

A

Major Project Report

On

Credit Card Fraud Detection Using State Art Of

Machine Learning and Deep Learning

Submitted to CMREC, HYDERABAD

In Partial Fulfillment of the requirements for the Award of Degree of

BACHELOR OF TECHNOLOGY

IN

COMPUTER SCIENCE AND ENGINEERING (DATA SCIENCE)

Submitted

By

M. Meghana (218R1A6747)

 S. Chiraag Kumar (218R1A6757)

 M. Sreeja (218R1A6744)

 K. Murali Manohar (218R1A6734)

Under the Esteemed guidance of

Mr. A. SAIKIRAN

Assistant Professor, Department of CSE (Data Science)

Department of Computer Science & Engineering (Data Science)

CMR ENGINEERING COLLEGE

UGC AUTONOMOUS

(Approved by AICTE, NEW DELHI, Affiliated to JNTU, Hyderabad)

Kandlakoya, Medchal Road, R.R. Dist. Hyderabad-501 401.

2024-2025

ii

CMR ENGINEERING COLLEGE

UGC AUTONOMOUS

(Accredited by NBA, Approved by AICTE NEW DELHI, Affiliated to JNTU, Hyderabad)

Kandlakoya, Medchal Road, Hyderabad-501 401

Department of Computer Science & Engineering (Data Science)

CERTIFICATE

This is to certify that the project entitled “Credit Card Fraud Detection Using State Art of Machine

Learning and Deep Learning” is a Bonafide work carried out by

M. Meghana (218R1A6747)

 S. Chiraag Kumar (218R1A6757)

 M. Sreeja (218R1A6744)

 K. Murali Manohar (218R1A6734)

in partial fulfillment of the requirement for the award of the degree of BACHELOR OF

TECHNOLOGY in COMPUTER SCIENCE AND ENGINEERING (DATA SCIENCE) from

CMR Engineering College, affiliated to JNTU, Hyderabad, under our guidance and supervision.

The results presented in this Major project have been verified and are found to be satisfactory. The

results embodied in this Major project have not been submitted to any other university for the award of

any other degree or diploma.

Internal Guide Major Project
Coordinator

Head of the Department External Examiner

Mr. A. Saikiran Mrs. G. Shruthi Dr. M. Laxmaiah

Assistant Professor Assistant Professor Professor & HOD
CSE (Data Science),
CMREC

CSE (Data Science),
CMREC

CSE (Data Science),
CMREC

iii

DECLARATION

This is to certify that the work reported in the present Major project entitled " Credit Card Fraud

Detection Using State Art of Machine Learning and Deep Learning” is a record of Bonafide work

done by us in the Department of Computer Science and Engineering (Data Science), CMR Engineering

College, JNTU Hyderabad. The reports are based on the project work done entirely by us and not copied

from any other source. We submit our project for further development by any interested students who

share similar interests to improve the project in the future.

The results embodied in this Major project report have not been submitted to any other University or

Institute for the award of any degree or diploma to the best of our knowledge and belief.

 M. Meghana (218R1A6747)

S. Chiraag Kumar (218R1A6757)

M. Sreeja (218R1A6744)

K. Murali Manohar (218R1A6734)

iv

ACKNOWLEDGMENT

We are extremely grateful to Dr. A. Srinivasula Reddy, Principal and Dr. M. Laxmaiah, HOD,

Department of CSE (Data Science), CMR Engineering College for their constant support.

We are extremely thankful to Mr. A. Saikiran, Assistant Professor, Internal Guide, Department of

CSE(DS), for his constant guidance, encouragement and moral support throughout the project.

We will be failing in duty if We do not acknowledge with grateful thanks to the authors of the

references and other literatures referred in this Project.

We thank Mrs. G. Shruthi, Assistant Professor, CSE(DS) Department, Major Project Coordinator for

her constant support in carrying out the project activities and reviews.

We express my thanks to all staff members and friends for all the help and co-ordination extended in

bringing out this project successfully in time.

Finally, We are very much thankful to our parents who guided me for every step.

 M. Meghana (218R1A6747)

 S. Chiraag Kumar (218R1A6757)

M. Sreeja (218R1A6744)

 K. Murali Manohar (218R1A6734)

v

ABSTRACT

 With the increase in usage of credit cards, the capacity of credit card misuse has also enhanced.

Credit card frauds cause significant financial losses for both credit card holders and financial

companies. In this research study, the main aim is to detect such frauds, including the accessibility of

public data, high-class imbalance data, the changes in fraud nature, and high rates of false alarm. The

relevant literature presents many machines learning based approaches for credit card detection, such as

Extreme Learning Method, Decision Tree, Random Forest, Support Vector Machine, Logistic

Regression and XG Boost. However, due to low accuracy, there is still a need to apply state of the art

deep learning algorithms to reduce fraud losses. Comparative analysis of both machine learning and

deep learning algorithms was performed to find efficient outcomes. A machine learning algorithm was

first applied to the dataset, which improved the accuracy of detection of the frauds to some extent. A

comprehensive empirical analysis has been carried out by applying variations in the number of hidden

layers, epochs and applying the latest models. The evaluation of research work shows the improved

results achieved, such as accuracy, f1-score, precision and AUC Curves having optimized values. The

proposed model outperforms the state-of-the-art machine learning and deep learning algorithms for

credit card detection problems. In addition, we have performed experiments by balancing the data and

applying deep learning algorithms to minimize the false negative rate. The proposed approaches can

be implemented effectively for the real-world detection of credit card fraud.

vi

CONTENTS

TOPIC PAGE NO

ABSTRACT v

LIST OF FIGURES vii

1. INTRODUCTION

1.1. Overview 1

1.2. Research Motivation 1

1.3. Problem Statement 2

1.4. Applications 2

2. LITERATURE SURVEY 4

3. EXISTING SYSTEM 6

4. PROPOSED SYSTEM 7

5. METHODOLOGY

5.1. SDLC - Umbrella Model 9

5.2. Requirements Gathering Stage 9

5.3. Analysis Stage 11

5.4. Designing Stage 12

5.5. Coding Stage 12

5.6. Integration & Testing Stage 13

5.7. Installation & Acceptance Test 14

5.8. Maintenance 15

6. SYSTEM DESIGN AND UML DIAGRAMS

6.1. System Architecture 16

6.2. Class Diagram 19

6.3. Use Case Diagram 20

6.4. Sequence Diagram 21

6.5. Activity Diagram 22

7. MACHINE LEARNING

7.1. Categories of Machine Learning 24

7.2. Need for Machine Learning 25

7.3. Challenges in Machine Leaning 25

7.4. Applications of Machine Learning 26

7.5. Advantages & Disadvantages of ML 26

7.6. Machine Learning Algorithms 27

8. SOFTWARE ENVIRONMENT

8.1. What is python and its Advantages and Disadvantages 31

8.2. History of python 34

8.3. Modules used in project 36

8.4. Installation of python 38

9. SYSTEM REQUIREMENTS SPECIFICATIONS

9.1. Software Requirements 45

9.2. Hardware Requirements 45

vii

10. FUNCTIONAL REQUIREMENTS

10.1. Output Design and Definition 46

10.2. Input Design, Stages, Types, Media 46

10.3. User Interface Design 48

10.4. Performance Requirements 49

11. SYSTEM TESTING

11.1. System Testing 51

11.2. Module Testing 51

11.3. Integration Testing 51

11.4. Acceptance Testing 51

12. SOURCE CODE 52

13. RESULTS AND DISCUSSION 59

14. CONCLUSION AND REFERENCES 62

viii

LIST OF FIGURES

FIG.NO DESCRIPTION PAGE NO

5.1 Umbrella model 9

5.2 Requirements Gathering stage 10

5.3 Analysis Stage 11

5.4 Designing Stage 12

5.5 Coding Stage 13

5.6 Integration Stage & Testing Stage 14

5.7 Installation 15

6.1 Architecture Diagram for Credit Card Fraud 17

6.2 Class Diagram for fraud detection 20

6.3 Use case Diagram for fraud detection 21

6.5 Sequence Diagram for fraud detection 22

6.6 Activity Diagram for fraud detection 23

 8.4 Python installation Diagrams 39

13.1 Credit Card Fraud Detection Web page 59

13.2 List of Remote Users 59

13.3 Registered Status of Users 60

13.4 Bar Chart of Credit Card Fraud 60

13.5 Prediction of Credit Card Fraud Detection 61

13.6 Line Chart of Credit Card Fraud Detection 61

1

1. INTRODUCTION

1.1 OVERVIEW

 Credit card fraud (CCF) has become a major concern with the rise of digital

payments and online transactions. It involves unauthorized use of credit card

information to conduct fraudulent activities, often resulting in significant financial

losses. The shift toward a cashless economy and the widespread adoption of e-banking

and online shopping have further increased the risk of fraud. In response, the

development of intelligent and automated fraud detection systems has become essential

for financial institutions.

 This study explores the use of state-of-the-art machine learning (ML) and deep

learning (DL) techniques to detect fraudulent credit card transactions. Traditional ML

models, such as Support Vector Machines (SVM), are compared with advanced DL

models like Convolutional Neural Networks (CNN). A key focus is placed on

addressing the class imbalance issue, where fraudulent transactions are vastly

outnumbered by legitimate ones. Feature selection methods are used to identify the most

important attributes for classification, and enhancements to the CNN model are

proposed to improve performance.

 The study conducts a comparative analysis of ML and DL methods on a real-world

dataset, evaluating models based on accuracy, precision, and recall. Results

demonstrate that the proposed CNN-based model significantly outperforms existing

approaches in detecting fraudulent activities.

1.2 RESEARCH MOTIVATION

 The rapid expansion of digital payment systems and online financial transactions

has significantly increased the vulnerability to credit card fraud (CCF). As businesses

and consumers shift toward a cashless society, the volume and complexity of

transaction data have grown, making traditional fraud detection methods insufficient.

Manual and rule-based systems are no longer effective in identifying sophisticated and

evolving fraud patterns. This growing threat poses serious financial and reputational

risks to individuals, institutions, and global economies.

 The motivation for this research lies in the urgent need for intelligent, automated

systems that can accurately detect fraudulent activities in real-time. Machine learning

(ML) and deep learning (DL) techniques offer promising solutions by learning hidden

patterns from historical transaction data and generalizing them to predict future frauds.

2

However, challenges such as class imbalance, feature selection, and the need for fast

and scalable models remain unresolved in many existing approaches.

 This research is driven by the goal of enhancing fraud detection by leveraging both

ML and DL models, specifically by improving CNN architectures for better feature

extraction and classification. By addressing key issues like data imbalance and model

performance, this study aims to contribute toward more reliable, efficient, and accurate

credit card fraud detection systems in real-world financial environments.

1.3 PROBLEM STATEMENT

 Credit card fraud (CCF) is a significant issue in modern financial systems, with

fraudsters constantly devising new methods to exploit digital payment platforms. The

rapid growth of e-commerce and digital transactions has expanded the attack surface

for credit card fraud, leading to billions of dollars in losses annually. Traditional fraud

detection systems, which rely on predefined rules and manual monitoring, are no longer

sufficient to address the complexity and scale of current fraud patterns. These systems

struggle with the increasing volume of transactions and the ability to detect evolving

fraudulent behaviours in real-time.

 The challenge in detecting credit card fraud lies in the extreme class imbalance,

where fraudulent transactions represent a small fraction of all transactions, making it

difficult for models to learn accurate classification patterns. Additionally, the vast

amount of data, including complex transaction features, further complicates the

detection process. This issue requires advanced machine learning (ML) and deep

learning (DL) models capable of efficiently processing large datasets and effectively

distinguishing between legitimate and fraudulent transactions.

 This research aims to address these challenges by proposing a novel deep

learning-based approach using Convolutional Neural Networks (CNNs) to enhance the

detection of fraudulent transactions. By incorporating feature selection techniques and

handling class imbalance, this study seeks to develop a robust, accurate, and scalable

fraud detection system.

1.4 APPLICATIONS

1. Banking and Financial Institutions: Fraud detection systems help banks monitor

real-time transactions to detect and prevent unauthorized activities, protecting both

the institution and customers from financial losses.

2. E-commerce Platforms: Online retailers use fraud detection algorithms to identify

3

suspicious transactions and reduce chargebacks, safeguarding their revenue and

maintaining customer trust.

3. Payment Gateways: Services like PayPal, Stripe, and Razorpay implement

ML/DL-based models to assess transaction legitimacy and block fraudulent

payments during checkout.

4. Credit Card Companies: Companies like Visa, MasterCard, and American Express

integrate fraud detection tools into their systems to offer secure payment

environments and alert users of irregular activities.

5. Insurance Industry: Detecting fraudulent claims related to stolen credit cards or

unauthorized transactions helps insurance companies reduce payouts and protect

against false claims.

6. Cybersecurity Solutions: Fraud detection is often a core component of broader

cybersecurity frameworks, helping organizations detect identity theft and prevent

data breaches involving financial data.

7. Mobile Wallets and Fintech Apps: Apps like Google Pay, Apple Pay, and Venmo

use real-time fraud analytics to flag unusual spending patterns and enhance user

security.

8. Regulatory Compliance and Risk Management: Accurate fraud detection supports

regulatory requirements and minimizes the risk associated with financial crime and

money laundering.

4

2. LITERATURE SURVEY

1. An efficient real time model for credit card fraud detection based on deep learning:

Machine Learning has significantly transformed data processing and classification,

enabling the development of real-time, interactive, and intelligent fraud detection

systems. This study proposes a fraud detection model based on deep neural networks,

leveraging an autoencoder architecture to identify fraudulent transactions efficiently. The

autoencoder-based approach enhances anomaly detection by learning normal transaction

patterns and flagging deviations. The model is trained using a large dataset of real-world

credit card transactions, demonstrating its ability to generalize across various fraud

scenarios. Evaluation metrics such as accuracy, precision, recall, and F1-score indicate

superior performance in distinguishing fraudulent activities from legitimate transactions.

The benchmarking results confirm that the proposed model is highly effective in detecting

fraud in real-time environments, offering a robust solution for financial institutions.

2. Facilitating user authorization from imbalanced data logs of credit cards using artificial

intelligence: The application of machine learning in financial risk assessment has proven

to be instrumental in automating fraud detection for commercial organizations and credit

agencies. This paper presents an AI-driven predictive framework designed to assist credit

bureaus in evaluating credit card delinquency risks. The study addresses the challenge of

imbalanced datasets, where fraudulent transactions constitute only a small fraction of the

total records. The proposed framework incorporates advanced resampling techniques and

cost-sensitive learning strategies to mitigate class imbalance issues. The model is assessed

using multiple evaluation metrics, including sensitivity, specificity, precision, F1-score,

and the area under the receiver operating characteristic (ROC) and precision-recall

curves. Experimental results suggest that AI-driven models can enhance fraud detection

and risk assessment accuracy, contributing to better decision-making in financial

institutions.

3. Performance analysis of feature selection methods in software defect prediction: High-

dimensional data poses a significant challenge in software defect prediction (SDP),

impacting the accuracy and efficiency of predictive models. This study explores the role

of feature selection (FS) techniques in improving the performance of SDP models by

reducing data dimensionality. The research evaluates four filter feature ranking (FFR)

5

methods and fourteen filter feature subset selection (FSS) methods across five publicly

available software defect datasets obtained from the NASA repository. The experimental

results reveal that feature selection enhances the predictive accuracy of machine learning

classifiers by eliminating irrelevant or redundant features. Furthermore, the study finds

that the effectiveness of FS methods varies depending on the dataset and classifier used.

However, FFR methods exhibit greater stability in terms of predictive performance,

making them a reliable choice for SDP applications. The findings provide valuable

insights into selecting optimal FS techniques for software quality assurance and defect

prediction.

4. Hybrid Machine Learning Approach for Credit Card Fraud Detection: The increasing

sophistication of fraudulent transactions necessitates the development of robust fraud

detection systems that can adapt to evolving patterns. This research presents a hybrid

machine learning model that combines supervised and unsupervised learning techniques

to improve fraud detection accuracy. The proposed model integrates Random Forest (RF)

for feature selection and Gradient Boosting (GB) for classification, while also

incorporating an anomaly detection mechanism using Isolation Forest. The study

evaluates the model on a publicly available credit card dataset and compares its

performance against traditional machine learning classifiers. Key performance indicators

such as accuracy, recall, precision, and F1-score demonstrate that the hybrid approach

outperforms standalone models in detecting fraudulent transactions while minimizing

false positives. The research highlights the importance of combining multiple techniques

to enhance fraud detection capabilities in financial systems.

6

3. EXISTING SYSTEM

 ML has many branches, and each branch can deal with different learning tasks.

However, ML learning has different framework types. The ML approach provides a

solution for CCF, such as random forest (RF). The ensemble of the decision tree is the

random forest [3]. Most researchers use the RF approach. To combine the model, we

can use (RF) along with network analysis. This method is called APATE [1].

Researchers can use different ML techniques, such as supervised learning and

unsupervised techniques. ML algorithms, such as LR, ANN, DT, SVM and NB, are

commonly used for CCF detection.

 The researcher can combine these techniques with ensemble techniques to

construct solid detection classifiers [3]. The linking of multiple neurons and nodes is

known as an artificial neural network. A feed-forward perceptron multilayer is built up

of numerous layers: an input layer, an output layer and one or more hidden layers. For

the representation of the exploratory variables, the first layer contains the input nodes.

With a precise weight, these input layers are multiplied, and each of the hidden layer

nodes is transferred with a certain bias, and they are added together.

 An activation function is then applied to create the output of each neuron for this

summation, which is then transferred to the next layer. Finally, the algorithm's reply is

provided by the output layer. The first set randomly used weights and formerly used the

training set to minimise the error. All these weights were adjusted by detailed

algorithms such as backpropagation [2], [6]. The graphic model for contingency

relationships between a set of variables is called the Bayesian belief network. The

independence assumption in naïve Bayes is that it was developed to relax and allow for

dependencies among variables.

Disadvantages

1. The system is not implemented Classification on Imbalanced Data.

2. The system is not implemented CONVOLUTIONAL NEURAL NETWORK

(CNN) for test and train the datasets.

7

4. PROPOSED SYSTEM

 Credit card fraud detection is a crucial aspect of financial security, necessitating

advanced machine learning (ML) and deep learning (DL) techniques to identify

fraudulent transactions accurately. One of the key challenges in fraud detection is

identifying the most relevant features from vast transactional datasets. To address this,

feature selection algorithms are employed to rank the top features from the CCF

transaction dataset, significantly aiding in class label predictions. By focusing on the

most relevant attributes, feature selection enhances the model’s efficiency and reduces

computational overhead, allowing for improved detection performance.

 To further strengthen fraud detection, a deep learning model is proposed,

incorporating additional layers that improve feature extraction and classification.

Unlike traditional ML models, which rely on predefined statistical rules, deep learning

models can automatically learn complex patterns in data. The proposed model leverages

convolutional neural networks (CNNs), a powerful deep learning architecture, to

capture intricate transactional behaviours. By introducing multiple CNN layers, the

model enhances its ability to detect fraudulent activities with greater precision.

Different CNN layer architectures are explored to optimize the model’s performance,

ensuring that it can accurately distinguish between legitimate and fraudulent

transactions.

 A comprehensive comparative analysis is conducted to evaluate the

effectiveness of the proposed model. This analysis compares the performance of

conventional ML algorithms, such as logistic regression, decision trees, and random

forests, against deep learning approaches, particularly the CNN model. Additionally,

the proposed CNN model is benchmarked against a baseline model to determine its

superiority. The results of these comparisons demonstrate that the proposed deep

learning approach consistently outperforms existing methods in terms of accuracy,

precision, and recall.

 Performance evaluation is a critical aspect of fraud detection models, as it

determines their reliability in real-world applications. To assess classifier accuracy, key

performance metrics such as accuracy, precision, and recall are utilized. Accuracy

8

measures the overall correctness of the model’s predictions, while precision evaluates

the proportion of correctly identified fraudulent transactions. Recall, on the other hand,

assesses the model’s ability to detect fraudulent cases among all actual fraud cases. By

incorporating these evaluation metrics, the effectiveness of the proposed model is

rigorously validated.

 Experiments are conducted on the latest credit card dataset to ensure the

model’s robustness and applicability to real-world scenarios. The dataset comprises a

vast number of transactions, including both legitimate and fraudulent ones, making it

an ideal benchmark for testing fraud detection models. The proposed model is trained

and tested using this dataset, and the results confirm its superior performance in

identifying fraudulent transactions with high accuracy.

 In conclusion, the integration of feature selection techniques with deep

learning models significantly enhances credit card fraud detection. By ranking the most

relevant features, the model optimizes its predictive capabilities while reducing

unnecessary complexity. The use of CNN architectures further improves classification

performance, surpassing traditional ML models and baseline methods. Through

rigorous performance evaluation and experimentation on real-world datasets, the

proposed approach proves to be a highly effective solution for fraud detection. As

financial fraud continues to evolve, such advanced machine learning techniques will

play a pivotal role in safeguarding financial transactions and preventing fraudulent

activities.

Advantages

1. The proposed system uses supervised machine learning approaches which are

effective for testing and training datasets.

2. The proposed system implemented CNN is to minimize processing without losing

key features by reducing the image to make predictions

9

5. METHODOLOGY

5.1 SDLC (SOFTWARE DEVELOPMENT LIFE CYCLE) –

UMBRELLA MODEL

Fig 5.1 Umbrella model

 SDLC is nothing but Software Development Life Cycle. It is a standard which

is used by software industry to develop good software.

5.2 REQUIREMENTS GATHERING STAGE

 The requirements gathering process takes as its input the goals identified in the

high-level requirements section of the project plan. Each goal will be refined into a set

of one or more requirements. These requirements define the major functions of the

intended application, define operational data areas and reference data areas, and define

the initial data entities. Major functions include critical processes to be managed, as

well as mission critical inputs, outputs and reports. A user class hierarchy is developed

and associated with these major functions, data areas, and data entities. Each of these

Umbrella
Activity

Umbrella
Activity

Umbrella
Activity

• Feasibility Study

• TEAM FORMATION

• Project
Specification
PREPARATION

Business Requirement

Documentation

ANALYSIS &
DESIGN

CODE

UNIT TEST

DOCUMENT CONTROL

ASSESSMENT

TRAINING

INTEGRATION
& SYSTEM
TESTING

DELIVERY/INS
TALLATION

ACCEPTANCE
TEST

Requirements
Gathering

10

definitions is termed a Requirement. Requirements are identified by unique requirement

identifiers and, at minimum, contain a requirement title and textual description.

Fig 5.2 Requirements Gathering stage

 These requirements are fully described in the primary deliverables for this stage:

the Requirements Document and the Requirements Traceability Matrix (RTM). The

requirements document contains complete descriptions of each requirement, including

diagrams and references to external documents as necessary. Note that detailed listings

of database tables and fields are not included in the requirements document.

 The title of each requirement is also placed into the first version of the RTM,

along with the title of each goal from the project plan. The purpose of the RTM is to

show that the product components developed during each stage of the software

development lifecycle are formally connected to the components developed in prior

stages.

 In the requirements stage, the RTM consists of a list of high-level requirements,

or goals, by title, with a listing of associated requirements for each goal, listed by

requirement title. In this hierarchical listing, the RTM shows that each requirement

developed during this stage is formally linked to a specific product goal. In this format,

each requirement can be traced to a specific product goal, hence the term requirements

traceability.

11

 Feasibility study is all about identification of problems in a project, number of staff

required to handle a project is represented as Team Formation, in this case only modules

are individual tasks will be assigned to employees who are working for that project.

Project Specifications are all about representing of various possible inputs submitting

to the server and corresponding outputs along with reports maintained by administrator.

5.3 ANALYSIS STAGE

 The planning stage establishes a bird's eye view of the intended software product, and

uses this to establish the basic project structure, evaluate feasibility and risks associated

with the project, and describe appropriate management and technical approaches.

Fig 5.3 Analysis stage

 The most critical section of the project plan is a listing of high-level product

requirements, also referred to as goals. All of the software product requirements to be

developed during the requirements definition stage flow from one or more of these

goals. The minimum information for each goal consists of a title and textual description,

although additional information and references to external documents may be included.

The outputs of the project planning stage are the configuration management plan, the

quality assurance plan, and the project plan and schedule, with a detailed listing of

scheduled activities for the upcoming Requirements stage, and high level estimates of

effort for the out stages.

12

5.4 DESIGNING STAGE

 The design stage takes as its initial input the requirements identified in the

approved requirements document. For each requirement, a set of one or more design

elements will be produced as a result of interviews, workshops, and/or prototype efforts.

Design elements describe the desired software features in detail, and generally include

functional hierarchy diagrams, screen layout diagrams, tables of business rules,

business process diagrams, pseudo code, and a complete entity-relationship diagram

with a full data dictionary. These design elements are intended to describe the software

in sufficient detail that skilled programmers may develop the software with minimal

additional input.

Fig 5.4 Designing stage

 When the design document is finalized and accepted, the RTM is updated to show

that each design element is formally associated with a specific requirement. The outputs

of the design stage are the design document, an updated RTM, and an updated project

plan.

5.5 DEVELOPMENT (CODING) STAGE

 The development stage takes as its primary input the design elements described in

the approved design document. For each design element, a set of one or more software

artifacts will be produced. Software artifacts include but are not limited to menus,

dialogs, data management forms, data reporting formats, and specialized procedures

13

and functions. Appropriate test cases will be developed for each set of functionally

related software artifacts, and an online help system will be developed to guide users in

their interactions with the software.

Fig 5.5 Coding stage

5.6 INTEGRATION & TEST STAGE

 During the integration and test stage, the software artifacts, online help, and test

data are migrated from the development environment to a separate test environment. At

this point, all test cases are run to verify the correctness and completeness of the

software. Successful execution of the test suite confirms a robust and complete

migration capability. During this stage, reference data is finalized for production use

and production users are identified and linked to their appropriate roles. The final

reference data (or links to reference data source files) and production user list are

compiled into the Production Initiation Plan.

14

Fig 5.6 Integration and Testing Stage

5.7 INSTALLATION & ACCEPTANCE TEST

 During the installation and acceptance stage, the software artifacts, online help, and

initial production data are loaded onto the production server. At this point, all test cases

are run to verify the correctness and completeness of the software. Successful execution

of the test suite is a prerequisite to acceptance of the software by the customer.

 After customer personnel have verified that the initial production data load is correct

and the test suite has been executed with satisfactory results, the customer formally

accepts the delivery of the software.

15

Fig 5.7 Installation

5.8 MAINTENANCE

 Outer rectangle represents maintenance of a project, Maintenance team will start

with requirement study, understanding of documentation later employees will be

assigned work and they will undergo training on that particular assigned category.

16

6. SYSTEM DESIGN AND UML DAIGRAMS

6.1 SYSTEM ARCHITECTURE

 The purpose of the design phase is to arrange an answer of the matter such as by

the necessity document. This part is that the opening moves in moving the matter

domain to the answer domain. The design phase satisfies the requirements of the

system. The design of a system is probably the foremost crucial issue warm heartedness

the standard of the software package. It’s a serious impact on the later part, notably

testing and maintenance.

 The output of this part is that the style of the document. This document is

analogous to a blueprint of answer and is employed later throughout implementation,

testing and maintenance. The design activity is commonly divided into 2 separate

phases System Design and Detailed Design.

 System Design conjointly referred to as top-ranking style aims to spot the

modules that ought to be within the system, the specifications of those modules, and the

way them move with one another to supply the specified results.

 At the top of the system style all the main knowledge structures, file formats,

output formats, and also the major modules within the system and their specifications

square measure set. System design is that the method or art of process the design,

components, modules, interfaces, and knowledge for a system to satisfy such as needs.

Users will read it because the application of systems theory to development.

 Detailed Design, the inner logic of every of the modules laid out in system design

is determined. Throughout this part, the small print of the info of a module square

measure sometimes laid out in a high-level style description language that is freelance

of the target language within which the software package can eventually be enforced.

 In system design the main target is on distinguishing the modules, whereas

throughout careful style the main target is on planning the logic for every of the

modules.

17

Fig 6.1.1 Architecture diagram for Credit Card Fraud

Fig 6.1.2 Flow Chart: Remote User for Credit Card Fraud

18

Fig 6.1.3 Flow Chart: Service Provider for Credit Card Fraud

UML DIAGRAMS

 UML stands for Unified Modeling Language. UML is a standardized general-

purpose modeling language in the field of object-oriented software engineering. The

standard is managed, and was created by, the Object Management Group. The goal is

for UML to become a common language for creating models of object-oriented

computer software. In its current form UML is comprised of two major components: a

Meta-model and a notation.

19

 The Unified Modeling Language is a standard language for specifying,

Visualization, Constructing and documenting the artifacts of software system, as well

as for business modeling and other non-software systems. The UML represents a

collection of best engineering practices that have proven successful in the modeling of

large and complex systems. The UML is a very important part of developing objects-

oriented software and the software development process. The UML uses mostly

graphical notations to express the design of software projects.

Goals: The Primary goals in the design of the UML are as follows:

• Provide users a ready-to-use, expressive visual modeling Language so

that they can develop and exchange meaningful models.

• Provide extendibility and specialization mechanisms to extend the core

concepts.

• Be independent of particular programming languages and development

process.

• Provide a formal basis for understanding the modeling language.

• Encourage the growth of OO tools market.

• Support higher level development concepts such as collaborations,

frameworks, patterns and components.

• Integrate best practices.

6.2 CLASS DIAGRAM

 The class diagram is used to refine the use case diagram and define a detailed

design of the system. The class diagram classifies the actors defined in the use case

diagram into a set of interrelated classes. The relationship or association between the

classes can be either an "is-a" or "has-a" relationship. Each class in the class diagram

may be capable of providing certain functionalities. These functionalities provided by

the class are termed "methods" of the class. Apart from this, each class may have certain

"attributes" that uniquely identify the class.

20

Fig 6.2 class Diagram for fraud detection

6.3 USE CASE DIAGRAM

 A use case diagram in the Unified Modeling Language (UML) is a type of

behavioral diagram defined by and created from a Use-case analysis. Its purpose is to

present a graphical overview of the functionality provided by a system in terms of

actors, their goals (represented as use cases), and any dependencies between those use

cases. The main purpose of a use case diagram is to show what system functions are

performed for which actor. Roles of the actors in the system can be depicted.

21

Fig 6.3 Use Case Diagram for fraud detection

6.4 SEQUENCE DIAGRAM

 A sequence diagram in Unified Modeling Language (UML) is a kind of interaction

diagram that shows how processes operate with one another and in what order. It is a

construct of a Message Sequence Chart. A sequence diagram shows, as parallel vertical

lines ("lifelines"), different processes or objects that live simultaneously, and as

horizontal arrows, the messages exchanged between them, in the order in which they

occur. This allows the specification of simple runtime scenarios in a graphical manner.

22

Fig 6.4 Sequence Diagram for fraud detection

6.5 ACTIVITY DIAGRAM

 In the Unified Modeling Language, activity diagrams can be used to describe

the business and operational step-by-step workflows of components in a system. An

activity diagram shows the overall flow of control.

23

Fig 6.5 Activity Diagram for fraud detection

24

7. MACHINE LEARNING

 Before we take a look at the details of various machine learning methods, let's

start by looking at what machine learning is, and what it isn't. Machine learning is often

categorized as a subfield of artificial intelligence, but I find that categorization can

often be misleading at first brush. The study of machine learning certainly arose from

research in this context, but in the data science application of machine learning

methods, it's more helpful to think of machine learning as a means of building models

of data.

 Fundamentally, machine learning involves building mathematical models to help

understand data. "Learning" enters the fray when we give these models tunable

parameters that can be adapted to observed data; in this way the program can be

considered to be "learning" from the data. Once these models have been fit to

previously seen data, they can be used to predict and understand aspects of newly

observed data. I'll leave to the reader the more philosophical digression regarding the

extent to which this type of mathematical, model-based "learning" is similar to the

"learning" exhibited by the human brain. Understanding the problem setting in machine

learning is essential to using these tools effectively, and so we will start with some

broad categorizations of the types of approaches we'll discuss here.

 7.1 CATEGORIES OF MACHINE LEARNING:

 At the most fundamental level, machine learning can be categorized into two

main types: supervised learning and unsupervised learning.

 Supervised learning involves somehow modeling the relationship between

measured features of data and some label associated with the data; once this model is

determined, it can be used to apply labels to new, unknown data. This is further

subdivided into classification tasks and regression tasks: in classification, the labels

are discrete categories, while in regression, the labels are continuous quantities.

 Unsupervised learning involves modeling the features of a dataset without

reference to any label, and is often described as "letting the dataset speak for itself."

These models include tasks such as clustering and dimensionality

reduction. Clustering algorithms identify distinct groups of data, while dimensionality

reduction algorithms search for more succinct representations of the data.

25

 7.2 NEED FOR MACHINE LEARNING

 Human beings, at this moment, are the most intelligent and advanced species on

earth because they can think, evaluate and solve complex problems. On the other side,

AI is still in its initial stage and haven’t surpassed human intelligence in many aspects.

Then the question is that what is the need to make machine learn? The most suitable

reason for doing this is, “to make decisions, based on data, with efficiency and scale”.

 Lately, organizations are investing heavily in newer technologies like Artificial

Intelligence, Machine Learning and Deep Learning to get the key information from

data to perform several real-world tasks and solve problems. We can call it data-driven

decisions taken by machines, particularly to automate the process. These data-driven

decisions can be used, instead of using programing logic, in the problems that cannot

be programmed inherently. The fact is that we can’t do without human intelligence, but

other aspect is that we all need to solve real-world problems with efficiency at a huge

scale. That is why the need for machine learning arises.

 7.3 CHALLENGES IN MACHINE LEARNING

 While Machine Learning is rapidly evolving, making significant strides with

cybersecurity and autonomous cars, this segment of AI as whole still has a long way to

go. The reason behind is that ML has not been able to overcome number of challenges.

The challenges that ML is facing currently are

1. Quality of data − Having good-quality data for ML algorithms is one of the

biggest challenges. Use of low-quality data leads to the problems related to data

preprocessing and feature extraction.

2. Time-Consuming task − Another challenge faced by ML models is the

consumption of time especially for data acquisition, feature extraction and

retrieval.

3. Lack of specialist persons − As ML technology is still in its infancy stage,

availability of expert resources is a tough job.

4. No clear objective for formulating business problems − Having no clear

objective and well-defined goal for business problems is another key challenge

for ML because this technology is not that mature yet.

5. Issue of overfitting & underfitting − If the model is overfitting or underfitting,

it cannot be represented well for the problem.

26

 7.4 APPLICATIONS OF MACHINE LEARNING

 Machine Learning is the most rapidly growing technology and according to

researchers we are in the golden year of AI and ML. It is used to solve many real-world

complex problems which cannot be solved with traditional approach. Following are

some real-world applications of ML

• Emotion analysis

• Sentiment analysis

• Error detection and prevention

• Weather forecasting and prediction

• Stock market analysis and forecasting

• Speech synthesis

• Speech recognition

• Customer segmentation

• Object recognition

• Fraud detection

• Fraud prevention

• Recommendation of products to customer in online shopping

7.5 ADVANTAGES & DISADVANTAGES OF ML

Advantages:

 1. Easily identifies trends and patterns -

 Machine Learning can review large volumes of data and discover specific trends

and patterns that would not be apparent to humans. For instance, for an e-commerce

website like Amazon, it serves to understand the browsing behaviors and purchase

histories of its users to help cater to the right products, deals, and reminders relevant to

them. It uses the results to reveal relevant advertisements to them.

 2. No human intervention needed (automation)

 With ML, you don’t need to babysit your project every step of the way. Since it

means giving machines the ability to learn, it lets them make predictions and also

improve the algorithms on their own.

27

 3. Continuous Improvement

 As ML algorithms gain experience, they keep improving in accuracy and

efficiency. This lets them make better decisions. Say you need to make a weather

forecast model. As the amount of data you have keeps growing, your algorithms learn

to make more accurate predictions faster.

 4. Handling multi-dimensional and multi-variety data

 Machine Learning algorithms are good at handling data that are multi-dimensional

and multi-variety, and they can do this in dynamic or uncertain environments.

 5. Wide Applications

 You could be an e-tailer or a healthcare provider and make ML work for you.

Where it does apply, it holds the capability to help deliver a much more personal

experience to customers while also targeting the right customers.

 Disadvantages:

 1. Data Acquisition

 Machine Learning requires massive data sets to train on, and these should be

inclusive/unbiased, and of good quality. There can also be times where they must wait

for new data to be generated.

 2. Time and Resources

 ML needs enough time to let the algorithms learn and develop enough to fulfill

their purpose with a considerable amount of accuracy and relevancy. It also needs

massive resources to function. This can mean additional requirements of computer

power for you.

 3. Interpretation of Results

 Another major challenge is the ability to accurately interpret results generated by

the algorithms. You must also carefully choose the algorithms for your purpose.

 7.6 MACHINE LEARNING ALGORITHMS

 Decision Tree Classifiers

 Decision tree classifiers are used successfully in many diverse areas. Their most

important feature is the capability of capturing descriptive decision-making knowledge

from the supplied data. Decision tree can be generated from training sets.

 The procedure for such generation based on the set of objects (S), each belonging to

one of the classes C1, C2, …, Ck is as follows:

28

 Step 1. If all the objects in S belong to the same class, for example Ci, the decision tree

for S consists of a leaf labeled with this class

 Step 2. Otherwise, let T be some test with possible outcomes O1, O2,…, On. Each

object in S has one outcome for T so the test partitions S into subsets S1, S2,… Sn

where each object in Si has outcome Oi for T. T becomes the root of the decision tree

and for each outcome Oi we build a subsidiary decision tree by invoking the same

procedure recursively on the set Si.

 Gradient Boosting

 It gives a prediction model in the form of an ensemble of weak prediction

models, which are typically decision tree. When a decision tree is the weak learner, the

resulting algorithm is called gradient-boosted trees; it usually outperforms random

forest. A gradient-boosted trees model is built in a stage-wise fashion as in

other boosting methods, but it generalizes the other methods by allowing optimization

of an arbitrary differential loss function.

 K-Nearest Neighbors (KNN)

➢ Simple, but a very powerful classification algorithm

➢ Classifies based on a similarity measure

➢ Non-parametric

➢ Lazy learning

➢ Does not “learn” until the test example is given

➢ Whenever we have a new data to classify, we find its K-nearest neighbors from the

training data

Example

➢ Training dataset consists of k-closest examples in feature space

➢ Feature space means, space with categorization variables (non-metric variables)

➢ Learning based on instances, and thus also works lazily because instance close to

the input vector for test or prediction may take time to occur in the training dataset.

Logistic Regression Classifiers

 Logistic regression analysis examines the relationship between a categorical

dependent variable and a set of independent variables. The term "logistic regression"

is used when the dependent variable has only two possible values, such as 0 and 1 or

29

Yes and No. Logistic regression is often preferred over discriminant analysis for

analyzing categorical-response variables, as it does not assume a normal distribution

of independent variables. This makes it a more versatile and widely applicable method.

The logistic regression model computes both binary and multinomial logistic

regression on numerical and categorical independent variables. It provides insights into

the regression equation, goodness of fit, odds ratios, confidence limits, likelihood, and

deviance. Additionally, it includes comprehensive residual analysis with diagnostic

reports and plots. The model can perform an independent variable subset selection

search to identify the best regression model with the fewest independent variables. It

also offers confidence intervals for predicted values and generates ROC curves to

determine the optimal cutoff point for classification. Furthermore, it supports

validation by automatically classifying rows that were not included in the analysis,

ensuring robust and reliable results.

 Naive Bayes

 It is a supervised learning method based on a simplistic yet effective assumption:

it considers that the presence or absence of a particular feature in a class is independent

of other features. Despite this strong assumption, the Naïve Bayes classifier remains

robust and efficient, often performing competitively with other supervised learning

techniques. One explanation for its success is its representation bias, as it functions as

a linear classifier similar to logistic regression, linear discriminant analysis, and support

vector machines (SVM). However, it differs in its method of estimating classifier

parameters, known as learning bias. Although widely used in research due to its

simplicity, fast learning speed, and reasonable accuracy. To address this limitation, a

new way of presenting the learning process results is introduced, making the classifier

more understandable and easier to deploy. The theoretical aspects of Naïve Bayes are

first explored before implementing the approach using the Tanagra dataset. The results

are then compared with those from other linear classifiers such as logistic regression,

linear discriminant analysis, and SVM, demonstrating consistency in performance.

 Random Forest

 It is, also known as random decision forests, are ensemble learning methods used

for classification, regression, and other tasks. They operate by constructing multiple

decision trees during training, where for classification tasks, the class selected by the

majority of trees is chosen, and for regression tasks, the average prediction of the trees

30

is returned. While they generally outperform individual decision trees, their accuracy

is often lower than gradient-boosted trees, although this can vary depending on data

characteristics. The first random forest algorithm was introduced by Tin Kam Ho in

1995, utilizing the random subspace method, which was a way to implement the

stochastic discrimination approach proposed by Eugene Kleinberg. Further

developments were made by Leo Breiman and Adele Cutler, who registered "Random

Forests" as a trademark in 2006. Their extension combined Breiman's "bagging"

technique with random feature selection, first introduced by Ho and later independently

by Amit and Geman. Due to their ability to provide reliable predictions with minimal

configuration, random forests are widely used as "black-box" models in businesses

across various industries.

 Support Vector Machine (SVM)

 Classification tasks, discriminant machine learning techniques aim to find a

function that accurately predicts labels for new instances based on an independent and

identically distributed (iid) training dataset. Unlike generative machine learning

approaches, which compute conditional probability distributions, discriminant

classifiers assign data points to predefined classes without estimating underlying

distributions. Although generative approaches are more powerful for outlier detection,

discriminant methods require fewer computational resources and less training data,

especially when dealing with high-dimensional feature spaces. SVM is a discriminant

classification technique that solves convex optimization problems analytically,

ensuring it always returns the same optimal hyperplane parameters. This characteristic

differentiates SVM from genetic algorithms (GAs) and perceptrons, both of which are

commonly used for classification but depend heavily on initialization and termination

criteria. Unlike perceptrons and GA-based classifiers, which yield different models

with each training session, SVM produces uniquely defined model parameters for a

given training dataset when using a specific kernel transformation from input space to

feature space.

31

8. SOFTWARE ENVIRONMENT

8.1 WHAT IS PYTHON?

 Python is currently the most widely used multi-purpose, high-level programming

language. It supports both Object-Oriented and Procedural programming paradigms,

making it versatile and easy to use. Python programs are generally smaller compared to

those written in other languages like Java, as it requires less typing and enforces

indentation, which enhances code readability. Due to its simplicity and efficiency, Python

is widely adopted by major tech giants such as Google, Amazon, Facebook, Instagram,

Dropbox, and Uber. It is also extensively used in fields like data science, artificial

intelligence, and web development.

The biggest strength of Python is huge collection of standard libraries which can be used

for the following –

• Machine Learning

• GUI Applications (like Kivy, Tkinter, PyQt etc.)

• Web frameworks like Django (used by YouTube, Instagram, Dropbox)

• Image processing (like Opencv, Pillow)

• Web scraping (like Scrapy, BeautifulSoup, Selenium)

• Test frameworks

• Multimedia

Advantages of Python

Let’s see how Python dominates over other languages.

1. Extensive Libraries

 Python downloads with an extensive library and it contain code for various

purposes like regular expressions, documentation-generation, unit-testing, web

browsers, threading, CGI, email, image manipulation, and more. So, we don’t have to

write the complete code for that manually.

2. Extensible

 As we have seen earlier, Python can be extended to other languages. You can

write some of your code in languages like C++ or C. This comes in handy, especially

in projects.

32

3. Embeddable

 Complimentary to extensibility, Python is embeddable as well. You can put your

Python code in your source code of a different language, like C++. This lets us add

scripting capabilities to our code in the other language.

4. Improved Productivity

 The language’s simplicity and extensive libraries render programmers more

productive than languages like Java and C++ do. Also, the fact that you need to write

less and get more things done.

5. IOT Opportunities

 Since Python forms the basis of new platforms like Raspberry Pi, it finds the

future bright for the Internet of Things. This is a way to connect the language with the

real world.

6. Simple and Easy

 When working with Java, you may have to create a class to print ‘Hello World’.

But in Python, just a print statement will do. It is also quite easy to learn, understand,

and code. This is why when people pick up Python, they have a hard time adjusting to

other more verbose languages like Java.

7. Readable

 Because it is not such a verbose language, reading Python is much like reading

English. This is the reason why it is so easy to learn, understand, and code. It also does

not need curly braces to define blocks, and indentation is mandatory.

8. Free and Open-Source

 Like we said earlier, Python is freely available. But not only can you download

Python for free, but you can also download its source code, make changes to it, and

even distribute it. It downloads with an extensive collection of libraries to help you with

your tasks.

9. Portable

 When you code your project in a language like C++, you may need to make

some changes to it if you want to run it on another platform. But it isn’t the same with

Python. Here, you need to code only once, and you can run it anywhere. This is called

Write Once Run Anywhere (WORA). However, you need to be careful enough not to

include any system-dependent features.

33

10. Interpreted

 Lastly, we will say that it is an interpreted language. Since statements are

executed one by one, debugging is easier than in compiled languages.

Any doubts till now in the advantages of Python? Mention in the comment section.

Advantages of Python Over Other Languages

1. Less Coding

 Almost all of the tasks done in Python requires less coding when the same task is

done in other languages. Python also has an awesome standard library support, so you

don’t have to search for any third-party libraries to get your job done. This is the reason

that many people suggest learning Python to beginners.

2. Affordable

 Python is free therefore individuals, small companies or big organizations can

leverage the free available resources to build applications. Python is popular and widely

used so it gives you better community support.

 The 2019 Github annual survey showed us that Python has overtaken Java in the most

popular programming language category.

3. Python is for Everyone

 Python code can run on any machine whether it is Linux, Mac or Windows.

Programmers need to learn different languages for different jobs but with Python, you

can professionally build web apps, perform data analysis and machine learning,

automate things, do web scraping and also build games and powerful visualizations. It

is an all-rounder programming language.

Disadvantages of Python

 So far, we’ve seen why Python is a great choice for your project. But if you

choose it, you should be aware of its consequences as well. Let’s now see the downsides

of choosing Python over another language.

1. Speed Limitations

 We have seen that Python code is executed line by line. But since Python is

interpreted, it often results in slow execution.

In other words, unless high speed is a requirement, the benefits offered by Python are

enough to distract us from its speed limitations.

34

2. Weak in Mobile Computing and Browsers

 While it serves as an excellent server-side language, Python is much rarely seen

on the client- side. Besides that, it is rarely ever used to implement smartphone-based

applications. One such application is called Carbonnelle.

The reason it is not so famous despite the existence of Brython is that it isn’t that secure.

3. Design Restrictions

 As you know, Python is dynamically-typed. This means that you don’t need to

declare the type of variable while writing the code. It uses duck-typing. But wait, what’s

that? Well, it just means that if it looks like a duck, it must be a duck. While this is easy

on the programmers during coding, it can raise run-time errors.

4. Underdeveloped Database Access Layers

 Compared to more widely used technologies like JDBC (Java DataBase

Connectivity) and ODBC (Open DataBase Connectivity), Python’s database access

layers are a bit underdeveloped. Consequently, it is less often applied in huge

enterprises.

5. Simple

 No, we’re not kidding. Python’s simplicity can indeed be a problem. Take my

example. I don’t do Java, I’m more of a Python person. To me, its syntax is so simple

that the verbosity of Java code seems unnecessary.

8.2 HISTORY OF PYTHON

 What do the alphabet and the programming language Python have in common?

Right, both start with ABC. If we are talking about ABC in the Python context, it's clear

that the programming language ABC is meant. ABC is a general-purpose programming

language and programming environment, which had been developed in the Netherlands,

Amsterdam, at the CWI (Centrum Wiskunde & Informatica). The greatest achievement

of ABC was to influence the design of Python. Python was conceptualized in the late

1980s. Guido van Rossum worked that time in a project at the CWI, called Amoeba, a

distributed operating system. In an interview with Bill Venners1, Guido van Rossum

said: "In the early 1980s, I worked as an implementer on a team building a language

called ABC at Centrum voor Wiskunde en Informatica (CWI). I don't know how well

people know ABC's influence on Python. I try to mention ABC's influence because I'm

35

indebted to everything I learned during that project and to the people who worked on

it. "Later on in the same Interview, Guido van Rossum continued: "I remembered all

my experience and some of my frustration with ABC. I decided to try to design a simple

scripting language that possessed some of ABC's better properties, but without its

problems. So, I started typing. I created a simple virtual machine, a simple parser, and a

simple runtime. I made my own version of the various ABC parts that I liked. I created

a basic syntax, used indentation for statement grouping instead of curly braces or begin-

end blocks, and developed a small number of powerful data types: a hash table (or

dictionary, as we call it), a list, strings, and numbers."

Python Development Steps

 Guido Van Rossum published the first version of Python code (version 0.9.0) at

alt.sources in February 1991. This release included already exception handling,

functions, and the core data types of lists, dict, str and others. It was also object oriented

and had a module system. Python version 1.0 was released in January 1994. The major

new features included in this release were the functional programming tools lambda,

map, filter and reduce, which Guido Van Rossum never liked. Six and a half years later

in October 2000, Python 2.0 was introduced. This release included list

comprehensions, a full garbage collector and it was supporting unicode. Python 3 is

not backwards compatible with Python 2.x. The emphasis in Python 3 had been on the

removal of duplicate programming constructs and modules, thus fulfilling or coming

close to fulfilling the 13th law of the Zen of Python: "There should be one -- and

preferably only one -- obvious way to do it. Some changes in Python 7.3:

• Print is now a function.

• Views and iterators instead of lists

• The rules for ordering comparisons have been simplified. E.g., a heterogeneous

list cannot be sorted, because all the elements of a list must be comparable to

each other.

• There is only one integer type left, i.e., int. long is int as well.

• The division of two integers returns a float instead of an integer. "//" can be used

to have the "old" behavior.

36

Purpose

 We demonstrated that our approach enables successful segmentation of intra-retinal

layers— even with low-quality images containing speckle noise, low contrast, and

different intensity ranges throughout—with the assistance of the ANIS feature.

Python

 Python is an interpreted high-level programming language for general-purpose

programming. Created by Guido van Rossum and first released in 1991, Python has a

design philosophy that emphasizes code readability, notably using significant

whitespace.

 Python features a dynamic type system and automatic memory management. It

supports multiple programming paradigms, including object-oriented, imperative,

functional and procedural, and has a large and comprehensive standard library.

• Python is Interpreted − Python is processed at runtime by the interpreter. You

do not need to compile your program before executing it. This is similar to PERL

and PHP.

• Python is Interactive − you can actually sit at a Python prompt and interact with

the interpreter directly to write your programs.

 Python also acknowledges that speed of development is important. Readable and

terse code is part of this, and so is access to powerful constructs that avoid tedious

repetition of code. Maintainability also ties into this may be an all but useless metric,

but it does say something about how much code you have to scan, read and/or

understand to troubleshoot problems or tweak behaviors. This speed of development,

the ease with which a programmer of other languages can pick up basic Python skills

and the huge standard library is key to another area where Python excels. All its tools

have been quick to implement, saved a lot of time, and several of them have later been

patched and updated by people with no Python background - without breaking.

8.3 MODULES USED IN PROJECT

TensorFlow

 TensorFlow is a free and open-source software library for dataflow and

differentiable programming across a range of tasks. It is a symbolic math library and is

also used for machine learning applications such as neural networks.

37

TensorFlow was developed by the Google Brain team for internal Google use. It was

released under the Apache 2.0 open-source license on November 9, 2015.

NumPy

 NumPy is a general-purpose array-processing package. It provides a high-

performance multidimensional array object, and tools for working with these arrays.

It is the fundamental package for scientific computing with Python. It contains various

features including these important ones:

• A powerful N-dimensional array object

• Sophisticated (broadcasting) functions

• Tools for integrating C/C++ and Fortran code

• Useful linear algebra, Fourier transform, and random number capabilities

Besides its obvious scientific uses, NumPy can also be used as an efficient multi-

dimensional container of generic data. Arbitrary datatypes can be defined using NumPy

which allows NumPy to seamlessly and speedily integrate with a wide variety of

databases.

Pandas

 Pandas is an open-source Python Library providing high-performance data

manipulation and analysis tool using its powerful data structures. Python was majorly

used for data munging and preparation. It had very little contribution towards data

analysis. Pandas solved this problem. Using Pandas, we can accomplish five typical

steps in the processing and analysis of data, regardless of the origin of data load,

prepare, manipulate, model, and analyze. Python with Pandas is used in a wide range of

fields including academic and commercial domains including finance, economics,

Statistics, analytics, etc.

Matplotlib

 Matplotlib is a Python 2D plotting library which produces publication quality

figures in a variety of hardcopy formats and interactive environments across platforms.

Matplotlib can be used in Python scripts, the Python and IPython shells, the Jupyter

Notebook, web application servers, and four graphical user interface toolkits. Matplotlib

tries to make easy things easy and hard things possible. You can generate plots, error

charts, scatter plots, etc., with just a few lines of code. For examples, see

the sample plots and thumbnail gallery.

38

For simple plotting the pyplot module provides a MATLAB-like interface, particularly

when combined with IPython. For the power user, you have full control of line styles,

font properties, axes properties, etc, via an object-oriented interface or via a set of

functions familiar to MATLAB users.

Scikit – learn

 Scikit-learn provides a range of supervised and unsupervised learning algorithms

via a consistent interface in Python. It is licensed under a permissive simplified BSD

license and is distributed under many Linux distributions, encouraging academic and

commercial use.

 Python is an interpreted high-level programming language for general-purpose

programming. Created by Guido van Rossum and first released in 1991, Python has a

design philosophy that emphasizes code readability, notably using significant

whitespace.

 Python features a dynamic type system and automatic memory management. It

supports multiple programming paradigms, including object-oriented, imperative,

functional and procedural, and has a large and comprehensive standard library.

• Python is Interpreted − Python is processed at runtime by the interpreter. You

do not need to compile your program before executing it. This is similar to PERL

and PHP.

• Python is Interactive − you can actually sit at a Python prompt and interact with

the interpreter directly to write your programs.

 Python also acknowledges that speed of development is important. Readable and

terse code is part of this, and so is access to powerful constructs that avoid tedious

repetition of code. This speed of development, the ease with which a programmer of

other languages can pick up basic Python skills and the huge standard library is key to

another area where Python excels. All its tools have been quick to implement, saved a lot

of time, and several of them have later been patched and updated by people with no

Python background.

8.4 INSTALL PYTHON STEP-BY-STEP IN WINDOWS

 Python a versatile programming language doesn’t come pre-installed on your

computer devices. Python was first released in the year 1991 and until today it is a very

popular high- level programming language. Its style philosophy emphasizes code

readability with its notable use of great whitespace.

39

The object-oriented approach and language construct provided by Python enables

programmers to write both clear and logical code for projects. This software does not

come pre-packaged with Windows.

Download the Correct version into the system

Step 1: Go to the official site to download and install python using Google Chrome or any

other web browser. OR Click on the following link: https://www.python.org

Now, check for the latest and the correct version for your operating

system.

Step 2: Click on the Download Tab.

http://www.python.org/

40

Step 3: You can either select the Download Python for windows 3.7.4 button in Yellow

Color or you can scroll further down and click on download with respective to their

version. Here, we are downloading the most recent python version for windows 3.7.4

Step 4: Scroll down the page until you find the Files option.

Step 5: Here you see a different version of python along with the operating system.

• To download Windows 32-bit python, you can select any one from the three

options: Windows x86 embeddable zip file, Windows x86 executable installer

or Windows x86 web-based installer.

• To download Windows 64-bit python, you can select any one from the three

options: Windows x86-64 embeddable zip file, Windows x86-64 executable

installer or Windows x86-64 web-based installer.

41

Here we will install Windows x86-64 web-based installer. Here your first part regarding

which version of python is to be downloaded is completed. Now we move ahead with

the second part in installing python i.e., Installation

Note: To know the changes or updates that are made in the version you can click on the

Release Note Option.

Installation of Python

Step 1: Go to Download and Open the downloaded python version to carry out the

installation process.

Step 2: Before you click on Install Now, make sure to put a tick on Add Python 3.7 to

 PATH.

Step 3: Click on Install NOW After the installation is successful. Click on Close.

42

With these above three steps on python installation, you have successfully and

correctly installed Python. Now is the time to verify the installation.

Step 1: Click on Start

Step 2: In the Windows Run Command, type “cmd”.

43

Step 3: Open the Command prompt option.

Step 4: Let us test whether the python is correctly installed. Type python –V and press

Enter.

Step 5: You will get the answer as 3.7.4

Note: If you have any of the earlier versions of Python already installed. You

must first uninstall the earlier version and then install the new one.

Check how the Python IDLE

works Step 1: Click on Start

Step 2: In the Windows Run command, type “python idle”.

Step 3: Click on IDLE (Python 3.7 64-bit) and launch the program

Step 4: To go ahead with working in IDLE you must first save the file. Click on File >

Click on Save

44

Step 5: Name the file and save as type should be Python files. Click on SAVE. Here I

have named the files as Hey World.

Step 6: Now for e.g., enter print (“Hey World”) and Press Enter.

You will see that the command given is launched. With this, we end our tutorial on how

to install Python. You have learned how to download python for windows into your

respective operating system.

Note: Unlike Java, Python does not need semicolons at the end of the statements

otherwise it won’t work.

45

9. SYSTEM REQUIREMENTS SPECIFICATIONS

9.1 SOFTWARE REQUIREMENTS

 The software requirements specify the use of all required software products like

data management system. The required software product specifies the numbers and

version. Each interface specifies the purpose of the interfacing software as related to

this software product.

• Operating system : Windows 10/11

• Coding Language : Python 3.7

9.2 HARDWARE REQUIREMENTS

 The hardware requirement specifies each interface of the software elements and

the hardware elements of the system. These hardware requirements include

configuration characteristics.

• System : Intel Core i5/i7 (11th Gen or later) / AMD Ryzen 5/7

• Hard Disk : 512 GB SSD (or higher)

• Monitor : 24-inch FHD/IPS Display

• Mouse : Any optical mouse (e.g., Logitech, Razer)

• RAM : 8 GB or more

46

10 . FUNCTIONAL REQUIREMENTS

10.1 OUTPUT DESIGN

 Outputs from computer systems are required primarily to communicate the results

of processing to users. They are also used to provides a permanent copy of the results

for later consultation. The various types of outputs in general are:

• External Outputs, whose destination is outside the organization

• Internal Outputs whose destination is within organization and they are the

• User’s main interface with the computer.

• Operational outputs whose use is purely within the computer department.

• Interface outputs, which involve the user in communicating directly.

Output Definition

The outputs should be defined in terms of the following points:

• Type of the output

• Content of the output

• Format of the output

• Location of the output

• Frequency of the output

• Volume of the output

• Sequence of the output

 It is not always desirable to print or display data as it is held on a computer. It should be

decided as which form of the output is the most suitable.

10.2 INPUT DESIGN

 Input design is a part of overall system design. The main objective during the input

design is as given below:

• To produce a cost-effective method of input.

• To achieve the highest possible level of accuracy.

• To ensure that the input is acceptable and understood by the user.

47

Input Stages

The main input stages can be listed as below:

• Data recording

• Data transcription

• Data conversion

• Data verification

• Data control

• Data transmission

• Data validation

• Data correction

Input Types

It is necessary to determine the various types of inputs. Inputs can be categorized as

follows:

• External inputs, which are prime inputs for the system.

• Internal inputs, which are user communications with the system.

• Operational, which are computer department’s communications to the system?

• Interactive, which are inputs entered during a dialogue.

Input Media

 At this stage choice has to be made about the input media. To conclude about the input

media consideration has to be given to;

• Type of input

• Flexibility of format

• Speed

• Accuracy

• Verification methods

• Rejection rates

• Ease of correction

• Storage and handling requirements

• Security

• Easy to use

• Portability

48

 Keeping in view the above description of the input types and input media, it can be said

that most of the inputs are of the form of internal and interactive. As Input data is to be

the directly keyed in by the user, the keyboard can be considered to be the most suitable

input device.

Error Avoidance

 At this stage care is to be taken to ensure that input data remains accurate form the

stage at which it is recorded up to the stage in which the data is accepted by the system.

This can be achieved only by means of careful control each time the data is handled.

Error Detection

 Even though every effort is made to avoid the occurrence of errors, still a small

proportion of errors is always likely to occur, these types of errors can be discovered by

using validations to check the input data.

Data Validation

 Procedures are designed to detect errors in data at a lower level of detail. Data

validations have been included in the system in almost every area where there is a

possibility for the user to commit errors. The system will not accept invalid data.

Whenever an invalid data is keyed in, the system immediately prompts the user and the

user has to again key in the data and the system will accept the data only if the data is

correct. Validations have been included where necessary. The system is designed to be

a user friendly one. In other words the system has been designed to communicate

effectively with the user. The system has been designed with popup menus.

10.3 USER INTERFACE DESIGN

 It is essential to consult the system users and discuss their needs while designing the

user interface:

User Interface Systems Can Be Broadly Classified As:

• User initiated interface the user is in charge, controlling the progress of the

user/computer dialogue. In the computer-initiated interface, the computer selects

the next stage in the interaction.

• In the computer-initiated interfaces the computer guides the progress of the

user/computer dialogue. Information is displayed and the user response of the

computer takes action or displays further information.

49

User Initiated Interfaces

User initiated interfaces fall into two approximate classes:

• Command driven interfaces: In this type of interface the user inputs

commands or queries which are interpreted by the computer.

• Forms oriented interface: The user calls up an image of the form to his/her screen

and fills in the form. The forms-oriented interface is chosen because it is the

best choice.

Computer-Initiated Interfaces

 The following computer – initiated interfaces were used:

• The menu system for the user is presented with a list of alternatives and the user

chooses one; of alternatives.

• Questions – answer type dialog system where the computer asks question and

takes action based on the basis of the users reply.

Right from the start the system is going to be menu driven, the opening menu displays

the available options. Choosing one option gives another popup menu with more

options. In this way every option leads the users to data entry form where the user can

key in the data.

Error Message Design

 The design of error messages is an important part of the user interface design. As

user is bound to commit some errors or other while designing a system the system should

be designed to be helpful by providing the user with information regarding the error

he/she has committed.

10.4 PERFORMANCE REQUIREMENTS

 Performance is measured in terms of the output provided by the application.

Requirement specification plays an important part in the analysis of a system. Only

when the requirement specifications are properly given, it is possible to design a system,

which will fit into required environment. It rests largely in the part of the users of the

existing system to give the requirement specifications because they are the people who

finally use the system. This is because the requirements have to be known during the

initial stages so that the system can be designed according to those requirements. It is

very difficult to change the system once it has been designed and on the other hand

designing a system, which does not cater to the requirements of the user, is of no use.

50

The requirement specification for any system can be broadly stated as given below:

• The system should be able to interface with the existing system

• The system should be accurate

• The system should be better than the existing system

• The existing system is completely dependent on the user to perform all the duties.

51

11. SYSTEM TESTING

 Testing is the process where the test data is prepared and is used for testing the

modules individually and later the validation given for the fields. Then the system

testing takes place which makes sure that all components of the system property

function as a unit. The test data should be chosen such that it passed through all possible

condition.

11.1 SYSTEM TESTING

 Testing has become an integral part of any system or project especially in the field

of information technology. The importance of testing is a method of justifying, if one

is ready to move further, be it to be check if one is capable to with stand the rigors of a

particular situation cannot be underplayed and that is why testing before development

is so critical. The program was tested logically and pattern of execution of the program

for a set of data are repeated.

11.2 MODULE TESTING

 To locate errors, each module is tested individually. This enables us to detect error

and correct it without affecting any other modules. This module is tested with different

job and its approximate execution time and the result of the test is compared with the

results that are prepared manually. Each module in the system is tested separately. In

this system the resource classification and job scheduling modules are tested separately

and their corresponding results are obtained which reduces the process waiting time.

11.3 INTEGRATION TESTING

 After the module testing, the integration testing is applied. When linking the

modules there may be chance for errors to occur, these errors are corrected by using this

testing. In this system all modules are connected and tested. The testing results are very

correct. Thus the mapping of jobs with resources is done correctly by the system

11.4 ACCEPTANCE TESTING

 When that user fined no major problems with its accuracy, the system passers

through a final acceptance test. This test confirms that the system needs the original

goals, objectives and requirements established during analysis without actual execution

which elimination wastage of time and money acceptance tests on the shoulders of users

and management.

52

12. SOURCE CODE

from django.db.models import Count, Avg

from django.shortcuts import render, redirect

from django.db.models import Count

from django.db.models import Q

import datetime

import xlwt

from django.http import HttpResponse

import pandas as pd

from sklearn.feature_extraction.text import CountVectorizer

from sklearn.metrics import accuracy_score, confusion_matrix, classification_report

from sklearn.metrics import accuracy_score

from sklearn.tree import DecisionTreeClassifier

Create your views here.

from Remote_User.models import

ClientRegister_Model,cc_fraud_detection_type,detection_ratio,detection_accuracy

def serviceproviderlogin(request):

 if request.method == "POST":

 admin = request.POST.get('username')

 password = request.POST.get('password')

 if admin == "Admin" and password =="Admin":

 detection_accuracy.objects.all().delete()

 return redirect('View_Remote_Users')

 return render(request,'SProvider/serviceproviderlogin.html')

def View_CC_Fraud_Detection_Ratio(request):

 detection_ratio.objects.all().delete()

 ratio = ""

 kword = 'No Credit Card Fraud'

 print(kword)

 obj = cc_fraud_detection_type.objects.all().filter(Q(Prediction=kword))

53

 obj1 = cc_fraud_detection_type.objects.all()

 count = obj.count();

 count1 = obj1.count();

 ratio = (count / count1) * 100

 if ratio != 0:

 detection_ratio.objects.create(names=kword, ratio=ratio)

 ratio12 = ""

 kword12 = 'Credit Card Fraud'

 print(kword12)

 obj12 = cc_fraud_detection_type.objects.all().filter(Q(Prediction=kword12))

 obj112 = cc_fraud_detection_type.objects.all()

 count12 = obj12.count();

 count112 = obj112.count();

 ratio12 = (count12 / count112) * 100

 if ratio12 != 0:

 detection_ratio.objects.create(names=kword12, ratio=ratio12)

 obj = detection_ratio.objects.all()

 return render(request, 'SProvider/View_CC_Fraud_Detection_Ratio.html', {'objs': obj})

def View_Remote_Users(request):

 obj=ClientRegister_Model.objects.all()

 return render(request,'SProvider/View_Remote_Users.html',{'objects':obj})

def charts(request,chart_type):

 chart1 = detection_ratio.objects.values('names').annotate(dcount=Avg('ratio'))

 return render(request,"SProvider/charts.html", {'form':chart1, 'chart_type':chart_type})

def charts1(request,chart_type):

 chart1 = detection_accuracy.objects.values('names').annotate(dcount=Avg('ratio'))

 return render(request,"SProvider/charts1.html", {'form':chart1, 'chart_type':chart_type})

def View_Prediction_Of_CC_Fraud_Detection(request):

 obj =cc_fraud_detection_type.objects.all()

54

 return render(request, 'SProvider/View_Prediction_Of_CC_Fraud_Detection.html',

{'list_objects': obj})

def likeschart(request,like_chart):

 charts =detection_accuracy.objects.values('names').annotate(dcount=Avg('ratio'))

 return render(request,"SProvider/likeschart.html", {'form':charts, 'like_chart':like_chart})

def Download_Predicted_DataSets(request):

 response = HttpResponse(content_type='application/ms-excel')

 # decide file name

 response['Content-Disposition'] = 'attachment; filename="Predicted_Datasets.xls"'

 # creating workbook

 wb = xlwt.Workbook(encoding='utf-8')

 # adding sheet

 ws = wb.add_sheet("sheet1")

 # Sheet header, first row

 row_num = 0

 font_style = xlwt.XFStyle()

 # headers are bold

 font_style.font.bold = True

 # writer = csv.writer(response)

 obj = cc_fraud_detection_type.objects.all()

 data = obj # dummy method to fetch data.

 for my_row in data:

 row_num = row_num + 1

 ws.write(row_num, 0, my_row.trans_date, font_style)

 ws.write(row_num, 1, my_row.cc_num, font_style)

 ws.write(row_num, 2, my_row.category, font_style)

 ws.write(row_num, 3, my_row.AMT_TRANS, font_style)

 ws.write(row_num, 4, my_row.first, font_style)

 ws.write(row_num, 5, my_row.last, font_style)

 ws.write(row_num, 6, my_row.gender, font_style)

 ws.write(row_num, 7, my_row.street, font_style)

 ws.write(row_num, 8, my_row.city, font_style)

55

 ws.write(row_num, 9, my_row.state, font_style)

 ws.write(row_num, 10, my_row.zip, font_style)

 ws.write(row_num, 11, my_row.User_Lat, font_style)

 ws.write(row_num, 12, my_row.User_Long, font_style)

 ws.write(row_num, 13, my_row.city_pop, font_style)

 ws.write(row_num, 14, my_row.Job, font_style)

 ws.write(row_num, 15, my_row.Dob, font_style)

 ws.write(row_num, 16, my_row.trans_num, font_style)

 ws.write(row_num, 17, my_row.merch_lat, font_style)

 ws.write(row_num, 18, my_row.merch_long, font_style)

 ws.write(row_num, 19, my_row.Prediction, font_style)

 wb.save(response)

 return response

def train_model(request):

 detection_accuracy.objects.all().delete()

 df = pd.read_csv('CC_Datasets.csv')

 def apply_response(label):

 if (label== 0):

 return 0 # No Fraud

 elif (label==1):

 return 1 # Fraud

 df['results'] = df['is_fraud'].apply(apply_response)

 cv = CountVectorizer()

 X = df['street']

 y = df['results']

 print("Transaction Number")

 print(X)

 print("Results")

 print(y)

 X = cv.fit_transform(X)

 models = []

 from sklearn.model_selection import train_test_split

 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20)

56

 X_train.shape, X_test.shape, y_train.shape

 print(X_test)

 print("Naive Bayes")

 from sklearn.naive_bayes import MultinomialNB

 NB = MultinomialNB()

 NB.fit(X_train, y_train)

 predict_nb = NB.predict(X_test)

 naivebayes = accuracy_score(y_test, predict_nb) * 100

 print(naivebayes)

 print(confusion_matrix(y_test, predict_nb))

 print(classification_report(y_test, predict_nb))

 models.append(('naive_bayes', NB))

 detection_accuracy.objects.create(names="Naive Bayes", ratio=naivebayes)

 # SVM Model

 print("SVM")

 from sklearn import svm

 lin_clf = svm.LinearSVC()

 lin_clf.fit(X_train, y_train)

 predict_svm = lin_clf.predict(X_test)

 svm_acc = accuracy_score(y_test, predict_svm) * 100

 print(svm_acc)

 print("CLASSIFICATION REPORT")

 print(classification_report(y_test, predict_svm))

 print("CONFUSION MATRIX")

 print(confusion_matrix(y_test, predict_svm))

 models.append(('svm', lin_clf))

 detection_accuracy.objects.create(names="SVM", ratio=svm_acc)

 print("Logistic Regression")

 from sklearn.linear_model import LogisticRegression

 reg = LogisticRegression(random_state=0, solver='lbfgs').fit(X_train, y_train)

 y_pred = reg.predict(X_test)

 print("ACCURACY")

 print(accuracy_score(y_test, y_pred) * 100)

 print("CLASSIFICATION REPORT")

57

 print(classification_report(y_test, y_pred))

 print("CONFUSION MATRIX")

 print(confusion_matrix(y_test, y_pred))

 models.append(('logistic', reg))

 detection_accuracy.objects.create(names="Logistic Regression",

ratio=accuracy_score(y_test, y_pred) * 100)

 print("Decision Tree Classifier")

 dtc = DecisionTreeClassifier()

 dtc.fit(X_train, y_train)

 dtcpredict = dtc.predict(X_test)

 print("ACCURACY")

 print(accuracy_score(y_test, dtcpredict) * 100)

 print("CLASSIFICATION REPORT")

 print(classification_report(y_test, dtcpredict))

 print("CONFUSION MATRIX")

 print(confusion_matrix(y_test, dtcpredict))

 models.append(('DecisionTreeClassifier', dtc))

 detection_accuracy.objects.create(names="Decision Tree Classifier",

ratio=accuracy_score(y_test, dtcpredict) * 100)

 print("Gradient Boosting Classifier")

 from sklearn.ensemble import GradientBoostingClassifier

 clf = GradientBoostingClassifier(n_estimators=100, learning_rate=1.0, max_depth=1,

random_state=0).fit(

 X_train,

 y_train)

 clfpredict = clf.predict(X_test)

 print("ACCURACY")

 print(accuracy_score(y_test, clfpredict) * 100)

 print("CLASSIFICATION REPORT")

 print(classification_report(y_test, clfpredict))

 print("CONFUSION MATRIX")

 print(confusion_matrix(y_test, clfpredict))

58

 models.append(('GradientBoostingClassifier', clf))

 detection_accuracy.objects.create(names="Gradient Boosting Classifier",

 ratio=accuracy_score(y_test, clfpredict) * 100)

 csv_format = 'Results.csv'

 df.to_csv(csv_format, index=False)

 df.to_markdown

 obj = detection_accuracy.objects.all()

 return render(request,'SProvider/train_model.html', {'objs': obj})

59

13. RESULTS

Fig 13.1 Credit Card Fraud Detection Web page

Fig 13.2 List of Remote Users

60

Fig 13.3 Registered Status of Users

Fig 13.4 Bar Chart of Credit card Fraud

61

Fig 13.5 Prediction of Credit Card Fraud Detection

Fig 13.6 Line Chart of Credit Card Fraud Detection

62

 14. CONCLUSION AND FUTURE SCOPE

CONCLUSION

 In conclusion, CCF is an increasing threat to financial institutions. Fraudsters

tend to constantly come up with new fraud methods. A robust classifier can handle the

changing nature of fraud. Accurately predicting fraud cases and reducing false-positive

cases is the foremost priority of a fraud detection system. The performance of ML

methods varies for each individual business case. The type of input data is a dominant

factor that drives different ML methods. For detecting CCF, the number of features,

number of transactions, and correlation between the features are essential factors in

determining the model's performance. DL methods, such as CNNs and their layers, are

associated with the processing of text and the baseline model. Using these methods for

the detection of credit cards yields better performance than traditional algorithms.

Numerous sampling techniques are used to increase the performance of existing

examples, but they significantly decrease on the unseen data. The performance on

unseen data increased as the class imbalance increased. Future work associated may

explore the use of more state of art deep learning methods to improve the performance

of the model proposed in this study.

FUTURE ENHANCEMENTS

 It is not possible to develop a system that meets all the requirements of the user.

User requirements keep changing as the system is being used. Some of the future

enhancements that can be done to this system are:

• As technology emerges, it is possible to upgrade the system and make it

adaptable to the desired environments.

• Based on future security issues, security can be improved using emerging

technologies like single sign-on.

63

REFERENCES

[1] Y. Abakarim, M. Lahby, and A. Attioui, ``An efficient real time model for credit card

fraud detection based on deep learning,'' in Proc. 12th Int. Conf. Intell. Systems:

Theories Appl., Oct. 2018, pp. 1_7, doi: 10.1145/3289402.3289530.

[2] H. Abdi and L. J. Williams, ``Principal component analysis,'' Wiley Inter- discipl.

Rev., Comput. Statist., vol. 2, no. 4, pp. 433_459, Jul. 2010, doi: 10.1002/wics.101.

[3] V. Arora, R. S. Leekha, K. Lee, and A. Kataria, ``Facilitating user authorization from

imbalanced data logs of credit cards using arti_cial intelligence,'' Mobile Inf. Syst.,

vol. 2020, pp. 1_13, Oct. 2020, doi: 10.1155/2020/8885269.

 [4] A. O. Balogun, S. Basri, S. J. Abdulkadir, and A. S. Hashim, ``Performance analysis

of feature selection methods in software defect prediction: A search method

approach,'' Appl. Sci., vol. 9, no. 13, p. 2764, Jul. 2019, doi: 10.3390/app9132764.

[5] B. Bandaranayake, ``Fraud and corruption control at education system level: A case

study of the Victorian department of education and early childhood development in

Australia,'' J. Cases Educ. Leadership, vol. 17, no. 4, pp. 34_53, Dec. 2014, doi:

10.1177/1555458914549669.

[6] J. Bªaszczy«ski, A. T. de Almeida Filho, A. Matuszyk, M. Szelg_, and R. Sªowi«ski,

``Auto loan fraud detection using dominance-based rough set approach versus

machine learning methods,'' Expert Syst. Appl., vol. 163, Jan. 2021, Art. no. 113740,

doi: 10.1016/j.eswa.2020.113740.

[7] B. Branco, P. Abreu, A. S. Gomes, M. S. C. Almeida, J. T. Ascensão, and P. Bizarro,

``Interleaved sequence RNNs for fraud detection,'' in Proc. 26th ACM SIGKDD Int.

Conf. Knowl. Discovery Data Mining, 2020, pp. 3101_3109, doi:

10.1145/3394486.3403361.

[8] F. Cartella, O. Anunciacao, Y. Funabiki, D. Yamaguchi, T. Akishita, and O. Elshocht,

``Adversarial attacks for tabular data: Application to fraud detection and imbalanced

data,'' 2021, arXiv:2101.08030.

[9] S. S. Lad, I. Dept. of CSERajarambapu Institute of

TechnologyRajaramnagarSangliMaharashtra, and A. C. Adamuthe, ``Malware classi

_cation with improved convolutional neural network model,'' Int. J. Comput. Netw.

Inf. Secur., vol. 12, no. 6, pp. 30_43, Dec. 2021, doi: 10.5815/ijcnis.2020.06.03. [10]

V. N. Dornadula and S. Geetha, ``Credit card fraud detection using machine learning

algorithms,'' Proc. Comput. Sci., vol. 165, pp. 631_641, Jan. 2019, doi:

10.1016/j.procs.2020.01.057.

64

[11] I. Benchaji, S. Douzi, and B. E. Ouahidi, ``Credit card fraud detection model based

on LSTM recurrent neural networks,'' J. Adv. Inf. Technol., vol. 12, no. 2, pp.

113_118, 2021, doi: 10.12720/jait.12.2.113-118.

[12] Y. Fang, Y. Zhang, and C. Huang, ``Credit card fraud detection based on machine

learning,'' Comput., Mater. Continua, vol. 61, no. 1, pp. 185_195, 2019, doi:

10.32604/cmc.2019.06144.

[13] J. Forough and S. Momtazi, ``Ensemble of deep sequential models for credit card

fraud detection,'' Appl. Soft Comput., vol. 99, Feb. 2021, Art. no. 106883, doi:

10.1016/j.asoc.2020.106883.

[14] K. He, X. Zhang, S. Ren, and J. Sun, ̀ `Deep residual learning for image recognition,''

2015, arXiv:1512.03385.

[15] X. Hu, H. Chen, and R. Zhang, ``Short paper: Credit card fraud detection using

LightGBM with asymmetric error control,'' in Proc. 2nd Int. Conf. Artif. Intell. for

Industries (AII), Sep. 2019, pp. 91_94, doi: 10.1109/AI4I46381.2019.00030.

[16] J. Kim, H.-J. Kim, and H. Kim, ``Fraud detection for job placement using

hierarchical clusters-based deep neural networks,'' Int. J. Speech Technol., vol. 49,

no. 8, pp. 2842_2861, Aug. 2019, doi: 10.1007/s10489-019-01419-2.

[17] M.-J. Kim and T.-S. Kim, ``A neural classier with fraud density map for effective

credit card fraud detection,'' in Intelligent Data Engineering and Automated Learning,

vol. 2412, H. Yin, N. Allinson, R. Freeman, J. Keane, and S. Hubbard, Eds. Berlin,

Germany: Springer, 2002, pp. 378_383, doi: 10.1007/3-540-45675-9_56.

[18] N. Kousika, G. Vishali, S. Sunandhana, and M. A. Vijay, ``Machine learning based

fraud analysis and detection system,'' J. Phys., Conf., vol. 1916, no. 1, May 2021, Art.

no. 012115, doi: 10.1088/1742-6596/1916/1/012115.

[19] R. F. Lima and A. Pereira, ``Feature selection approaches to fraud detection in e-

payment systems,'' in E-Commerce and Web Technologies, vol. 278, D. Bridge and

H. Stuckenschmidt, Eds. Springer, 2017, pp. 111_126, doi: 10.1007/978-3-319-

53676-7_9.

[20] Y. Lucas and J. Jurgovsky, ``Credit card fraud detection using machine learning: A

survey,'' 2020, arXiv:2010.06479.

[21] H. Zhou, H.-F. Chai, and M.-L. Qiu, ``Fraud detection within bankcard enrollment

on mobile device based payment using machine learning,'' Frontiers Inf. Technol.

Electron. Eng., vol. 19, no. 12, pp. 1537_1545, Dec. 2018, doi:

10.1631/FITEE.1800580.

