
i

 A

 Major Project Report

On

Decentralized Payment Network: Blockchain Money

Transactions

Submitted to CMREC, HYDERABAD

In Partial Fulfillment of the requirements for the Award of Degree of

 BACHELOR OF TECHNOLOGY

 IN

COMPUTER SCIENCE AND ENGINEERING (DATA SCIENCE)

Submitted

By

K. Akshitha (218R1A6736)

P. Giridhar (218R1A6750)

B. Chiranjeevi (218R1A6716)

P. Arun (218R1A6751)

Under the Esteemed guidance of

 Mr. E. Laxman

Assistant Professor, Department of CSE (Data Science)

 Department of Computer Science & Engineering (Data Science)

CMR ENGINEERING COLLEGE

UGC AUTONOMOUS

(Approved by AICTE, NEW DELHI, Affiliated to JNTU,

Hyderabad) Kandlakoya, Medchal Road, R.R. Dist.

Hyderabad-501 401.

2024-2025

ii

CMR ENGINEERING COLLEGE

UGC AUTONOMOUS

(Accredited by NBA,Approved by AICTE NEW DELHI, Affiliated to JNTU, Hyderabad)

Kandlakoya, Medchal Road, Hyderabad-501 401

Department of Computer Science & Engineering(Data Science)

CERTIFICATE

This is to certify that the project entitled “Decentralized Payment Network: Blockchain Money

Transactions” is a bonafide work carried out by

K. Akshitha (218R1A6736)

P. Giridhar (218R1A6750)

B. Chiranjeevi (218R1A6716)

P. Arun (218R1A6751)

in partial fulfillment of the requirement for the award of the degree of BACHELOR OF

TECHNOLOGY in COMPUTER SCIENCE AND ENGINEERING (DATA SCIENCE) from

CMR Engineering College, affiliated to JNTU, Hyderabad, under our guidance and supervision.

The results presented in this Major project have been verified and are found to be satisfactory. The results

embodied in this Major project have not been submitted to any other university for the award of any

other degree or diploma.

Internal Guide Major Project

Coordinator

Head of the Department External Examiner

Mr. E. Laxman Mrs. G. Shruthi Dr. M. Laxmaiah

Assistant Professor Assistant Professor Professor & H.O.D

CSE (Data Science),

CMREC

CSE (Data Science),

CMREC

CSE (Data Science), CMREC

iii

DECLARATION

This is to certify that the work reported in the present Major project entitled "Decentralized

Payment Network : Blockchain Money Transactions” is a record of bonafide work done by

us in the Department of Computer Science and Engineering (Data Science), CMR Engineering

College, JNTU Hyderabad. The reports are based on the project work done entirely by us and

not copied from any other source.We submit our project for further development by any

interested students who share similar interests to improve the project in the future.

The results embodied in this Major project report have not been submitted to any other

University or Institute for the award of any degree or diploma to the best of our knowledge and

belief.

K. Akshitha (218R1A6736)

P. Giridhar (218R1A6750)

B. Chiranjeevi (218R1A6716)

P. Arun (218R1A6751)

iv

ACKNOWLEDGMENT

We are extremely grateful to Dr. A. Srinivasula Reddy, Principal and Dr. M. Laxmaiah,

HOD,

Department of CSE (Data Science), CMR Engineering College for their constant support.

We are extremely thankful to Mr. E. Laxman, Assistant Professor, Internal Guide, Department

of CSE(DS), for his/ her constant guidance, encouragement and moral support throughout the

project.

We will be failing in duty if We do not acknowledge with grateful thanks to the authors of the

references and other literatures referred in this Project.

We thank Mrs. G. Shruthi, Assistant Professor, CSE(DS) Department, Major Project

Coordinator for her constant support in carrying out the project activities and reviews.

We express my thanks to all staff members and friends for all the help and co-ordination

extended in bringing out this project successfully in time.

Finally, we are very much thankful to our parents who guided me for every step.

K. Akshitha (218R1A6736)

P. Giridhar (218R1A6750)

B. Chiranjeevi (218R1A6716)

P. Arun (218R1A6751)

v

ABSTRACT

In recent years, blockchain technology has revolutionized digital transactions by offering a

decentralized, transparent, and secure method of transferring assets without intermediaries.

The Decentralized Payment Network: Blockchain Money Transactions (CRYPT) project

aims to harness the power of blockchain to facilitate seamless peer-to-peer financial

transactions. Traditional payment systems often involve high transaction fees, delays, and

security risks due to centralized control, making blockchain-based solutions a promising

alternative.

CRYPT is a Web 3.0 application designed to provide users with a decentralized, trustless

payment system using Ethereum smart contracts. The system enables users to register with an

email and password and subsequently connect their MetaMask wallet for transactions.

Utilizing Solidity for smart contract development and Hardhat as a testing and deployment

framework, the project is built on the Sepolia Ethereum test network through Alchemy’s

blockchain infrastructure. The integration with MetaMask ensures secure and user-controlled

fund transfers, enhancing privacy and eliminating the need for intermediaries.

One of the core features of CRYPT is its ability to process real-time transactions with

transparency and immutability. The Ethereum blockchain records each transaction in a public

ledger, preventing fraudulent activities and unauthorized modifications. When a transaction is

initiated, the user confirms it through MetaMask, and a loading state is displayed until

confirmation is received.

Security and efficiency are the primary focuses of the CRYPT network. By leveraging

blockchain’s decentralized nature, the project mitigates risks associated with centralized

payment gateways, such as data breaches and unauthorized access. Additionally, the use of

smart contracts automates the execution of transactions, reducing operational costs and human

intervention. The decentralized payment network developed in CRYPT showcases the

potential of blockchain technology in transforming digital payments. It provides a scalable,

efficient, and secure solution that empowers users with full control over their financial

transactions. Future enhancements may include multi-chain support, advanced transaction

analytics, and integration with real-world payment systems to bridge the gap between

blockchain-based finance and traditional banking systems.

vi

CONTENTS

TOPIC PAGE NO

ABSTRACT v

LIST OF FIGURES vii

1. INTRODUCTION

1.1. Overview 1

1.2. Research Motivation 2

1.3. Problem Statement 3

1.4. Application 4

2. LITERATURE SURVEY 6

3. EXISTING SYSTEM

3.1. Traditional Payment System vs. Decentralized Payment System 11

3.2. Blockchain Transaction Flow 11

3.3. Smart Contract Execution in Ethereum 13

3.4. MetaMask Wallet Integration 13

3.5. Drawbacks of Existing System 15

4. PROPOSED SYSTEM

4.1. Overview 16

4.2. Implementation Methodology 20

4.3. Advantages of the Proposed System 22

5. SYSTEM DESIGN

5.1. Architecture Design 23

5.2. UML Diagrams 24

 5.2.1 Class Diagram 25

5.2.2 Use Case Diagram 25

5.2.3 Sequence Diagram 26

5.2.4 Activity Diagram 27

6. SOFTWARE ENVIRONMENT

6.1. What is Node.js? 28

6.2. Modules used in Project 34

6.3. Install Node.js Step-by-Step in Windows and Mac 36

7. SYSTEM REQUIREMENTS SPECIFICATIONS

7.1. Software Requirements 41

7.2. Hardware Requirements 41

8. FUNCTIONAL REQUIREMENTS

8.1. Output Design and Input Design Definition 43

8.2. User Interface Design 45

8.3. Performance Requirements 46

9. SOURCE CODE 48

10. RESULTS AND DISCUSSION

10.1. Implementation description 52

10.2. Data Format Used in Crypt 53

11. CONCLUSION AND REFERENCES 58

vii

LIST OF FIGURES

FIG.NO DESCRIPTION PAGENO

3.1 Traditional vs Decentralized Payment System 11

3.2 Blockchain Transaction Process 12

3.3 Smart Contract Flow 13

3.4 Meta Mask Wallet and Transaction Flow 14

4.1 Block Diagram Of Proposed System 16

4.1.1 Block Diagram of Proposed System 17

5.1.1 System Architecture for crypt 23

5.2.1 Class Diagram 25

5.2.2 Use Case Diagram 25

5.2.3

5.2.4

Sequence Diagram

Activity Diagram

26

27

6 Node.js installation Diagrams 37

10.1 Demonstration of user authentication via Google 55

10.1.1 Demonstration of user authentication via Meta Mask

Wallet For Blockchain Transactions

55

10.2 Transaction initiation Process 56

10.3 Latest Transaction Page 57

10.3.1 Transaction Conformation Page 57

1

1. Introduction

1.1 Overview

The evolution of digital payments has significantly altered the way financial transactions

are conducted, shifting from traditional banking methods to online and mobile payment

platforms. However, centralized financial systems continue to pose several challenges,

including high transaction costs, long processing times, and security vulnerabilities. The

emergence of blockchain technology has introduced a decentralized alternative that offers

enhanced security, transparency, and efficiency in digital transactions.

This decentralized payment network is designed to address these challenges by leveraging

blockchain technology for peer-to-peer payments. Unlike conventional banking systems, this

system operates without intermediaries, ensuring that transactions are direct, cost-effective, and

secure. The platform is built on the Ethereum blockchain, utilizing smart contracts to automate

and validate transactions, thereby eliminating the need for third-party verification.

A key component of this system is its integration with MetaMask, a widely used

cryptocurrency wallet that enables users to securely connect to decentralized applications. This

integration allows users to initiate and confirm transactions with ease while maintaining full

control over their funds. Every transaction is recorded on the Ethereum blockchain, ensuring

immutability and transparency, which enhances trust among users.

Furthermore, this system introduces a Latest Transactions feature that provides users with

real-time transaction history, promoting financial accountability and tracking. By using the

Sepolia test network through Alchemy’s blockchain infrastructure, this system ensures a

seamless and efficient transaction process during the development phase before deploying to a

mainnet environment.

The project aims to revolutionize digital payments by offering an accessible, decentralized,

and efficient solution for financial transactions. As blockchain adoption grows, this system has

the potential to bridge the gap between traditional finance and decentralized payment systems,

paving the way for a future where users have greater control over their financial activities.

2

To ensure the accuracy and reliability of the expert system, it should undergo rigorous

testing and validation with real patient cases, and continuous updates should be made to the

knowledge base as new research and treatment methods emerge.

1.2 Research Motivation

The growing reliance on digital transactions has highlighted critical limitations in

traditional financial systems, including inefficiencies, high transaction fees, and security

vulnerabilities. Centralized payment gateways, which act as intermediaries in financial

transactions, often introduce delays, impose restrictions, and expose users to risks such as fraud,

data breaches, and unauthorized access. These concerns have fueled the demand for alternative

solutions that offer greater security, transparency, and financial autonomy.

Blockchain technology presents a transformative opportunity by providing a decentralized,

secure, and transparent method for conducting financial transactions. By leveraging smart

contracts and cryptographic security mechanisms, blockchain-based payment systems

eliminate the need for intermediaries, thereby reducing transaction costs and processing times.

The potential to facilitate direct, peer-to-peer transactions in a trustless environment has made

blockchain an attractive solution for digital payments.

This research is motivated by the need to explore and develop a decentralized payment

network that can address the shortcomings of traditional financial infrastructures. By

integrating Ethereum smart contracts with a user-friendly interface, this system ensures secure

and verifiable transactions while giving users full control over their funds. Unlike conventional

banking systems, which require extensive verification processes and centralized authorization,

blockchain-based payment networks operate on a distributed ledger, enhancing both

accessibility and efficiency.

Additionally, the rise of Web 3.0 and decentralized finance (DeFi) has demonstrated the

potential of blockchain in reshaping global financial interactions. With an increasing number

of users adopting digital assets and decentralized applications, there is a need to create scalable

and robust payment solutions that align with these emerging trends.

The objective of this research is to design and implement a decentralized payment system

that enhances financial security, ensures seamless user experience, and promotes broader

adoption of blockchain-based transactions. By analyzing existing limitations in digital

payments and exploring innovative blockchain solutions, this study contributes to the

advancement of decentralized financial technologies and their real-world applications.

3

1.3 Problem Statement

The problem statement for the development of a decentralized payment network using

blockchain technology can be articulated as follows:

Traditional financial systems rely on centralized authorities such as banks and third-party

payment processors to facilitate transactions. While these systems provide essential financial

services, they are often associated with high transaction fees, long processing times, security

vulnerabilities, and financial restrictions. Users must place their trust in intermediaries to

manage and verify transactions, which increases the risk of fraud, data breaches, and

unauthorized access. Additionally, centralized financial institutions impose regulatory

constraints and geographic limitations, making cross-border transactions expensive and

inefficient.

Blockchain technology offers a decentralized alternative that enhances security,

transparency, and efficiency in digital transactions. However, existing blockchain-based

payment systems face challenges such as network congestion, high transaction costs (gas fees),

and a steep learning curve for non-technical users. Many users find it difficult to interact with

blockchain applications due to the complexity of wallet management, private key security, and

smart contract execution. These barriers limit the widespread adoption of decentralized

financial systems.

To address these issues, this study focuses on the development of a decentralized payment

network that eliminates intermediaries, reduces transaction costs, and ensures seamless peer-

to-peer transactions. By leveraging Ethereum smart contracts, this system provides a trustless,

transparent, and immutable payment solution where users retain full control over their funds.

The integration of MetaMask facilitates secure wallet connectivity, allowing users to perform

transactions with ease while maintaining financial autonomy.

The key challenges that this research aims to address include ensuring transaction

efficiency, enhancing the user experience, and improving the scalability of blockchain

payments. By developing a robust, user-friendly, and decentralized payment network, this

study seeks to contribute to the broader adoption of blockchain-based financial solutions,

promoting a more secure, efficient, and accessible global payment ecosystem.

4

1.4 Applications

The development of a decentralized payment network using blockchain technology holds

vast potential across various applications within the financial sector and beyond.

• Peer-to-Peer Transactions: One of the primary applications of the decentralized payment

network is facilitating secure and direct peer-to-peer transactions. Users can send and

receive funds without the need for intermediaries such as banks or payment processors.

This reduces transaction fees and processing times while enhancing financial autonomy and

security.

• Cross-Border Payments: Traditional cross-border transactions often involve high fees,

currency conversion costs, and delays due to multiple intermediaries. A decentralized

payment network allows for instant, low-cost international transactions, making global

financial interactions more efficient and accessible. This is particularly beneficial for

freelancers, businesses, and expatriates who frequently send or receive money across

borders.

• Decentralized Finance (DeFi) Integration: The decentralized payment network can

seamlessly integrate with DeFi applications, enabling users to participate in decentralized

lending, borrowing, staking, and yield farming. By leveraging smart contracts, users can

access financial services without relying on traditional banks, making financial tools more

inclusive and efficient.

• E-Commerce and Online Payments: Businesses can adopt decentralized payment

systems to accept cryptocurrency transactions, providing an alternative to traditional online

payment gateways. This reduces dependency on centralized platforms like PayPal or credit

card networks, lowering transaction fees and minimizing fraud risks. Additionally,

businesses can benefit from the transparency and security offered by blockchain

technology.

• Remittances and Financial Inclusion: Many individuals in underbanked or unbanked

regions struggle with access to financial services. A decentralized payment network

provides an inclusive financial solution that allows people to send and receive funds

securely using just a digital wallet. This promotes financial empowerment and economic

participation for populations without access to traditional banking.

• Smart Contract-Based Payments: Businesses and individuals can utilize smart contracts

for automated and conditional payments. For example, payments can be executed only

when predefined conditions are met, ensuring trust and reducing disputes in transactions

such as real estate deals, contract-based employment, and supply chain management.

5

• Tokenization and Micropayments: Blockchain-based payments allow for tokenized

transactions and micropayments, which are useful in digital content creation, gaming, and

subscription-based services. Users can make small payments for digital goods, services,

and in-app purchases without incurring high processing fees.

• Secure and Transparent Transactions: Every transaction within the decentralized

payment network is recorded on the blockchain, ensuring immutability and transparency.

This makes the system resistant to fraud, chargeback abuse, and unauthorized

modifications, fostering trust among users.

• Charity and Crowdfunding: The decentralized payment network can be leveraged for

transparent and traceable charitable donations and crowdfunding campaigns. Donors can

track how funds are utilized, ensuring accountability and trust in nonprofit organizations

and fundraising initiatives.

• Future Financial Innovations: As blockchain technology continues to evolve,

decentralized payment networks can serve as a foundation for future financial innovations,

including programmable money, automated taxation, and integration with traditional

banking services to create a hybrid financial ecosystem.

6

2. Literature Survey

Blockchain technology has revolutionized the financial sector by providing a

decentralized, transparent, and secure method for money transactions. Decentralized payment

networks leverage blockchain to enable peer-to-peer transactions without intermediaries,

reducing costs and enhancing security. Several studies have explored blockchain-based

financial systems, focusing on transaction efficiency, scalability, and security. The concept of

decentralized finance (DeFi) has grown significantly, providing alternative payment solutions

without reliance on traditional banking infrastructure. The rise of cryptocurrencies like Bitcoin

and Ethereum has further driven research into decentralized payment systems, highlighting

their potential to disrupt conventional financial models.

One of the key aspects of decentralized payment networks is security. Traditional financial

transactions rely on centralized institutions that act as intermediaries, making them vulnerable

to cyberattacks and fraud. Blockchain, with its cryptographic principles and decentralized

ledger, eliminates single points of failure, enhancing transaction security. Various consensus

mechanisms, such as Proof of Work (PoW) and Proof of Stake (PoS), ensure the integrity and

immutability of transactions. Nakamoto (2008) introduced Bitcoin as the first cryptocurrency

utilizing PoW, laying the foundation for secure digital transactions. Later research focused on

optimizing consensus mechanisms to improve transaction speed and energy efficiency, with

Ethereum introducing PoS to reduce computational requirements. Scalability remains a critical

challenge in blockchain-based payment systems. Bitcoin and Ethereum, the most widely used

blockchains, face transaction processing limitations due to block size constraints and network

congestion. Studies have explored solutions such as the Lightning Network, a second-layer

protocol that facilitates faster micropayments off-chain, reducing the burden on the main

blockchain. Similarly, Ethereum's transition to Ethereum 2.0 incorporates sharding, a technique

that divides the blockchain into smaller segments to improve processing speed. Research on

alternative blockchain frameworks, such as Directed Acyclic Graphs (DAGs) used in IOTA,

aims to enhance scalability without compromising decentralization. Smart contracts play a

crucial role in decentralized payment networks by enabling automated and trustless

transactions. Introduced by Szabo (1994), smart contracts execute predefined conditions

without intermediaries, ensuring transparency and efficiency. Ethereum popularized smart

contract functionality, allowing developers to build decentralized applications (DApps) for

financial transactions. Research has explored the security risks associated with smart contracts,

such as reentrancy attacks and vulnerabilities in Solidity programming. Auditing tools and

formal verification techniques have been developed to mitigate these risks, ensuring that smart

7

contracts function as intended. Interoperability between different blockchain networks is

another area of research in decentralized payment systems. With numerous blockchains

operating independently, seamless transaction processing across multiple networks remains a

challenge. Cross-chain communication protocols, such as Polkadot and Cosmos, aim to bridge

different blockchains, facilitating smooth asset transfers. Studies have examined the

effectiveness of atomic swaps, which enable direct cryptocurrency exchanges between users

on different blockchains without intermediaries. The implementation of interoperability

solutions enhances the adoption of decentralized payment networks, making them more

practical for global financial transactions. The regulatory landscape for decentralized payment

networks varies across jurisdictions. Governments and financial institutions have expressed

concerns regarding money laundering, tax evasion, and consumer protection in blockchain

transactions. Research has analyzed different regulatory approaches, from outright bans to

progressive frameworks that integrate blockchain within existing financial systems. Countries

like Switzerland and Singapore have embraced blockchain innovation with clear guidelines,

while others impose restrictions due to concerns over financial stability. Compliance solutions,

such as Know Your Customer (KYC) and Anti-Money Laundering (AML) protocols, have

been integrated into blockchain networks to address regulatory challenges while maintaining

decentralization.

User adoption of decentralized payment systems depends on ease of use and accessibility.

Traditional banking systems provide familiar interfaces and consumer protections, whereas

blockchain transactions require users to manage private keys and understand cryptographic

principles. Studies have explored user-friendly wallet designs, decentralized identity

management, and blockchain-based financial inclusion initiatives. Mobile-based blockchain

wallets and biometric authentication mechanisms have been proposed to simplify user

interactions while maintaining security. Research on integrating decentralized payment

networks with existing financial systems has also gained attention, allowing users to switch

between fiat and cryptocurrencies seamlessly. Decentralized payment networks also contribute

to financial inclusion by providing banking services to unbanked populations. According to the

World Bank, billions of people worldwide lack access to traditional banking, limiting their

financial opportunities. Blockchain-based payment solutions offer an alternative by enabling

direct peer-to-peer transactions without the need for intermediaries. Studies have highlighted

the impact of cryptocurrencies in developing economies, where individuals use digital assets

for remittances, microtransactions, and business transactions. Stablecoins, which are pegged to

fiat currencies, provide a stable alternative to volatile cryptocurrencies, making them more

suitable for everyday transactions. The environmental impact of blockchain transactions,

8

particularly in PoW-based networks, has been a topic of debate. Bitcoin mining consumes

significant energy due to its computational requirements, leading researchers to explore greener

alternatives. PoS, Delegated Proof of Stake (DPoS), and other consensus mechanisms have

been proposed to reduce energy consumption while maintaining security. Research on hybrid

blockchain models combines the benefits of both PoW and PoS, optimizing energy efficiency

without compromising decentralization. The development of sustainable blockchain solutions

ensures the long-term viability of decentralized payment networks.

Recent advancements in blockchain technology continue to shape the future of

decentralized payment networks. Layer 2 solutions, improved consensus algorithms, and

regulatory developments contribute to the evolution of blockchain-based financial systems.

Research on quantum-resistant cryptography addresses the potential threat of quantum

computing to blockchain security, ensuring the longevity of decentralized transactions. The

integration of artificial intelligence (AI) and blockchain has also been explored, with AI-driven

fraud detection and predictive analytics enhancing transaction security and efficiency.

In conclusion, decentralized payment networks leveraging blockchain technology offer

secure, transparent, and efficient financial transactions. Research in this domain has addressed

key challenges such as security, scalability, interoperability, regulation, and user adoption.

While significant progress has been made, ongoing advancements in blockchain technology

and regulatory frameworks will determine the widespread adoption of decentralized payment

solutions. The CRYPT project aims to contribute to this evolving landscape by developing a

blockchain-based payment network that prioritizes security, efficiency, and accessibility,

aligning with the latest research trends in decentralized finance.

9

Table 1. Strengths and Weaknesses of Blockchain-Based Decentralized Financial Models

Study Domain Task Method Strengths Weaknesses

Blockchain
Solutions for
Mortgage
Loan
Origination

Mortgage
Loan
Processing

Improve
transparency
and reduce
costs in loan
origination

Blockchain-
based
mortgage
system
(Wipro
Ventures)

Enhances security
and efficiency in
loan approval;
reduces
processing time

Limited
scalability; lack of
standardization in
smart contracts;
regulatory
uncertainties

Decentralized
Loan
Management
Application
Using Smart
Contracts on
Blockchain

Loan
Managemen
t

Prevent
fraudulent
activities in
loan
sanctioning

Ethereum-
based smart
contract
system

Reduces fraud
risk; increases
automation and
transparency

Limited
integration with
various loan
products; high
computational
cost; scalability
concerns

Blockchain
Smart
Contracts:
Applications,
Challenges,
and Future
Trends

Smart
Contracts

Comprehensi
ve analysis of
blockchain-
enabled
smart
contracts

Survey of
technical
and usage
aspects

Identifies key
challenges and
future trends;
highlights practical
use cases

Limited real-
world
implementation
examples; does
not address
sector-specific
adoption barriers

Legality of
Blockchain
and Smart
Contracts in
India

Legal
Studies

Analyze
blockchain's
compatibility
with Indian
regulations

Legal review
of smart
contract
enforceabilit
y

Identifies gaps in
Indian law
regarding smart
contracts;
discusses legal
implications

Lacks clarity on
cross-border
blockchain
transactions;
absence of well-
defined
regulatory
policies

10

Secure
Balance
Planning of
Off-
blockchain
Payment
Channel
Networks

Off-
Blockchain
Payment
Networks

Optimize
balance
distribution in
payment
networks

Payment
network
planning
(PnP)

Reduces reliance
on third parties;
enhances security;
ensures efficient
fund distribution

Scalability issues
in larger
networks; limited
real-world
testing; lacks
flexibility for
dynamic
demands

Design and
Implementatio
n of a Cloud-
Based
Decentralized
Cryptocurren
cy
Transaction
Platform

Cryptocurren
cy
Transactions

Develop a
decentralized
crypto
exchange

Multi-
signature
authenticatio
n &
cryptocurren
cy API
integration

Enhanced
security; multi-
signature
authentication
prevents
unauthorized
access

Limited focus on
user experience;
scalability issues;
higher
transaction
latency

Regulating
Decentralized
Financial
Technology:
A Qualitative
Study

Financial
Regulation

Assess
regulatory
challenges in
DeFi

Qualitative
analysis of
regulations

Highlights gaps in
regulatory
frameworks;
provides insights
into emerging
financial models

Lacks concrete
regulatory
solutions; does
not propose
implementation
strategies

11

3. EXISTING SYSTEM

3.1 Traditional Payment System vs. Decentralized Payment System

A traditional payment system requires a trusted third-party authority, such as a bank or financial

institution, to authenticate and validate transactions. This approach has inherent risks, such as

single points of failure, security vulnerabilities, and restricted access based on geography or

banking regulations. In contrast, a decentralized payment network eliminates intermediaries by

leveraging blockchain technology. Transactions are verified by a distributed network of nodes,

ensuring transparency, security, and immutability.

Figure 3.1: Traditional vs. Decentralized Payment System

3.2 Blockchain Transaction Flow

In decentralized payment systems, blockchain technology ensures secure and transparent

transactions through a distributed ledger. Each transaction is recorded in a block and validated

through consensus mechanisms such as Proof of Work (PoW) or Proof of Stake (PoS). The

transaction flow consists of the following steps:

1. The sender initiates a transaction by signing it with their private key.

2. The transaction is broadcast to the blockchain network.

3. Miners or validators verify the transaction.

4. The verified transaction is added to a block and linked to the previous block.

5. The updated blockchain ledger is distributed across all network participants.

12

Figure 3.2 Blockchain Transaction Process

Example of a Blockchain Transaction Flow:

Let's consider a real-world example where Alice wants to send 0.5 ETH (Ethereum) to Bob

using a decentralized payment system.

Transaction Initiation

Alice opens her MetaMask wallet and enters Bob's Ethereum wallet address.

She specifies 0.5 ETH as the amount and signs the transaction using her private key.

Broadcasting the Transaction

Once Alice confirms the transaction, it is broadcast to the Ethereum blockchain network.

Transaction Verification

Miners (if using PoW) or validators (if using PoS) receive Alice’s transaction.

They check if Alice has enough balance and if the transaction follows blockchain rules.

Adding to the Blockchain

After verification, the transaction is included in a new block.

This block is cryptographically linked to the previous block, ensuring immutability.

Transaction Completion & Ledger Update

Once confirmed, the updated blockchain ledger reflects that Alice’s balance decreases by 0.5

ETH (plus gas fees), and Bob’s balance increases by 0.5 ETH.

Bob can now see the received amount in his wallet.

13

3.3 Smart Contract Execution in Ethereum

Smart contracts are self-executing programs stored on the blockchain that facilitate trustless,

automated transactions by enforcing predefined rules. These contracts eliminate the need for

intermediaries, reducing costs, improving security, and ensuring transparency.

In the CRYPT project, smart contracts play a crucial role in processing payments securely.

Transactions occur only when specific conditions are met, ensuring a decentralized,

immutable, and tamper-proof financial system.

Working of Ethereum-Based Smart Contracts

1. User Interaction: A user initiates a transaction by interacting with a deployed smart

contract using a web application (DApp) or a wallet like MetaMask.

2. Condition Verification: The smart contract evaluates whether all predefined conditions

(such as sufficient balance, correct recipient address, or contract execution time) are met.

3. Transaction Execution: If the conditions are met, the smart contract executes the function,

transferring tokens or triggering other actions.

4. Blockchain Storage: The transaction and contract execution details are recorded

permanently on the Ethereum blockchain, ensuring transparency and security.

5. Finalization & Immutability: Once executed, the transaction cannot be reversed or

altered, preventing fraud and ensuring compliance with the original contract terms.

 Figure 3.3: Smart Contract Flow

 3.4 MetaMask Wallet Integration

For user interaction, decentralized applications (DApps) often integrate with

cryptocurrency wallets like MetaMask. MetaMask allows users to manage their private

keys securely and interact with blockchain networks seamlessly. In the CRYPT project,

users connect their MetaMask wallet to initiate and approve transactions. The interaction

process involves:

14

 1. The user connects their MetaMask wallet to the DApp.

 2. The DApp requests transaction approval from the user.

 3. MetaMask signs and broadcasts the transaction to the blockchain.

 4. The transaction status is updated in real-time.

Figure 3.4 Meta Mask Wallet and Transaction Flow

15

3.5 Drawbacks of the Existing System

While decentralized payment networks offer significant advantages, they also have limitations:

• Transaction Speed & Scalability: Blockchain networks can become congested,

leading to slow transaction processing times.

• High Gas Fees: Ethereum-based transactions incur high gas fees, making

microtransactions costly.

• Regulatory Challenges: Governments and financial institutions are still developing

regulations for blockchain-based transactions.

• Security Risks: While blockchain is secure, smart contract vulnerabilities can be

exploited, leading to potential financial losses.

• User Experience: Managing private keys and interacting with blockchain wallets can

be complex for non-technical users.

Despite these challenges, decentralized payment systems continue to evolve, with Layer 2

solutions, improved consensus mechanisms, and regulatory advancements working towards

addressing these issues.

16

4. PROPOSED SYSTEM

4.1 Overview

The CRYPT project introduces a decentralized payment network utilizing blockchain

technology to provide secure and trustless financial transactions. Traditional payment systems

rely on banks and third-party authorities, leading to inefficiencies such as high transaction

fees, slow processing times, and security risks. The proposed system eliminates

intermediaries by using Ethereum-based smart contracts, ensuring transactions are

automated, immutable, and transparent.

This methodology leverages MetaMask wallet integration for secure user authentication

and blockchain consensus mechanisms such as Proof of Stake (PoS) to validate transactions.

Users initiate payments directly through smart contracts, reducing fraud risks and enhancing

security. Each transaction is permanently recorded on the distributed ledger, preventing

unauthorized modifications.

By decentralizing payment processing, CRYPT provides a borderless, cost-efficient, and

scalable solution for digital transactions. The following diagram illustrates the workflow of the

proposed methodology.

17

Fig. 4.1: Block diagram of proposed system.

Figure 4.1 shows the proposed system model. The detailed operation illustrated as follows:

The proposed system model for CRYPT, a decentralized payment network, is designed to

facilitate secure and transparent blockchain transactions using Ethereum smart contracts. The

system follows a structured workflow that ensures user authentication, wallet connectivity,

transaction processing, and blockchain ledger updates.

User Authentication: The first step in the system involves user authentication, which is

essential for access control and security. Users must log in or sign-up using Firebase

Authentication or Google authentication. This ensures that only authorized users can initiate

transactions. By implementing a login system, the platform can also provide a personalized

experience, such as displaying transaction history and allowing users to manage their digital

assets efficiently.

Once authenticated, users are redirected to the landing page, which serves as the main

navigation hub. Here, they can explore the available services, view transaction records, or

proceed to make a new transaction.

18

Connecting to MetaMask Wallet: To initiate transactions, users must connect their MetaMask

wallet. This step is crucial as it links their decentralized identity to the blockchain network. If

the MetaMask extension is not installed, the system prompts users to install it before

proceeding. For users who already have MetaMask, the system verifies the connection and

allows them to continue with transactions. Establishing this wallet connection ensures that all

transactions are securely processed on the Ethereum blockchain.

Services and Transactions Page: Once logged in and connected to a wallet, users can access

the Services and Transactions pages. The Services page provides an overview of the features

available on the platform, while the Transactions page displays the latest transactions

conducted by the user. This section is designed to offer a seamless and transparent experience,

allowing users to track their previous transactions and manage their digital funds efficiently.

Transaction Input and Validation: To make a transaction, users need to input details such as

the recipient’s Ethereum address, the amount of ETH to be transferred, a keyword for

transaction categorization, and an optional message. These inputs are collected through a

structured form to ensure accuracy. Before proceeding with payment, the system validates the

entered information to prevent errors, such as incorrect wallet addresses or insufficient balance.

Processing Payment via Ethereum Smart Contract: Once the transaction details are

validated, the payment process is initiated using an Ethereum smart contract. The smart contract

securely processes the transfer, ensuring that the transaction is immutable and transparent.

Users are prompted to confirm the transaction in their MetaMask wallet, which includes details

such as the transaction amount and the associated gas fee required for processing. This step

ensures that users have full control over their transactions and can review the necessary details

before proceeding.

Updating Blockchain Records: After the payment is successfully processed, the system

updates the transaction details on the blockchain. This ensures that all records are securely

stored and cannot be altered, providing a reliable and tamper-proof transaction history. The

updated details are then reflected on the user’s Transactions page, allowing them to track their

payments and verify successful transactions.

19

Transaction History and Confirmation: The final step in the system involves displaying

transaction confirmations and maintaining a historical record. Users can view their latest

transactions, including recipient details, transaction amounts, timestamps, and confirmation

status. This feature enhances transparency and provides users with a clear overview of their

financial activities on the platform. Additionally, any errors or failed transactions are flagged,

ensuring users remain informed about the status of their payments.

20

4.2 Implementation Methodology

The implementation of the proposed Decentralized Payment Network (CRYPT) is centered

around blockchain technology to enable secure, transparent, and decentralized financial

transactions. The system eliminates the need for intermediaries, ensuring direct peer-to-peer

(P2P) money transfers on the Ethereum blockchain. This approach enhances security, reduces

transaction costs, and increases accessibility for users. The core components of the

implementation include Ethereum blockchain integration, smart contract development,

MetaMask wallet authentication, and a React-based frontend for user interaction.

Working Principle:

The working principle of the CRYPT system revolves around smart contracts and blockchain

transaction validation. The system operates in the following structured steps:

Step1: User Authentication

Users sign up or log in using Firebase Authentication or Google Authentication. This ensures

that only authorized users can access the platform and initiate transactions.

Step 2: Wallet Connection

Users must connect their MetaMask wallet, which acts as their decentralized identity and allows

interaction with the Ethereum blockchain. If the MetaMask extension is not installed, the

system prompts users to install it.

Step 3: Transaction Input

The user provides transaction details such as:

• The recipient’s Ethereum address

• The amount of ETH to be transferred

• An optional message for reference

Step 4: Transaction Validation

The system performs validation checks to ensure:

• The Ethereum address is valid

• The user has sufficient balance in their wallet

• The input fields are correctly filled

21

 Step 5: User Confirmation

Once the validation is successful, the system prompts the user to confirm the transaction via

MetaMask wallet approval, ensuring they authorize the payment.

 Step 6: Smart Contract Execution

The Ethereum smart contract securely processes the transaction by:

• Deducting the specified amount from the sender’s wallet

• Transferring the amount to the recipient’s wallet

• Storing transaction details on the blockchain

Step 7: Blockchain Record Update

The transaction is permanently recorded on the Ethereum blockchain, making it

immutable and transparent. The transaction hash and timestamp are stored for

reference.

Step 8: Transaction History Display

Users can view their latest transactions on the platform, including:

• Transaction amount

• Recipient details

• Timestamp

• Confirmation status

This ensures transparency and allows users to track their financial activities efficiently.

22

4.3 Advantages of the Proposed System

Decentralization – CRYPT operates on the Ethereum blockchain, eliminating the need for

banks or intermediaries and increasing transaction efficiency.

Security and Transparency – Smart contracts ensure that transactions are tamper-proof and

publicly verifiable, reducing the risk of fraud.

Cost Efficiency – Traditional banking systems involve high fees. CRYPT transactions occur

directly on the Ethereum network, requiring only minimal gas fees.

User Control and Ownership – Users have full control over their funds, managing their

digital assets directly from their MetaMask wallets without third-party intervention.

Fast and Borderless Transactions – Unlike conventional banking, which can take days for

international transfers, blockchain transactions are processed within minutes, enabling instant

cross-border payments.

Immutable Transaction History – All transactions are recorded permanently on the

blockchain, ensuring transparency and preventing data tampering.

Scalability and Future Expansion – CRYPT is designed to support future upgrades,

including:

Multi-currency support (other cryptocurrencies)

Token-based payments

Integration with DeFi applications

23

5. SYSTEM DESIGN

5.1 ARCHITECTURE DESIGN:

The CRYPT Web 3.0 application enables secure Ethereum transactions using MetaMask

Wallet and Google Authentication. Built with React, Node.js, and Solidity, it allows users to

log in, connect their wallet, and send ETH seamlessly. The backend interacts with Ethereum

Sepolia Testnet via Alchemy, ensuring decentralized transaction execution. Users can track

their transaction history, with confirmations and loading states displayed for a smooth

experience.

Fig 5.1.1 System Architecture for CRYPT

24

5.2 UML DIAGRAMS

UML stands for Unified Modeling Language. UML is a standardized general-purpose

modeling language in the field of object-oriented software engineering. The standard is

managed, and was created by, the Object Management Group. The goal is for UML to become

a common language for creating models of object-oriented computer software. In its current

form UML is comprised of two major components: a Meta-model and a notation. In the future,

some form of method or process may also be added to; or associated with, UML.

The Unified Modeling Language is a standard language for specifying, Visualization,

Constructing and documenting the artifacts of software system, as well as for business modeling

and other non-software systems. The UML represents a collection of best engineering practices

that have proven successful in the modeling of large and complex systems. The UML is a very

important part of developing objects-oriented software and the software development process.

The UML uses mostly graphical notations to express the design of software projects.

GOALS: The Primary goals in the design of the UML are as follows:

• Provide users a ready-to-use, expressive visual modeling Language so that they can

develop and exchange meaningful models.

• Provide extendibility and specialization mechanisms to extend the core concepts.

• Be independent of particular programming languages and development process.

• Provide a formal basis for understanding the modeling language.

• Encourage the growth of OO tools market.

• Support higher level development concepts such as collaborations, frameworks,

patterns and components.

• Integrate best practices.

5.1 Class diagram

The class diagram is used to refine the use case diagram and define a detailed design of the

system. The class diagram classifies the actors defined in the use case diagram into a set of

interrelated classes. The relationship or association between the classes can be either an "is-a"

or "has-a" relationship. Each class in the class diagram may be capable of providing certain

functionalities. These functionalities provided by the class are termed "methods" of the class.

Apart from this, each class may have certain "attributes" that uniquely identify the class.

25

Fig 5.2.1 Class Diagram for crypt

5.2 Use case Diagram

A use case diagram in the Unified Modeling Language (UML) is a type of behavioral diagram

defined by and created from a Use-case analysis. Its purpose is to present a graphical overview

of the functionality provided by a system in terms of actors, their goals (represented as use

cases), and any dependencies between those use cases. The main purpose of a use case diagram

is to show what system functions are performed for which actor. Roles of the actors in the

system can be depicted.

Fig 5.2.2 Use Case Diagram for crypt

26

5.3 Sequence Diagram

A sequence diagram in Unified Modeling Language (UML) is a kind of interaction diagram

that shows how processes operate with one another and in what order. It is a construct of a

Message Sequence Chart. A sequence diagram shows, as parallel vertical lines ("lifelines"),

different processes or objects that live simultaneously, and as horizontal arrows, the messages

exchanged between them, in the order in which they occur. This allows the specification of

simple runtime scenarios in a graphical manner.

Fig 5.2.3 Sequence Diagram for crypt

27

5.4 Activity diagram: Activity diagrams are graphical representations of Workflows of

stepwise activities and actions with support for choice, iteration, and concurrency.

In the Unified Modeling Language, activity diagrams can be used to describe the business and

operational step-by-step workflows of components in a system. An activity diagram shows the

overall flow of control.

Fig 5.2.4 Activity Diagram for crypt

28

6. SOFTWARE ENVIRONMENT

6.1 What is Node.js?

Node.js is an open-source, cross-platform, server-side runtime environment that allows

JavaScript to run outside a web browser. It is built on Chrome’s V8 JavaScript engine and is

widely used for building scalable, high-performance network applications.

• Node.js is a lightweight, fast, and efficient runtime that enables asynchronous, event-driven

programming.

• It supports both Object-Oriented and Functional Programming paradigms.

• Node.js applications are highly scalable, making it ideal for microservices and real-time

applications.

• It is widely used by top tech companies like Netflix, LinkedIn, Walmart, Uber, PayPal, and

eBay.

• The biggest strength of Node.js is its vast ecosystem of open-source libraries available via

npm (Node Package Manager).

Common Use Cases of Node.js

Node.js provides extensive support for various types of applications, including:

• Web Servers & APIs (Express.js, Nest.js)

• Real-Time Applications (Chat apps, Live streaming)

• Microservices Architecture

• Blockchain & Cryptocurrency (Ethereum-based apps)

• Automation & Scripting

• Server-Side Rendering (Next.js)

• Database Connectivity (MongoDB, MySQL, PostgreSQL)

Advantages Of Node.js

Let’s see how Python dominates over other languages.

29

1. Asynchronous and Non-Blocking

Node.js uses an event-driven, non-blocking I/O model, which makes it lightweight and highly

efficient. Unlike traditional synchronous operations, it can handle multiple requests

simultaneously.

2. Fast Performance

Built on Google’s V8 engine, Node.js converts JavaScript into highly optimized machine code,

making it one of the fastest runtime environments available.

3. Single Programming Language

With Node.js, developers can write both frontend and backend code using JavaScript, reducing

the need to learn multiple languages and making full-stack development easier.

4. Scalability

Node.js applications can handle a large number of concurrent users with minimal resources.

Its event-driven architecture makes it an excellent choice for microservices and cloud-based

applications.

5. Large Community & Rich Ecosystem

The npm (Node Package Manager) has thousands of libraries and modules that accelerate

development and reduce coding effort.

6. Real-Time Applications

Node.js is ideal for real-time applications like chat applications, online gaming, and

collaboration tools because of its ability to maintain persistent connections using WebSockets.

7. Easy to Learn

Since JavaScript is already a popular language for frontend development, developers can

quickly adapt to Node.js for backend programming.

8. Microservices & Cloud-Friendly

Node.js is widely used for developing microservices-based architectures, making it a perfect

fit for cloud-native applications.

9. Cross-Platform Development

Node.js allows developers to create cross-platform applications using frameworks like

30

Electron.js, making it possible to build desktop apps with web technologies.

10. Open-Source and Free

Node.js is completely open-source and free to use, making it cost-effective for individuals and

companies of all sizes.

31

Advantages of Node.js Over Other Languages

1. High Speed & Low Latency

Node.js executes code faster than Python and PHP because of its asynchronous nature. It

is ideal for real-time applications where speed is critical.

2. Cost-Effective & Resource-Efficient

Since Node.js allows full-stack JavaScript development, companies can reduce costs by

hiring fewer developers compared to using separate backend and frontend technologies.

3. Universal Compatibility

Node.js runs on all major operating systems, including Windows, macOS, and Linux,

making deployment easier across different environments.

4. Strong Industry Adoption

Many tech giants and startups use Node.js for its scalability and performance benefits,

making it a widely trusted and in-demand technology.

32

Disadvantages of Node.js

1: Single-Threaded Limitations

Node.js uses a single-threaded event loop, making it less suitable for CPU-intensive tasks

like video processing and large calculations.

2: Callback Hell

Due to its asynchronous nature, Node.js applications often face callback hell, where multiple

nested callbacks can make the code difficult to manage and debug.

3: Unstable API

Node.js frequently releases updates, sometimes changing APIs in a way that requires

modifications in the existing codebase.

4: Weak with Heavy Computation

Unlike multi-threaded technologies like Java, Node.js struggles with CPU-bound tasks,

which can lead to performance issues in data-heavy applications.

5: Security Concerns

The vast number of third-party NPM modules increases the risk of security vulnerabilities,

requiring developers to carefully monitor dependencies.

33

History of Node.js

Node.js was developed by Ryan Dahl in 2009 as an open-source, cross-platform runtime

environment that enables JavaScript to run outside of web browsers. Before Node.js, JavaScript

was primarily a client-side scripting language used for adding interactivity to web pages. Dahl

introduced Node.js to address the limitations of traditional web servers, such as blocking I/O

operations, and to provide an event-driven, non-blocking architecture that allows for high

performance and scalability.

Node.js is built on Google’s V8 JavaScript engine, which compiles JavaScript code into

machine code for faster execution. It introduced the event loop mechanism, allowing

applications to handle multiple requests concurrently without waiting for previous ones to

complete. This made Node.js ideal for building real-time applications like chat apps, gaming

platforms, and streaming services.

In 2010, the introduction of NPM (Node Package Manager) revolutionized package

management in JavaScript, making it easy for developers to install and share reusable modules.

Companies such as LinkedIn, Netflix, PayPal, and Uber quickly adopted Node.js due to its

ability to handle high-traffic applications efficiently.

Over the years, Node.js has undergone significant improvements. In 2015, a fork called

io.js emerged, bringing rapid updates, but it later merged back into Node.js. Newer versions of

Node.js introduced ES module support, async/await features, and improved security. Today,

Node.js remains a preferred choice for building scalable web applications, APIs, and

microservices, with an active community and continuous enhancements in performance,

security, and developer experience. Its impact on the JavaScript ecosystem has been

transformative, making full-stack development more seamless than ever.

Node.js Development Steps

Ryan Dahl introduced Node.js in 2009 as a runtime environment for executing JavaScript

outside the browser. It was designed to offer an event-driven, non-blocking I/O model for

scalable and efficient web applications. The first release of Node.js included the V8 JavaScript

engine, a built-in HTTP module, and an event loop mechanism.

In 2010, the release of Node Package Manager (NPM) revolutionized JavaScript

development, allowing developers to share and manage packages easily. This significantly

boosted the adoption of Node.js in web development. By 2011, companies like LinkedIn and

Netflix started using Node.js to improve their application performance and scalability.

34

The Node.js Foundation was established in 2015 to ensure the continuous development and

maintenance of the platform. That same year, a forked version called io.js emerged, offering

faster updates, but it later merged back into Node.js. Node.js 6.0, released in 2016, introduced

long-term support (LTS) and enhanced performance improvements, making it more stable for

enterprise applications.

The introduction of async/await in Node.js 8 (2017) simplified asynchronous

programming, making it easier to write clean and efficient code. In 2019, Node.js 12 introduced

ES module support, allowing developers to use import/export syntax natively.

Recent versions of Node.js have focused on security improvements, performance

optimization, and better developer experience. Today, Node.js continues to evolve, with an

active community and widespread usage in backend development, APIs, microservices, and

real-time applications. It remains a dominant technology in modern web development, offering

flexibility, speed, and scalability for building server-side applications.

6.2 Modules Used in Project

 fs (File System)

The fs module in Node.js is a built-in module that provides an API for interacting with the file

system. It allows developers to read, write, update, delete, and manipulate files and directories.

The module supports both synchronous and asynchronous operations, making it efficient for

handling large-scale file processing tasks. Common methods include fs.readFile() for reading

files, fs.writeFile() for writing data to files, and fs.unlink() for deleting files. The fs module is

widely used for logging, file uploads, and data persistence, making it an essential component

in server-side development.

http/https:

The http and https modules are built-in modules in Node.js that enable communication

between the server and clients over the web. The http module is used to create HTTP servers

and handle requests and responses, while the https module is used for secure communication

using SSL/TLS encryption. Developers use these modules to build RESTful APIs, proxy

servers, and web applications. The http.createServer() method is commonly used to set up an

HTTP server, while https.createServer() is used for secure data transmission.

35

Express:

Express.js is a widely used third-party web application framework for Node.js that simplifies

the development of server-side applications. It provides a robust set of features for routing,

middleware integration, request handling, and response management. Express allows

developers to define API endpoints using app.get(), app.post(), and other methods, making it

easy to build RESTful services. It also supports middleware functions for logging,

authentication, and error handling. Express is lightweight, flexible, and widely adopted in the

industry, making it an essential framework for building scalable and maintainable web

applications.

jsonwebtoken(JWT):

The jsonwebtoken (JWT) module is used for implementing authentication and secure data

exchange between a client and server. It allows developers to create, sign, and verify JSON

Web Tokens, which are used for user authentication and authorization. JWTs are widely used

in token-based authentication systems, replacing traditional session-based authentication. The

jsonwebtoken.sign() method is used to generate tokens, while jsonwebtoken.verify() is used to

validate them

Cors:

CORS (Cross-Origin Resource Sharing) is a security feature implemented in web browsers to

restrict cross-origin HTTP requests. The cors module in Node.js allows developers to enable or

restrict access to APIs from different origins. This is particularly useful when a frontend

application (React, Angular, Vue) needs to communicate with a backend hosted on a different

domain. The cors module allows configuring rules such as allowed origins, methods, headers,

and credentials. By using app.use(cors()), developers can prevent errors like "Blocked by

CORS policy" while ensuring security and proper API usage.

36

 6.3 Install Node.js Step-by-Step in Windows and Mac

Node.js, a powerful JavaScript runtime built on Chrome’s V8 engine, allows developers to

build scalable and efficient server-side applications. It was initially released in 2009 and has

since become a fundamental technology for backend development. Node.js follows an event-

driven, non-blocking I/O model, making it ideal for building real-time applications such as

chat apps, APIs, and microservices.

Unlike some other programming environments, Node.js does not come pre-installed on

Windows or macOS. Developers must install it manually to start using its features. Below is a

step-by-step guide to installing Node.js on both Windows and macOS.

How to Install Node.js on Windows and Mac

Node.js has evolved significantly since its initial release in 2009, bringing numerous updates

and performance improvements over the years. As a popular runtime environment, it allows

developers to run JavaScript outside the browser, making it a key technology for backend

development, APIs, and real-time applications. The latest stable version of Node.js is

recommended for most users, while developers looking for cutting-edge features can opt for

the current version.

If you’re new to Node.js, you may wonder how to install it on your computer. This guide will

walk you through the installation process for both Windows and macOS.

Note: Older versions of Node.js may not support certain features or work efficiently with the

latest JavaScript frameworks. It is always recommended to install the latest Long-Term

Support (LTS) version for stability.

37

Before installing Node.js, it is important to check your system requirements. The installation

process varies depending on the operating system and processor type. You need to download

the appropriate Node.js version based on your system architecture.

For example, my system is a Windows 64-bit operating system, so I will install the 64-bit

version of Node.js. The steps below will guide you through installing Node.js on a Windows

device. These instructions are applicable for Windows 10, 8, and 7.

Download the Correct version into the system

Step 1: Go to the official site to download and install node.js using Google Chrome or any other

web browser. OR Click on the following link: https://nodejs.org

Download the Windows Installer from NodeJs official website. Make sure you have

downloaded the latest version of NodeJs. It includes the NPM package manager.

Here, we are choosing the 64-bit version of the Node.js installer.

The LTS (Long-term Support) version is highly recommended for you. After the

download of the installer package, install it with a double-click on it.

Now .msi file will be downloaded to your browser. Choose the desired location for that.

https://nodejs.org/
https://nodejs.org/en/download/

38

Step 2: Install Node.js and NPM

After choosing the path, double-click to install .msi binary files to initiate the installation

process. Then give access to run the application.

You will get a welcome message on your screen and click the “Next” button. The

installation process will start.

• Choose the desired path where you want to install Node.js.

39

• By clicking on the Next button, you will get a custom page setup on the screen. Make sure

you choose npm package manager , not the default of Node.js runtime . This way, we can

install Node and NPM simultaneously.

You should have at least 150MB of free space to install Node.js and npm features.

The following features will be installed by default:

• Node.js runtime

• Npm package manager

• Online documentation shortcuts

• Add to Path

Step 3: Check Node.js and NPM Version

• If you have a doubt whether you have installed everything correctly or not, let’s

verify it with “Command Prompt”.

40

Command Prompt window will appear on the screen.

To confirm Node installation, type node -v command.

To confirm NPM installation, type npm -v command.

And you don’t need to worry if you see different numbers than mine as Node and NPM are

updated frequently.

In my case, the version of node.js is v18.20.5 and npm is v10.9.2.

41

7. REQUIREMENTS SPECIFICATIONS

7.1 Software Requirements

The software requirements include functional specifications such as the operating system,

dependencies, frameworks, and development tools necessary for building and running the

project. These requirements define the overall development environment and constraints

needed for efficient execution.

For this project, which involves Node.js development, the following software tools and

frameworks are required:

• Node.js (Latest LTS version) – The core runtime environment for JavaScript-based

backend development.

• npm (Node Package Manager) – Comes bundled with Node.js and is essential for

managing dependencies.

• React + Vite – Frontend development framework for building the user interface.

• Hardhat – Ethereum development environment for compiling, deploying, and testing

smart contracts.

• Solidity Compiler – Required for writing and compiling smart contracts.

• Alchemy or Infura API – To interact with the Ethereum blockchain network (Sepolia

testnet).

• MetaMask Extension – A wallet to manage blockchain transactions and interact with

smart contracts.

7.2 Hardware Requirements

 The hardware requirements depend on the nature of Node.js applications, blockchain

integration, and frontend complexity. Applications handling large datasets, smart contract

interactions, and multiple API requests will need better performance configurations.

42

Minimum hardware requirements for this project:

• Operating System: Windows 10/11, macOS, or Linux (Ubuntu recommended for blockchain

development).

• Processor: Minimum Intel Core i5 or AMD equivalent for smooth execution.

• RAM: At least 8 GB RAM (16 GB recommended for large-scale deployments).

• Storage: Minimum 500 GB SSD (for faster processing and smart contract interactions).

• Graphics: No special requirements unless using AI/ML-based blockchain analytics.

These specifications ensure smooth execution of the CRYPT Web 3.0 application, including

MetaMask wallet connection, smart contract transactions, and frontend interactions. If real-

time blockchain data processing is involved, higher configurations might be necessary.

43

8. FUNCTIONAL REQUIREMENTS

8.1 Output Design

The output design is a crucial aspect of any system as it determines how information is

presented to the user. The CRYPT Web 3.0 application requires different types of outputs to

communicate transaction details and system status. These outputs serve different purposes,

such as user notifications, transaction confirmations, and data retrieval. External Outputs,

whose destination is outside the organization

Types of Outputs in CRYPT:

• External Outputs – Blockchain transaction details that are recorded on the Ethereum

blockchain and visible on blockchain explorers (e.g., Etherscan).

• Internal Outputs – System logs and transaction history stored within the user’s session.

• User Interface Outputs – Transaction status, error messages, confirmations, and balances

displayed within the CRYPT application.

• Operational Outputs – Backend server logs and smart contract execution details for

debugging and monitoring.

• Interface Outputs – MetaMask wallet connection prompts, pop-ups for transaction

approvals, and loading indicators.

Output Definition

Each output in the system should be defined based on the following factors:

• Type of Output: Real-time transaction details, user notifications, and smart contract

responses.

• Content of Output: Transaction hash, wallet address, ETH balance, confirmation status,

and error messages.

• Format of Output: JSON data from blockchain responses, formatted UI elements for the

user interface.

• Location of Output: Displayed in the web application and stored on the blockchain.

• Frequency of Output: Each time a transaction is executed or the wallet is connected.

• Volume of Output: Limited to individual transactions per user session.

44

The CRYPT application ensures that all outputs are user-friendly and provide real-time

transaction feedback, allowing users to track their payments securely.

 Input Design

The input design defines how users interact with the CRYPT application and how data is

collected, processed, and validated before being sent to the blockchain. The goal is to

provide a seamless and secure input mechanism while minimizing errors.

Objectives of Input Design:

• Ensure a cost-effective method for input collection.

• Achieve the highest level of accuracy in transaction data.

• Validate and verify data before sending it to the blockchain.

• Ensure user-friendly and error-free interaction.

Input Stages in CRYPT:

• Data Entry: Users enter their Ethereum wallet address and transaction amount.

• Data Verification: The system checks if MetaMask is installed and if the address format is

valid.

• Transaction Authorization: Users approve transactions through the MetaMask pop-up.

• Data Transmission: The transaction is sent to the Ethereum blockchain via the Alchemy

API.

• Validation: The system verifies if the transaction was successfully recorded.

Types of Inputs in CRYPT:

• External Inputs: ETH wallet address, transaction amount, and gas fees entered by the user.

• Internal Inputs: Smart contract responses and blockchain confirmations.

• Operational Inputs: Backend logs for transaction tracking and debugging.

• Interactive Inputs: Users interact with MetaMask for transaction approval.

Error Avoidance & Detection:

• Real-time validation: Ensures users enter valid Ethereum addresses and sufficient funds.

45

• MetaMask integration: Prevents incorrect wallet connections by enforcing wallet

verification.

• Transaction failure handling: Displays error messages if a transaction is rejected or fails.

Data Validation in CRYPT:

• Ethereum wallet addresses must follow the correct format (0x followed by 40 characters).

• Transaction values must be greater than 0 ETH.

• Users must approve the transaction via MetaMask before submission.

These validation techniques ensure that only valid transactions are processed, reducing

errors and fraudulent activities.

8.2 User Interface Design

A well-designed user interface (UI) ensures a smooth user experience. The CRYPT Web 3.0

application follows a modern, intuitive, and responsive design to allow seamless interaction

with blockchain transactions.

Types of User Interfaces in CRYPT:

User-Initiated Interfaces:

• Command-Driven Interface: The user manually enters transaction details (wallet address

and amount).

• Forms-Oriented Interface: The system provides an interactive form where users input their

transaction details.

Computer-Initiated Interfaces:

• Menu System: Users navigate through different sections, such as "Connect Wallet," "Send

Transaction," and "View History."

• Question-Answer Dialogs: The system asks users to confirm actions (e.g., "Are you sure

you want to send this transaction?").

Features of the User Interface:

• MetaMask Wallet Connection – Users connect their wallets seamlessly.

• Transaction Status Updates – Displays "Pending," "Confirmed," or "Failed" messages.

46

• Error Handling Messages – Provides feedback when transactions fail or wallet connectivity

issues occur.

• Loading Indicators – Shows progress when transactions are being processed.

• Dark Mode Support – Enhances UI experience based on user preference.

Error Message Design:

Error messages are designed to be informative and actionable. Examples include:

• "Invalid wallet address." (when an incorrect format is detected)

• "Insufficient balance." (when the user does not have enough ETH)

• "Transaction rejected." (when the user cancels the transaction in MetaMask)

8.3 Performance Requirements

The performance of the CRYPT application is measured by transaction speed, blockchain

response time, and UI responsiveness.

Performance Metrics:

• Transaction Processing Time: Should be completed within 5-10 seconds on the

Ethereum testnet.

• UI Load Time: The application should load in under 2 seconds.

• MetaMask Connection Speed: The wallet should connect within 3 seconds.

• Blockchain Query Response Time: Fetching transaction history should take no longer

than 5 seconds.

System Efficiency Goals:

• Interfacing with the Blockchain: The application should smoothly communicate with

the Ethereum blockchain via Alchemy APIs.

• Accuracy: Transactions must be executed with 100% accuracy to prevent loss of

funds.

• User-Friendliness: The application should be better than traditional payment methods

in terms of speed, security, and convenience.

Reliability Considerations:

• Error Handling Mechanisms: The system should recover from failed

transactions by prompting the user with retry options.

• Scalability: The system should handle multiple users simultaneously without

47

slowing down.

• Security Measures:

o Transactions must be signed using MetaMask to prevent unauthorized

access.

o SSL Encryption should be used for secure data transmission.

o Smart contract audits should be performed to prevent exploits.

By meeting these performance requirements, the CRYPT Web 3.0

application will provide a secure, efficient, and scalable platform for

blockchain transaction

48

9. SOURCE CODE

Index.html

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="UTF-8" />

 <link rel="icon" type="image/png" sizes="32x32"

href="

AABzenr0AAAFh0lEQVR4nO2WXYhd1RXH19p7n33OuedrOvXKwAhqQjEoaAk0m

BLboKmtKCkixbRQSvGlrT5q6UtFSh/ahxb61pdqsYoa0YcyA6UmWlRQsSZiNOmDF

DM25mOSuXPPPZ9777WXL1cZ1Ds6SJCWrqdz2Puc9dv/tc5Zf4D/1mBmZGYJAPhFJ

Jeb3V/UxMyMAACnT59OrLW3blgTzCwuVmKx8ZTOubu6rnutqqq3nHOvWGtv+yTI

zxKbbpy+SCKiAwCw1t4EAL9s2zYcj8f/LIriKq31dmYOtNbH27b9RZqmr0+fVQBAiM

ib5ZgpGTMrRGREdGVZ7nDOPUlED50/f/6otfbEcDjcy8x10zRHmLlp2zbUWv/VWvv

npmkuR0SHiPxp/TETABHdqVOnLrHW/iEMw+f7vr/Ke99mWbZba72tbdsjWusrwzBc

XF9f/5v3vkLEvKqqoRDiKSL69erqaoaItBnAx0owlT221v5ECHFv27bnpJQ4mUyenZub

u7OqqkNRFF0uhPhy3/cvAYBOkuR259wRIkIAoPF4/GKapl9JkmQbAPxRSvkXmFEO

8ZHkChGZiH5kjLm7bdtR13XPAkAfBEEBAHIwGOxi5vPj8fiw1vqmMAx3dV13SAhx

qXPurHNuZX5+fr/3Pj937twSEf287/ubZ5XjE0sgpUzKsjxkrX1PCDGHiMDMjIijuq6X

ASAfDof3SCnfVUqtA4Aqy/LvQRAshmF4fdM0r0kpy7m5udsQkaWUM/tgVg+QUioR

QmgA8MxMiOiYOc3z/PtJkuwTQojRaPQ7AHg5juOdaZru6bru33VdL2dZ9jWl1I6maV

7w3sezkgMAqFlgRNQAgAMAREQgIgUAx5n5qPf+Xufcj7Ms2+O9v65pmv1a67NFUb

zqvV+dTCaHlVJJlmW3IOIcANgtKUBElCTJTkTMvPclAIBSaui9f11K+TYzcxiGDwsh

/qWU2ptl2WNN02TW2pe6rjud5/lPgyDYOZlMHvXenyCimSrMUsCGYZgBwMK0xkx

ElRAiBoBESimbpjkQx/GDbdu+E0XR4SiKdgKANMasSCmPO+dO5nl+HyLWRGS2C

qC896tlWT6Z5/m3lVJXRFHkmHnU9/3BMAz3x3H8WNM0Po7jg8wMiDgCgE5KWS

AiGWNOAsArSqlAax3OApjVhBYAtqdp+j1r7fGyLB8PgmBBSrlXCKGVUje2bftDIrq

GiJ723ncAsAsRryaiNQBAKWXsnKustW8jYrBVAOG9r8uyXJJSLg4Gg31VVS2VZXl

ESvmMtfb3g8HgESGEEkLcboxphRAHELFARD0dSAQASggRAoCfBTDzKxBCmDz

Pb7HWnrDWHkuS5AZENHVdL0spr+37/lVmdsaY/1hr/9H3/Vqe599lZo+IXgihiKhj5g4

AtqYAEdXMTKPR6AlmTtM0vbWu62N1Xb8VRdF3lFItACw659rJZPJEEAQ78jz/lvc+

mHoC75w7MxgMrgvDcJ+19uwsgFmzQBDRAWb+Wdu2J5umWcmy7BtCCC2EKJi5

49

m0wmzwVBsD2Komv7vl+21o6zLPvB2trawfn5+TuIqNdaj5j5/iAInpk26sdmwaZ+YGVl

JV5YWLjPe38zM4OU8soLFy4sBUFQpGm62xhzrOu6l5Mk+ab3/ktKqSEzT7TWIRH9J

gzDPwEATH/ln02BDUrID0ZpXdeXaa3vd859HQAK7/2F9fX1paIotgkhrqmq6g1ElHme

71ZKPXzmzJnfLi4uNh+oudlI3pIj6vv+q1LKB4wxl0kpL6mq6o2+7+uiKHZEUXTUGP

OrOI7f+egBPndMLfiHX4y1dr+19vm6rt80xiwbY/Zs2Ku24gm3CvKhOZ1CXb9hbUtm9

POCyA3XeNHs+KdAfDGJ/x//c/E+UtZMFgQphQQAAAAASUVORK5CYII=" />

 <link rel="icon" type="image/png" sizes="64x64"

href="/assets/favicon_64x64.6eff8989.png" />

 <meta name="viewport" content="width=device-width, initial-scale=1.0" />

 <title>Crypt</title>

 <script type="module" crossorigin src="/assets/index.868fe0d9.js"></script>

 <link rel="modulepreload" href="/assets/react.b73aa22c.js">

 <link rel="modulepreload" href="/assets/icons.fb5dddf4.js">

 <link rel="stylesheet" href="/assets/index.fca65e40.css">

 </head>

 <body>

 <div id="root"></div>

 </body>

</html>

Index.css

 /* General Styles */

body {

 font-family: sans-serif;

 line-height: 1.5;

 background-color: #f3f4f6;

 color: #1f2937;

 padding: 1rem;

}

/* Container */

.container {

 max-width: 1200px;

 margin: 0 auto;

 padding: 1rem;

}

/* Flexbox Utilities */

.flex {

50

 display: flex;

}

.flex-col {

 flex-direction: column;

}

.items-center {

 align-items: center;

}

.justify-center {

 justify-content: center;

}

/* Grid */

.grid {

 display: grid;

}

.grid-cols-2 {

 grid-template-columns: repeat(2, 1fr);

}

.grid-cols-3 {

 grid-template-columns: repeat(3, 1fr);

}

/* Spacing */

.p-4 {

 padding: 1rem;

}

.m-4 {

 margin: 1rem;

}

/* Typography */

.text-xl {

 font-size: 1.25rem;

}

.text-2xl {

 font-size: 1.5rem;

}

.text-gray-700 {

 color: #4b5563;

}

.text-white {

 color: #ffffff;

51

}

/* Background Colors */

.bg-blue-500 {

 background-color: #3b82f6;

}

.bg-gray-200 {

 background-color: #e5e7eb;

}

/* Buttons */

.button {

 display: inline-block;

 padding: 0.75rem 1.5rem;

 border-radius: 0.375rem;

 text-align: center;

 cursor: pointer;

}

.button-primary {

 background-color: #3b82f6;

 color: white;

}

.button-secondary {

 background-color: #6b7280;

 color: white;

}

/* Rounded Corners */

.rounded {

 border-radius: 0.375rem;

}

.rounded-lg {

 border-radius: 0.5rem;

}

/* Shadows */

.shadow {

 box-shadow: 0 1px 3px rgba(0, 0, 0, 0.1);

}

.shadow-lg {

 box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);

}

52

10. RESULTS AND DISCUSSION

10.1 Implementation description

This implementation of machine learning models for predicting CO2 emissions, accompanied

This section describes the implementation of the CRYPT Web 3.0 blockchain payment

network. The system utilizes blockchain technology for decentralized transactions, ensuring

security, transparency, and efficiency. Below is a detailed explanation of each component:

• Importing Libraries:

• ethers.js – For interacting with Ethereum blockchain and smart contracts.

• web3.js – To enable communication with Ethereum nodes.

• React & Tailwind CSS – For frontend development and UI/UX enhancement.

• Solidity – To develop the smart contract for secure transactions.

• Hardhat – For testing, debugging, and deploying smart contracts.

• Alchemy API – To connect to the Ethereum Sepolia network. Node.js and Vite:

The project is developed using React with Vite for a faster frontend build process.

Setting Up the Environment:

Node.js and Vite: The project is developed using React with Vite for a faster frontend

build process.

Solidity Compiler: Smart contracts are compiled using the Solidity programming

language.

MetaMask Integration: Users connect their wallets using the MetaMask extension.

Smart Contract Development:

• Contract Deployment: The smart contract is deployed on the Sepolia test

network.

• Contract Functions: The contract includes functions to send transactions,

retrieve balances, and maintain transaction logs.

• Security Measures: Implements reentrancy guards and access control

mechanisms to prevent unauthorized access.

53

Frontend Implementation:

• Wallet Connection: Users can connect their MetaMask wallet to initiate transactions.

• Transaction Submission: A user inputs the recipient’s wallet address and the amount

to be sent, which is then processed on the blockchain.

• Loading Indicators: A UI element displays transaction status updates in real time.

• Transaction History: Users can view their latest transactions, including timestamps

and status confirmations.

Testing and Debugging:

• Unit Testing: Smart contract functions are tested using Hardhat.

• Frontend Testing: UI responsiveness and wallet integration are tested in multiple

browsers.

• Blockchain Transaction Monitoring: Transactions are monitored on Etherscan to

ensure accuracy.

10.2 Data Format in Crypt

Unlike traditional machine learning projects, CRYPT operates on blockchain transactions

instead of structured datasets. However, the system maintains transaction records and logs,

which are structured as follows:

Blockchain Transaction Data:

Each transaction record contains:

• Transaction Hash: A unique identifier for the blockchain transaction.

• Sender Address: The Ethereum address of the transaction initiator.

• Receiver Address: The recipient’s Ethereum wallet address.

• Transaction Amount: The amount of cryptocurrency transferred.

• Gas Fees: The fee paid for processing the transaction.

• Timestamp: The exact time when the transaction was executed.

• Status: Indicates whether the transaction was successful, pending, or failed.

54

Data Flow in CRYPT:

1. User Input: Sender enters recipient address and transaction amount.

2. Validation: The system checks if MetaMask is connected and verifies input values.

3. Transaction Execution: The transaction is signed and sent to the Ethereum blockchain.

4. Confirmation: The system updates the status and displays confirmation details.

Summary of Transactions:

• The system logs every successful transaction on the Ethereum blockchain.

• Failed transactions are recorded with error messages for debugging.

• Users can retrieve their past transactions using the transaction history feature.

Results and description

• Figure 1 demonstrates the process of logging in via Google authentication and

connecting to the MetaMask wallet. This step ensures that users are securely

authenticated before initiating transactions within the CRYPT decentralized payment

network.

• Figure 2 illustrates the step-by-step transaction flow, showing how a user enters the

recipient's wallet address, specifies the amount, and submits the transaction. The

figure also depicts how the system validates the transaction, interacts with the

blockchain, and provides a confirmation message upon completion.

• Figure 3 presents summary statistics of transactions, including details such as the total

number of successful and failed transactions, average transaction amount, gas fees,

and processing time. These insights help evaluate the efficiency and reliability of the

CRYPT payment system.

55

Fig 10.1: Demonstrates user authentication via Google login.

Fig 10.1.1: Demonstrates user authentication MetaMask wallet for blockchain

transactions.

56

Figure 10.2: Showcases the transaction initiation process, where users enter

recipient details and transaction amounts before submitting on the blockchain.

Fig 10.3: Displays the Latest transaction Data.

57

Figure 10.3.1: Displays the transaction confirmation screen, showing the

transaction hash, status, and other relevant details after a successful blockchain

transaction.

58

11. CONCLUSION AND FUTURE SCOPE

CONCLUSION

In conclusion, the development of the CRYPT decentralized payment network has

demonstrated the potential of blockchain technology in facilitating secure, transparent, and

efficient financial transactions. By leveraging smart contracts on the Ethereum blockchain, this

system eliminates the need for intermediaries, ensuring trustless and tamper-proof transactions.

The seamless integration with MetaMask allows users to interact with the blockchain

effortlessly, while features such as transaction history tracking and real-time confirmations

enhance the overall user experience. This project highlights the transformative power of Web

3.0 in financial applications and sets the foundation for further advancements in decentralized

payment systems.

Future Scope

Looking ahead, the scope for expanding CRYPT is extensive. Future enhancements could

include multi-chain support, enabling transactions across different blockchain networks for

improved interoperability. Implementing layer-2 scaling solutions, such as rollups or

sidechains, could further reduce transaction costs and improve scalability. Additionally,

integrating advanced security features, such as fraud detection mechanisms and biometric

authentication, would enhance the system’s robustness. Another promising avenue is the

incorporation of decentralized identity verification (DID) to strengthen user authentication

without compromising privacy. Furthermore, collaboration with fintech platforms and

decentralized finance (DeFi) ecosystems could position CRYPT as a key player in the next-

generation digital economy. Ultimately, the ongoing evolution of blockchain technology will

continue to provide opportunities for innovation, making decentralized financial systems more

accessible and efficient for users worldwide.

59

References

[1] Arikumar K. S., Deepak Kumar A., Gowtham C., Sahaya Beni Prathiba. "Decentralized

Loan Management Application Using Smart Contracts on Blockchain." St. Joseph's Institute

of Technology, Chennai, India, and MIT Campus, Anna University, Chennai, India. Available

at: https://ebooks.iospress.nl/pdf/doi/10.3233/APC210020

[2] Sridhar Sathyanarayan. "Blockchain Solutions for Mortgage Loan Origination." Managing

Consultant, Product Banking Practice, Wipro Ltd. Available at:

https://www.wipro.com/content/dam/nexus/en/industries/banking/latest-thinking/blockchain-

solutions-for-mortgage-loan-origination.pdf

[3] I. Karamitsos, M. Papadaki, N. B. Al Barghuthi. "Blockchain Smart Contracts:

Applications, Challenges, and Future Trends." International Journal of Computer Applications,

2019.

[4] Megha Ravindranath. "Legality of Blockchain and Smart Contracts in India." Journal of

Intellectual Property Rights, vol. 23, pp. 213-221, 2018.

[5] Peng Li. "Secure Balance Planning of Off-blockchain Payment Channel Networks." The

University of Aizu, Japan, 2020.

[6] Hamed Amini, Maxim Bichuch, Zachary Feinstein. "Decentralized Payment Clearing using

Blockchain and Optimal Bidding." arXiv preprint arXiv:2109.00446, 2021. Available at:

https://arxiv.org/abs/2109.00446

[7] Huapeng Li, Baocheng Wang. "PRETRUST: A Framework for Fast Payments in

Blockchain Systems." arXiv preprint arXiv:2204.13827, 2022. Available at:

https://arxiv.org/abs/2204.13827

[8] Shlok Dubey. "Blockchain-based Payment Systems: A Bibliometric & Network Analysis."

arXiv preprint arXiv:2212.03790, 2022. Available at: https://arxiv.org/abs/2212.03790

[9] Yuan Liu, Shuai Sun, Zhengpeng Ai, Shuangfeng Zhang, Zelei Liu, Han Yu. "FedCoin: A

https://ebooks.iospress.nl/pdf/doi/10.3233/APC210020
https://www.wipro.com/content/dam/nexus/en/industries/banking/latest-thinking/blockchain-solutions-for-mortgage-loan-origination.pdf
https://www.wipro.com/content/dam/nexus/en/industries/banking/latest-thinking/blockchain-solutions-for-mortgage-loan-origination.pdf
https://arxiv.org/abs/2109.00446
https://arxiv.org/abs/2204.13827
https://arxiv.org/abs/2212.03790

60

Peer-to-Peer Payment System for Federated Learning." arXiv preprint arXiv:2002.11711,

2020. Available at: https://arxiv.org/abs/2002.11711

[10] Zach Pandl, Isabel Rosenberg. "Opportunities and Risks in Decentralized Finance." 2021.

[11] Ziqiao Ao, Lin William Cong, Gergely Horvath, Luyao Zhang. "Is Decentralized Finance

Actually Decentralized? A Social Network Analysis of the Aave Protocol on the Ethereum

Blockchain." arXiv preprint arXiv:2202.00906, 2022. Available at:

https://arxiv.org/abs/2202.00906

[12] Bank for International Settlements. "Project mBridge: Connecting Economies through

CBDC." 2022. Available at: https://www.bis.org/publ/othp59.pdf

[13] Lewis Gudgeon, Sam Werner, Daniel Perez, William J. Knottenbelt. "DeFi Protocols for

Loanable Funds: Interest Rates, Liquidity and Market Efficiency." Proceedings of the 2nd

ACM Conference on Advances in Financial Technologies, 2020.

[14] Alfred Lehar, Christine A. Parlour. "Systemic Fragility in Decentralized Markets." SSRN

Electronic Journal, 2022.

[15] Lioba Heimbach, Eric Schertenleib, Roger Wattenhofer. "An Empirical Study of

Liquidity and Volatility in Decentralized Financial Markets." Lecture Notes in Computer

Science, Springer Nature Switzerland, 2023

https://arxiv.org/abs/2002.11711
https://arxiv.org/abs/2202.00906
https://www.bis.org/publ/othp59.pdf

61

\

