtype=np.uint8)

 inp_Blob = cv2.dnn.blobFromImage(frame, 1.0 / 255, (in_Width, in_Height), (0, 0,

0), swapRB=False, crop=False)

 net.setInput(inp_Blob)

53

 output = net.forward()

 H = output.shape[2]

 W = output.shape[3]

 points = []

 testData = []

 for i in range(n_Points):

 probMap = output[0, i, :, :]

 minVal, prob, minLoc, point = cv2.minMaxLoc(probMap)

 x = (frame_Width * point[0]) / W

 y = (frame_Height * point[1]) / H

 if prob > threshold :

 cv2.circle(frame, (int(x), int(y)), 8, (0, 255, 255), thickness=-1,

lineType=cv2.FILLED)

 cv2.putText(frame, "{}".format(i), (int(x), int(y)),

cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2, lineType=cv2.LINE_AA)

 points.append((int(x), int(y)))

 testData.append(x)

 testData.append(y)

 else :

 points.append(None)

 testData.append(0)

 testData.append(0)

 predict = predictADHD(testData)

 for pair in POSE_PAIRS:

 partA = pair[0]

 partB = pair[1]

54

 print(str(pair[0])+" "+str(pair[1])+" "+str(partA)+" "+str(partB))

 if points[partA] and points[partB]:

 cv2.line(img, points[partA], points[partB], (0, 255, 255), 3,

lineType=cv2.LINE_AA)

 cv2.line(frame, points[partA], points[partB], (0, 255, 255), 3,

lineType=cv2.LINE_AA)

 cv2.circle(frame, points[partA], 8, (0, 0, 255), thickness=-1,

lineType=cv2.FILLED)

 cv2.circle(frame, points[partB], 8, (0, 0, 255), thickness=-1,

lineType=cv2.FILLED)

 return frame, img, predict

def imageDetect():

 text.delete('1.0', END)

 global scaler, svm_cls

 filename = filedialog.askopenfilename(initialdir="images")

 frame = cv2.imread(filename)

 frame, img, predict = detectDisease(frame)

 frame = cv2.resize(frame, (400, 400))

 img = cv2.resize(img, (400, 400))

 label = ['Normal', 'ADHD Disease']

 print(predict)

 cv2.putText(frame, 'Predicted As : '+label[predict], (10,

25), cv2.FONT_HERSHEY_SIMPLEX,0.7, (0, 0, 255), 2)

 cv2.imshow("Pose Estimated Image", frame)

 cv2.imshow("Pose Image", img)

 cv2.waitKey(0)

55

def videoDetect():

 text.delete('1.0', END)

 global scaler, svm_cls

 filename = filedialog.askopenfilename(initialdir="videos")

 normal_count = 0

 abnormal_count = 0

 video = cv2.VideoCapture(filename)

 count = 0

 while(True):

 ret, frame = video.read()

 if ret == True:

 filename = "temp.png"

 frame, img, predict = detectDisease(frame)

 if predict == 0:

 normal_count += 1

 else:

 abnormal_count + 1

 cv2.imshow("Estimated Pose", frame)

 if cv2.waitKey(5) & 0xFF == ord('q'):

 break

 count = count + 1

 if count > 20:

 break

 else:

 break

56

 video.release()

 cv2.destroyAllWindows()

 if normal_count >= abnormal_count:

 text.insert(END,"Pose in Video Predicted as : NORMAL\n")

 else:

 text.insert(END,"Pose in Video Predicted as : ADHD Disease\n")

font = ('times', 15, 'bold')

title = Label(main, text='Children ADHD Disease Detection using Pose Extimation

Technique')

title.config(bg='darkviolet', fg='gold')

title.config(font=font)

title.config(height=3, width=120)

title.place(x=0,y=5)

font1 = ('times', 13, 'bold')

ff = ('times', 12, 'bold')

uploadButton = Button(main, text="Upload ADHD Pose Dataset",

command=uploadDataset)

uploadButton.place(x=20,y=100)

uploadButton.config(font=ff)

processButton = Button(main, text="Preprocess Dataset", command=processDataset)

processButton.place(x=20,y=150)

processButton.config(font=ff)

57

splitButton = Button(main, text="Split Dataset Train & Test", command=splitDataset)

splitButton.place(x=20,y=200)

splitButton.config(font=ff)

svmButton = Button(main, text="Train SVM Algorithm", command=trainSVM)

svmButton.place(x=20,y=250)

svmButton.config(font=ff)

imageDetectionButton = Button(main, text="Disease Detection from Test Image",

command=imageDetect)

imageDetectionButton.place(x=20,y=300)

imageDetectionButton.config(font=ff)

videoDetectionButton = Button(main, text="Disease Detection from Video",

command=videoDetect)

videoDetectionButton.place(x=20,y=350)

videoDetectionButton.config(font=ff)

font1 = ('times', 12, 'bold')

text=Text(main,height=30,width=110)

scroll=Scrollbar(text)

text.configure(yscrollcommand=scroll.set)

text.place(x=360,y=100)

text.config(font=font1)

main.config(bg='forestgreen')

main.mainloop()

58

10. RESULTS AND DISCUSSION

Attention Deficit Hyperactivity Disorder (ADHD) disease mostly found in children’s and

this disease can be detected by analysing children’s pose estimation. Currently no such

technique exists to detect ADHD automatically and can be detected using manual

monitoring but this technique is error pone and difficult to detect.

To overcome from above issue we are employing machine learning SVM algorithm which

will get trained on normal and abnormal children’s poses and then it will analyse pose

from new test images or videos to predict weather children post is normal or contains

ADHD abnormal poses.

To train SVM we have used below pose dataset which contains children motions

 Fig 10.1 Dataset Screens

In above dataset screen first row represents dataset column names and remaining rows

represents dataset values and in last column we have class labels as 0 or 1 where 0

represents NORMAL and 1 represents ADHD disease.

To implement this project we have designed following modules

1) Upload ADHD Pose Dataset: using this module we will upload dataset and to application

and then read all dataset values

2) Pre-process Dataset: using this module we will clean, normalized and shuffle dataset values

59

3) Split Dataset Train & Test: using this module dataset will be split into train and test where

application using 80% dataset records for training and 20% for testing

4) Train SVM Algorithm: 80% dataset will be input to SVM algorithm to train a model and

this model will be applied on 20% test data to calculate prediction accuracy

5) Disease Detection from Test Image: using this module we will upload test image and then

calculate or estimate poses and then applied SVM algorithm to predict weather image is

normal or abnormal

6) Disease Detection from Video: using this module we can predict ADHD from videos also

SCREEN SHOTS OF OUTPUT:

To run project double click on run.bat file to get below screen

 Fig 10.2 Upload ADHD Pose Dataset

In above screen click on ‘Upload ADHD Pose Dataset’ button to upload dataset and get

below output

60

Fig 10.3 Selecting ADHD Dataset

In above screen selecting and uploading dataset and then click on ‘Open’ button to load

dataset and get below output

 Fig 10.4 Pre-processing Dataset

In above screen dataset loaded and now click on ‘Pre-process Dataset’ button to clean,

normalized and shuffle dataset values

61

Fig 10.5 Normalization of Data

In above screen we can see dataset is normalized and now click on ‘Split Dataset Train &

Test’ button to split dataset into train and test and then will get below output

Fig 10.6 Split Dataset to Train & Test

In above screen can see dataset total size and then can see training and testing size and

now click on ‘Train SVM Algorithm’ button to train SVM and get below output

62

Fig 10.7 Train SVM Algorithm

In above screen SVM training completed and it got 96% accuracy and can see other

metrics like precision, recall and FCSORE. In above confusion matrix graph x-axis

represents Predicted Labels and y-axis represents True Labels and green and yellow boxes

contains correct prediction count and all blue boxes represents incorrect prediction which

are very few. Now close above graph and then click on ‘Disease Detection from Test

Image’ button to upload test image and get below output

Fig 10.8 Disease Detection from Test Image

63

In above screen selecting and uploading test image and then click on ‘Open’ button to get

below output

Fig 10.9 Pose Estimation and Prediction

In above screen pose is estimated and that estimated pose drawn in black window also

and image predicted as Normal and similarly you can upload and test other images

Fig 10.10 Pose Estimation and Prediction

In above screen can see another image output

64

Fig 10.11 Disease Detection from Video

In above screen from pose ADHD disease detected and now click on ‘Disease Detection

from Video’ button to upload video and get below output

Fig 10.12 Pose Estimation

In above screen uploading video and then application will analyse all poses from video

and then give prediction output

65

Fig 10.13 Pose Prediction

In above screen can see application start estimating poses from video and after completing

video playing will get below output

Fig 10.14 Pose Estimation and Prediction Output

In above screen in blue colour text can see estimated poses from video detected as

‘Normal’. Similarly by following above screens you can detect ADHD from any child

image or video.

66

11. CONCLUSION AND FUTURE SCOPE

CONCLUSION

In conclusion, the Children ADHD Disease Detection Using Pose Estimation Techniques

project represents a significant step forward in improving the accuracy and efficiency of ADHD

diagnosis. By harnessing the capabilities of artificial intelligence, this system has the potential to

augment clinical assessments, leading to more objective evaluations, better intervention strategies,

and ultimately, improved outcomes for children. It addresses the limitations of traditional

subjective diagnosis, such as observational biases, while also providing access to real-time

behavioral analysis, ensuring that medical professionals stay informed with the latest

developments in ADHD research. This project underscores the transformative role of AI in

pediatric mental health and sets the stage for further innovation in early diagnosis and intervention.

FUTURE SCOPE

Looking to the future, the scope for this application is promising. Firstly, continuous refinement

and expansion of the model’s dataset will be essential to improve accuracy and adapt to diverse

behavioral patterns. Integration with emerging technologies, such as speech and facial recognition,

could further enhance the system's diagnostic capabilities. Additionally, the application could be

adapted for remote ADHD assessments, enabling telehealth consultations and expanding access to

pediatric mental healthcare, particularly in underserved areas. Collaboration with medical

professionals and institutions for data validation and ethical compliance will be crucial for the

system’s ongoing development. Moreover, the principles and techniques developed in this project

could serve as a blueprint for similar AI-based diagnostic tools in other neurological disorders,

ushering in a new era of intelligent healthcare solutions. Ultimately, the future scope involves not

only the continual advancement of this specific application but also its potential to revolutionize

pediatric mental health diagnostics.

67

REFERENCES

[1] Smith, J.; Roberts, K.; Allen, M. "Challenges in ADHD Detection: A Review of Existing

Systems and Limitations."

[2] Johnson, E.; Harris, T.; Lee, S. "Pose Estimation Techniques in Healthcare: Applications and

Advancements."

[3] Brown, M.; Nelson, G.; Carter, L. "Machine Learning Approaches to ADHD Detection:

State-of-the-Art and Future Directions."

[4] Davis, S.; Mitchell, R.; Parker, J. "Sensors and Data Collection for Pose Estimation in ADHD

Assessments."

[5] White, D.; Foster, H.; Adams, K. "Non-invasive ADHD Evaluation: The Role of Pose

Estimation Technologies."

[6] Miller, T.; Robinson, P.; Young, D. "Deep Learning for ADHD Diagnosis Using Computer

Vision Techniques."

[7] Anderson, R.; Brooks, L.; Simmons, F. "AI-Powered Movement Analysis for Early ADHD

Screening."

[8] Patel, K.; Edwards, N.; Clark, J. "The Role of Explainable AI in ADHD Pose Estimation

Models."

[9] Carter, L.; Hughes, B.; Ramirez, A. "Advancements in Non-Invasive Behavioral Analysis for

ADHD Detection."

[10] Hughes, B.; Scott, W.; Jenkins, R. "Ethical Considerations in AI-Based ADHD Diagnosis."

[11] Roberts, G.; Wang, L.; Kim, H.; Martinez, A. "Feature Selection Techniques in ADHD

Detection Using Pose Estimation."

[12] Lewis, P.; Zhang, Y.; Torres, M.; Bennett, E. "A Comparative Study of Classical and Deep

Learning Models for ADHD Identification."

68

[13] Thompson, V.; Green, M.; Nelson, B.; Peterson, S. "Real-Time Pose Estimation for ADHD

Monitoring in Classroom Environments."

[14] Garcia, F.; Martinez, A.; Rivera, D.; Cooper, J. "Wearable Sensors for ADHD Behavior

Analysis: Current Trends and Challenges."

[15] Richardson, N.; Evans, T.; Murphy, C.; Powell, L. "Integrating AI with Clinical ADHD

Assessment: Opportunities and Pitfalls."

[16] Wilson, H.; Clarke, J.; Stewart, K.; Davies, M. "Computer Vision in ADHD Research: A

Systematic Review of Methods and Outcomes."

[17] Chen, Y.; Lin, D.; Zhao, R.; Xu, W. "Advances in Motion Tracking for ADHD Diagnosis

Using AI Models."

[18] Lopez, M.; Sanchez, G.; Ortega, F.; Herrera, P. "Hybrid AI Approaches for ADHD

Identification Through Behavioral Patterns."

[19] Nguyen, T.; Pham, L.; Tran, H.; Do, K. "Lightweight Deep Learning Models for Real-Time

ADHD Detection."

[20] Morgan, E.; Bell, J.; Cooper, A.; Hall, R. "A Multi-Modal Approach to ADHD Detection

Using Pose Estimation and Audio Analysis."

[21] Fernandez, C.; Ramos, J.; Silva, M.; Costa, F. "Computer Vision-Based ADHD Screening in

School Environments."

[22] Park, J.; Kim, S.; Lee, H.; Choi, D. "The Role of Transfer Learning in Enhancing ADHD

Diagnosis Accuracy."

[23] Gonzalez, R.; Vega, C.; Morales, J.; Herrera, L. "A Survey on AI-Based Motion Analysis for

Early ADHD Detection."

[24] Becker, P.; Hoffmann, K.; Schmid, T.; Keller, U. "Neural Networks for ADHD Pose

Classification: Challenges and Solutions."

	CMR ENGINEERING COLLEGE
	CMR ENGINEERING COLLEGE
	DECLARATION
	ACKNOWLEDGMENT
	LIST OF FIGURES

	LIST OF SCREENSHOTS
	1. INTRODUCTION
	2. LITERATURE SURVEY
	3. EXISTING SYSTEM
	3.1 Traditional Methods for ADHD Detection

	Electroencephalography (EEG): Electroencephalography (EEG) is a technique used to measure brain wave activity by detecting electrical signals generated by neuronal activity. EEG plays a crucial role in ADHD detection as it helps in identifying neural ...
	Fig 3.1.1 EEG Technology
	Eye-tracking technology: ETT monitors gaze patterns and saccadic eye movements to assess attention deficits in individuals with ADHD. This technology records eye movements while individuals perform tasks, helping in identifying irregular patterns asso...
	Event-Related Potentials (ERP) : ERP is a subset of EEG that Analyse brain responses to specific stimuli. This method is particularly useful in studying cognitive processes like attention, working memory, and response inhibition in ADHD patients. ERPs...
	Functional Magnetic Resonance Imaging (fMRI) fMRI is an advanced neuroimaging technique that identifies abnormal brain activity and connectivity by measuring blood flow changes in different regions of the brain. In ADHD patients, fMRI has been used to...
	Fig 3.1.2 FMRI Technology
	Continuous Performance Test (CPT) CPT is a computerized assessment designed to measure an individual's sustained attention and impulsivity levels. It presents visual or auditory stimuli to the participant, who must respond to target stimuli while igno...
	Fig 3.1.3 CPT Technology
	3.2 Technological Advancements in ADHD Diagnosis
	Heart Rate Variability (HRV) : HRV refers to the variation in time intervals between heartbeats, which is influenced by the autonomic nervous system. Research suggests that individuals with ADHD often exhibit reduced HRV, indicating impaired autonomic...
	Fig 3.2.1 Heart Rate Variability
	Neuropsychological Testing : tests evaluate cognitive functions such as executive function, working memory, and cognitive flexibility. These tests include tasks like the Wisconsin Card Sorting Test and Stroop Test, which assess decision-making and res...
	Fig 3.2.2 Neuropsychological Testing
	Behavioral Rating Scales: Like the Conners Rating Scale and Vanderbilt ADHD Diagnostic Rating Scale are standardized tools used by clinicians, teachers, and parents to assess ADHD symptoms. These questionnaires provide subjective insights into an indi...
	Motion Sensors/Accelerometers: Motion sensors and accelerometers track physical activity levels in individuals with ADHD. These devices, often worn on the wrist or ankle, measure hyperactivity and movement patterns. Studies have shown that children wi...
	Fig 3.2.3 Motion sensors
	Actigraphy: Actigraphy involves wearable devices that continuously record movement data to assess hyperactivity and sleep patterns. This method is particularly useful for monitoring sleep disturbances commonly associated with ADHD. Actigraphy provides...
	Fig 3.2.4 Actigraphy
	AI-Based Behavioral Analysis: Artificial intelligence (AI) and machine learning models analyse behavioral data to identify ADHD-related movement and attention patterns. AI-based systems process large datasets, recognize subtle behavioral differences, ...
	Neurofeedback Training: Neurofeedback training uses real-time EEG feedback to help individuals regulate their brain activity. Patients receive visual or auditory feedback based on their brain wave activity, training them to improve attention and reduc...
	Fig 3.2.5 Neurofeedback training
	Decision-Level Fusion Techniques : Decision-level fusion techniques combine multiple data sources, such as EEG, eye-tracking, and behavioral data, to improve ADHD diagnosis accuracy. These techniques enhance reliability by integrating different diagno...
	Fig 3.2.6 Decision-Level Fusion Techniques
	4. PROPOSED METHODOLOGY
	4.1 Overview
	4.2 Data Preprocessing
	Data Collection and Sources
	Pose Key point Extraction using PoseNet
	Noise Reduction and Data Cleaning
	Feature Extraction and Selection
	Data Augmentation for Model Generalization

	4.4 Support Vector Machine (SVM)
	Working Principle
	Step 1: Finding the Optimal Hyperplane
	Figure 4.4.1 SVM Hyperplane and Support Vectors
	Step 2: Kernel Trick for Non-Linear Data
	Figure 4.4.2 Kernel Transformation in SVM
	Step 3: Soft Margin and Regularization

	Advantages of SVM
	Disadvantages of SVM
	Variants of SVM
	5. UML DAIGRAMS
	5.1 Class diagram
	Figure 5.1.1 Class Diagram
	5.2 Use case Diagram
	Figure 5.2.1 Use Case Diagram
	5.3 Sequence Diagram
	Figure 5.3.1 Sequence Diagram
	Figure 5.4.1 Collaboration Diagram

	6. SOFTWARE ENVIRONMENT
	Advantages of Python
	Advantages of Python Over Other Languages
	Disadvantages of Python
	6.2 History of Python
	Python Development Steps
	Purpose
	Python
	TensorFlow
	NumPy
	Pandas
	Matplotlib
	Scikit – learn
	6.4 Install Python Step-by-Step in Windows and Mac
	How to Install Python on Windows and Mac
	Download the Correct version into the system

	7. SYSTEM REQUIREMENTS SPECIFICATIONS
	7.1 Software Requirements
	7.2 Hardware Requirements

	8. FUNCTIONAL REQUIREMENTS
	8.1 Output Design
	8.2 Input Design
	Input Types
	Input Media
	Error Avoidance
	Error Detection
	Data Validation
	8.3 User Interface Design
	User Initiated Interfaces :
	Error Message Design
	8.4 Performance Requirements

	9. SOURCE CODE
	10. RESULTS AND DISCUSSION
	Fig 10.1 Dataset Screens
	Fig 10.2 Upload ADHD Pose Dataset
	Fig 10.3 Selecting ADHD Dataset
	Fig 10.4 Pre-processing Dataset
	Fig 10.9 Pose Estimation and Prediction
	Fig 10.10 Pose Estimation and Prediction
	Fig 10.11 Disease Detection from Video
	Fig 10.12 Pose Estimation
	Fig 10.13 Pose Prediction
	Fig 10.14 Pose Estimation and Prediction Output
	11. CONCLUSION AND FUTURE SCOPE
	CONCLUSION
	REFERENCES

