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ABSTRACT 
 

The increasing sophistication of digital image manipulation, ensuring image authenticity has 

become a critical challenge in fields such as journalism, forensics, and cybersecurity. This study 

presents a hybrid image forgery detection system that integrates Convolutional Neural Networks 

(CNNs) and Generative Adversarial Networks (GANs) to effectively identify copy-move and 

splicing forgeries. The proposed approach is divided into two main stages. First, VGG16, a pre-

trained CNN model, is utilized for feature extraction, allowing the system to capture intricate 

image details and detect subtle inconsistencies indicative of tampering. By analyzing features such 

as texture, edges, and spatial correlations, the model learns to differentiate between authentic and 

manipulated images. In the second stage, a GAN-based framework is implemented to enhance the 

detection process. The generator produces highly realistic forged images, augmenting the dataset 

to improve the model’s generalization ability. The discriminator, trained alongside the generator, 

is then fine-tuned as a classifier to differentiate between real and forged images. This adversarial 

training strategy enables the system to adapt to evolving forgery techniques and improve detection 

accuracy. The model is trained and tested on the CoMoFoD dataset (Copy-Move Forgery 

Detection), which contains a diverse collection of real and manipulated images. Experimental 

results demonstrate that the hybrid CNN-GAN approach significantly improves the accuracy of 

forgery detection, exhibiting high adaptability to variations in lighting conditions, resolution, and 

image quality. By integrating deep learning techniques, this study contributes to the advancement 

of digital forensics by providing a scalable, flexible, and efficient solution for automated image 

forgery detection. The proposed system enhances image integrity verification and supports efforts 

to combat misinformation in the digital era. 

. 
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     1. INTRODUCTION 

 

1.1 Overview 

In the digital era, images play a crucial role in communication, journalism security, and 

social media. However, with advancements in image editing tools, digital images are increasingly 

susceptible to manipulation. Image forgery, including splicing and copy-move alterations, has 

raised significant concerns regarding the authenticity of visual content. Splicing involves 

combining elements from different images to create a new, often deceptive image, while copy-

move forgery duplicates sections within the same image to hide or alter information. 

                                                

                                                         

Fig:1.1 (a)real image (b) forged-image (example of copy-move) 

(c) forged image (example of splicing),researchgate.net/figure/Examples-of Copy-move-and 

Splicing 

Copy-Move forgery refers to a kind of image alteration where a section of an image is 

duplicated and inserted back into the same image to conceal or replicate certain elements. As the 

duplicated area comes from the same image, it preserves comparable lighting, texture, and noise, 

which complicates detection. This method is frequently employed to eliminate undesirable items, 

replicate components, or deceive audiences by modifying the image's content. Nevertheless, 

identifying copy-move forgery becomes challenging when alterations like rotation, scaling, or 

blurring affect the duplicated area. Different techniques, such as block-based matching, feature-

https://www.researchgate.net/figure/Examples-of-Copy-move-and-Splicing-a-Genuine-image-b-Copy-move-image-c-Image-splicing_fig1_343637269
https://www.researchgate.net/figure/Examples-of-Copy-move-and-Splicing-a-Genuine-image-b-Copy-move-image-c-Image-splicing_fig1_343637269
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based strategies like SIFT (Scale-Invariant Feature Transform), and deep learning models, are used 

to detect these manipulations. Splicing forgery, conversely, entails merging elements from two or 

more distinct images to form one altered image. In contrast to copy-move forgery, splicing brings 

in outside elements, potentially causing discrepancies in lighting, shadows, and textures. This form 

of forgery is frequently utilized in misinformation, false news, and digital trickery, with individuals 

or items being placed into visuals where they were never present. Identifying splicing forgery 

depends on methods like Error Level Analysis (ELA), checks for shadows and lighting 

inconsistencies, and deep learning algorithms that examine unusual patterns in the image. 

Although splicing forgeries can be complex, inconsistencies in color mixing, perspective, and how 

objects interact frequently indicate manipulation. Generative Adversarial Networks (GANs) 

consist of two primary components: the generator and the discriminator, which work in an 

adversarial manner to improve the model's capability to detect forgeries. The generator is 

responsible for creating realistic fake images by learning the distribution of authentic images, 

making it harder for the discriminator to differentiate between real and fake data. Meanwhile, the 

discriminator acts as a classifier, distinguishing between authentic and generated images. As 

training progresses, both networks continuously improve—the generator learns to create more 

convincing forgeries, while the discriminator becomes more adept at identifying subtle 

inconsistencies. This adversarial learning process makes GANs highly effective in training robust 

forgery detection models by simulating various forgery scenarios and improving classification 

accuracy. 

The widespread use of manipulated images in media, legal cases, and forensic investigations 

has highlighted the necessity for robust detection mechanisms. Traditional approaches such as 

manual inspection and basic computational techniques struggle to keep up with sophisticated 

forgeries. As a result, the development of automated and intelligent detection techniques has 

become a critical area of research. With the emergence of machine learning and deep learning, 

methods such as Convolutional Neural Networks (CNNs) and Generative Adversarial Networks 

(GANs) have shown promise in detecting image forgery with high accuracy. This research 

proposes a hybrid model combining CNNs and GANs to enhance forgery detection, offering a 

more reliable and efficient solution  

1.2 Research Motivation 

The motivation for this research stems from the increasing threat posed by digital image 

manipulation across various sectors. In journalism, altered images can spread misinformation, 

affecting public opinion and credibility. In law enforcement, image forgery can interfere with 
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investigations and judicial decisions. In social media, doctored images contribute to the 

proliferation of fake news and cyber deception. Given these challenges, ensuring the authenticity 

of digital images is of paramount importance. Traditional detection methods rely on visual 

inspection and heuristic algorithms, which often fail when faced with sophisticated forgeries. 

Advanced forgeries employ techniques such as noise addition, blurring, and geometric 

transformations, making detection even more difficult. This necessitates the adoption of deep 

learning-based approaches that can automatically identify inconsistencies and irregularities in 

images. By integrating CNNs and GANs, this research aims to enhance the accuracy and 

robustness of forgery detection. CNNs effectively extract image features, while GANs generate 

realistic variations to train more resilient detection models. This hybrid approach not only 

improves detection rates but also adapts to emerging forgery techniques, making it a promising 

solution for ensuring image authenticity in digital forensics. 

1.3 Problem Statement 

The proliferation of image editing software has made image manipulation more accessible, 

leading to concerns over the authenticity and credibility of digital images. The ability to modify 

images has been exploited in various domains, including journalism, law enforcement, social 

media, and even scientific research. The primary challenges associated with image forgery 

detection include 

Increasing Sophistication of Image Manipulation: Modern image editing techniques allow for 

highly convincing forgeries that can deceive both human observers and traditional detection 

systems. 

Limitations of Conventional Detection Methods: Manual inspection and basic computational 

techniques are inadequate in identifying subtle modifications, especially in cases where image 

alterations involve complex transformations like rotation, scaling, and noise addition 

Adaptability to Emerging Forgery Techniques: The field of digital forensics requires 

continuous advancements in detection models to combat new and evolving methods of forgery. 

Need for an Automated and Scalable Approach: The demand for an intelligent system capable 

of detecting forgeries across vast datases with minimal human intervention is crucial for ensuring 

the credibility of digital images.This research addresses these challenges by proposing a hybrid 

model that combines CNNs and GANs to enhance the accuracy of image forgery detection. The 

model leverages CNNs for feature extraction and GANs for generating variations, ultimately 

improving robustness against sophisticated forgeries. 



4  

 

1.4 Applications 

The implementation of an effective image forgery detection system has significant 

implications across multiple industries. Some of the most critical applications include: 

Journalism and Media Verification: Ensuring the credibility of images used in news articles and 

reports by identifying manipulated visuals that could mislead the public. 

Law Enforcement and Digital Forensics: Aiding forensic experts and law enforcement agencies 

in verifying the authenticity of photographic evidence in criminal investigations. 

Social Media Content Moderation: Detecting and preventing the spread of fake images that 

contribute to misinformation, online fraud, and cyber deception. 

Medical Imaging and Healthcare: Identifying alterations in medical scans, X-rays, and other 

diagnostic images to prevent fraudulent claims and ensure accurate medical assessments. 

commerce and Product Authentication: Verifying product images to prevent misleading 

advertisements, counterfeit goods, and false marketing claims.  

Intellectual Property and Copyright Protection: Detecting unauthorized modifications to 

copyrighted images, ensuring the protection of digital content creators. 

Security and Surveillance: Verifying the authenticity of surveillance footage to support 

investigations, ensuring the reliability of evidence used in legal proceedings. 

Scientific Research and Academia: Detecting manipulated images in research publications to 

maintain the integrity of scientific findings.By providing an advanced and automated detection 

mechanism, this research contributes to enhancing digital trust, preventing fraudulent activities, 

and ensuring the authenticity of images in critical applications. The proposed hybrid approach 

combining CNNs and GANs aims to establish a more robust and reliable solution for detecting 

and mitigating image forgery in the digital landscape. 
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 2. LITERATURE SURVEY 

 

The identification of image forgeries has emerged as a crucial area of research due to the 

increasing sophistication of image manipulation techniques. As digital images are widely used in 

various fields, including journalism, forensic investigations, and social media, the need for robust 

image forgery detection mechanisms has become paramount. Researchers have explored multiple 

approaches, ranging from traditional machine learning techniques to state-of-the-art deep learning-

based methods, to effectively identify and classify forged images.Early research in image forgery 

detection primarily relied on traditional machine learning methods that focused on handcrafted 

feature extraction and classification techniques. These methods included statistical analysis, edge 

detection, and texture-based feature extraction, which were later processed using classifiers such 

as Support Vector Machines (SVM), Random Forests, and Decision Trees. A study by a research 

scholar [2] examined various machine learning algorithms for detecting fake images, showcasing 

their efficiency in identifying tampered regions. While these methods provided reasonable 

accuracy, their reliance on manual feature engineering limited their adaptability to diverse forgery 

types. 

Deep learning techniques have significantly improved the accuracy and efficiency of image 

forgery detection by automating feature extraction and classification. Dr. N. P. Nethravathi [1] 

introduced a deep neural network model that emphasizes the importance of feature extraction in 

distinguishing between authentic and counterfeit images. Similarly, research published in MDPI 

[3] proposed a deep learning-based digital image forgery detection system that enhances precision 

in recognizing manipulated images.The emergence of Convolutional Neural Networks (CNNs) 

has revolutionized the field of image forensics by providing robust frameworks for forgery 

detection. J. Malathi [5] developed a model that employs CNN-based feature extraction and 

classification techniques, showcasing their effectiveness in differentiating forged images from 

authentic ones. Additionally, a comprehensive review by Springer [7] explored various CNN 

architectures applied to image forgery detection, highlighting their advantages in identifying 

minute inconsistencies introduced during image manipulation. 

An extensive survey by IJITEE [6] assessed contemporary deep learning-based strategies 

for identifying image alterations. Research published in IRJET [8] demonstrated the use of CNN-

based models for practical forgery detection applications, emphasizing their ability to generalize 
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across different forgery types. IEEE Xplore [9] further contributed by conducting an in-depth study 

on CNN-based frameworks for detecting image forgeries. 

Generative Adversarial Networks (GANs) have introduced new challenges in image forgery 

detection, as they can generate highly realistic fake images. In response, researchers have 

investigated adversarial learning-based strategies to counter these threats. Inderscience Online [10] 

explored deep learning methods that leverage adversarial learning to detect altered images 

effectively. IEEE Xplore [11] provided insights into document image forgery detection using deep 

learning classification techniques, further expanding the scope of AI-driven forensic 

applications.AASM [12] examined deep learning-based classification methods for detecting 

forged images, demonstrating their benefits in forensic investigations. ArXiv [13] explored 

forensic analysis techniques utilizing advanced deep learning models to identify manipulated 

images with greater accuracy. Goebel et al. [14] specifically investigated the detection and 

localization of GAN-generated images, emphasizing their forensic implications.Takayuki Osakabe 

[15] proposed a CycleGAN-based counter-forensics approach to detect fake images while 

minimizing checkerboard artifacts, a common issue in GAN-generated images. Similarly, Sri 

Kalyan Yarlagadda [16] developed a technique for identifying and localizing tampered satellite 

images using GANs and one-class classifiers, highlighting the growing need for specialized 

forgery detection techniques in different domains. 

The literature reviewed highlights the evolution of image forgery detection methods from 

traditional machine learning approaches to deep learning and GAN-based techniques. The 

incorporation of artificial intelligence in digital forensics continues to enhance the accuracy and 

reliability of forgery detection, providing robust and scalable solutions for forensic investigations. 

As image manipulation techniques advance, further research is required to develop adaptive and 

efficient detection models capable of addressing emerging challenges in image forensics. 
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 3. EXISTING SYSTEM 

 

The detection of image forgeries has undergone significant evolution, progressing from 

traditional manual inspection methods to advanced deep learning techniques. While these 

advancements have improved accuracy and efficiency, existing systems still face various 

limitations that necessitate further improvements. 

3.1 Traditional Methods  

Historically, image forgery detection relied on manual inspection, where forensic experts 

analyzed images for inconsistencies in lighting, shadows, textures, and unnatural patterns. While 

human judgment provided valuable insights, it was highly subjective, time-consuming, and prone 

to errors due to fatigue and cognitive biases. The limitations of manual detection led to the 

development of algorithmic methods to assist forensic investigations.One such algorithmic 

technique is Error Level Analysis (ELA), which examines variations in compression levels across 

different regions of an image. Since digital images undergo compression, altered sections may 

exhibit inconsistencies compared to the original portions. ELA highlights these differences, 

making it easier to identify potential forgery. However, ELA struggles against high-quality 

forgeries, where modifications are subtle, and compression artifacts are minimal. Additionally, 

this method often produces false positives, making it less reliable for precise forgery detection. 

                                           

   Fig 3.1 Error level Analysis example. 

Another widely used approach is pixel-based copy-move forgery detection, which analyzes 

overlapping pixel blocks to identify duplicated regions within an image. Copy-move forgery is 
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one of the most common types of image manipulation, where a section of an image is copied and 

pasted elsewhere to hide or alter information. Traditional copy-move detection methods compare 

pixel intensity values and detect similarities. However, these methods fail when transformations 

such as scaling, rotation, or lighting adjustments are applied, as they alter the pixel properties, 

reducing detection accuracy. 

Additionally, statistical and frequency-domain approaches, such as Discrete Cosine 

Transform (DCT) and Wavelet Transforms, have been employed to detect manipulated images. 

These methods analyze the frequency components of an image to identify anomalies introduced 

during editing. While these techniques provide useful insights, they often fail to generalize well 

across different types of forgeries and are computationally expensive.The inefficiencies and 

limitations of traditional methods led to the adoption of machine learning techniques, which 

introduced automation and improved accuracy in forgery detection. 

3.2 Machine Learning-Based Approaches 

The introduction of machine learning (ML) techniques marked a significant shift in image 

forgery detection. Unlike traditional methods that relied on manually defined rules, ML-based 

approaches leverage data-driven feature extraction and classification models to identify forged 

images.Early ML-based methods used handcrafted features such as color histograms, texture 

descriptors (e.g., Local Binary Patterns), edge features (e.g., Canny edge detection), and statistical 

measures to extract meaningful information from images. These features were then fed into 

classification models such as Support Vector Machines (SVM), Decision Trees, Random Forests, 

and K-Nearest Neighbors (KNN) to differentiate between authentic and forged images.While these 

approaches improved detection accuracy compared to traditional methods, they had several 

drawbacks: 

Feature Dependency: The performance of these models heavily depended on the quality of  

handcrafted features. Poor feature selection could lead to inaccurate results. 

Computational Overhead: Extracting multiple features and training ML models required 

significant computational resources, making real-time forgery detection difficult. 

Lack of Adaptability: Handcrafted feature-based methods struggled with complex forgeries, such 

as those involving subtle texture modifications or sophisticated splicing techniques.As a result, 

researchers began exploring deep learning techniques to overcome these limitations and enhance 

the robustness of image forgery detection. 
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3.3 Deep Learning-Based Approaches 

Deep learning, particularly Convolutional Neural Networks (CNNs), revolutionized image 

analysis and forgery detection by enabling automatic feature extraction and classification. Unlike 

traditional machine learning methods, CNNs do not rely on manually defined features; instead, 

they learn hierarchical feature representations directly from raw image data.CNNs have been 

highly effective in detecting various forms of image forgeries, including splicing, copy-move, and 

inpainting-based alterations. Studies have shown that CNNs can achieve superior accuracy in 

identifying manipulated images compared to traditional ML models. Some key CNN architectures 

used for image forgery detection include VGG16, ResNet, and EfficientNet, which extract deep 

features from images and classify them as authentic or forged. 

                          

Fig :3.2 Resnet Architecture 

Despite their success, deep learning-based approaches face several challenges. 

Data Dependency: CNNs require vast amounts of labeled training data to generalize effectively. 

In cases where high-quality annotated datasets are limited, the performance of deep learning 

models suffers. 

Computational Complexity: Training deep learning models demands powerful hardware 

(GPUs/TPUs), making it difficult to deploy them on low-resource devices or real-time forensic 

applications. 

Vulnerability to Adversarial Attacks:CNN-based models can be tricked by adversarial images, 

where imperceptible modifications mislead the classifier into making incorrect predictions. This 

raises security concerns in forensic and legal applications. 
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Due to these challenges: Researchers have explored hybrid approaches that combine CNNs with 

adversarial learning techniques, such as Generative Adversarial Networks (GANs), to enhance 

forgery detection. 

3.4 Limitations of the Existing System 

Despite the advancements in image forgery detection, existing systems still have several 

limitations and challenges: 

High Dependence on Data: Both machine learning and deep learning models require large, well-

labeled datasets to achieve high accuracy. In forensic applications, obtaining such datasets is often 

difficult. 

Susceptibility to Transformations: Traditional methods fail when images undergo 

transformations like rotation, scaling, compression, or brightness changes, affecting detection 

accuracy. 

False Positives and False Negatives: Many forgery detection models struggle with balancing 

precision and recall, often misclassifying real images as fake or missing subtle forgeries. 

Computational Constraints: Deep learning models require significant processing power, making 

them impractical for real-time detection in low-resource environments. 

Adversarial Vulnerabilities: Sophisticated attacks can manipulate images in a way that evades 

detection, posing risks in security-sensitive applications such as digital forensics and law 

enforcement. 

Need for an Improved System 

To overcome these challenges, next-generation forgery detection models should integrate: 

Hybrid Techniques: Combining CNNs with GAN-based methods to improve detection accuracy 

and reduce false positives. 

Robust Feature Engineering: Utilizing multi-scale and frequency-domain features alongside 

deep learning to improve adaptability. 

Adversarial Defense Mechanisms: Developing models that are resistant to adversarial attacks by 

incorporating adversarial training and robust optimization techniques. 

Efficient Deployment Strategies: Optimizing deep learning models for real-time applications 

using lightweight architectures and model compression techniques. 
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4. PROPOSED METHODOLOGY 

 

The system we propose integrates two core components: VGG16, a Convolutional Neural 

Network (CNN) for feature extraction, and a Generative Adversarial Network (GAN) for data 

augmentation. By combining these advanced deep learning techniques, our system enhances the 

accuracy and robustness of image forgery detection. The model is designed to effectively identify 

both copy-move and splicing manipulations, two of the most common types of image tampering. 

 

Fig 4.1 : Block diagram of CNN-GAN(hybrid approach) 

4.1 VGG16 for Feature Extraction  

The first stage of our system utilizes VGG16, a deep learning model optimized for image 

analysis. VGG16 is a widely recognized CNN architecture known for its deep yet uniform 
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structure. It consists of multiple convolutional layers, followed by pooling layers and fully 

connected layers, all of which play a crucial role in systematically extracting features from images. 

By leveraging the hierarchical learning capabilities of CNNs, VGG16 ensures that our model can 

accurately differentiate between authentic and forged images. 

                   

Fig 4.2 : VGG-16 Architecture 

Convolutional Layers 

The convolutional layers of VGG16 are designed to apply multiple filters to input images, 

detecting essential patterns such as edges, textures, and shapes. These filters perform convolution 

operations, enabling the network to learn low-level features in the initial layers and gradually 

capture more complex patterns in deeper layers. As the depth of the network increases, the model 

builds hierarchical feature representations, which improve its ability to distinguish between 

authentic and manipulated images. 

Pooling Layers 

Pooling layers are positioned after convolutional layers to down-sample feature maps while 

preserving crucial information. These layers reduce the spatial dimensions of the feature maps, 

making the model computationally efficient and robust to variations such as scaling, translation, 

and rotation. Max pooling, the most commonly used pooling technique, selects the highest value 

from each receptive field, ensuring that significant features remain intact while redundant 

information is eliminated. 

Fully Connected Layers 

Once the feature maps have been extracted and down-sampled, they are flattened and passed 

through fully connected layers. These layers aggregate the extracted features and determine the 

probability that an image has been manipulated. The final output is a classification result indicating 

whether an image is real or forged. VGG16 undergoes supervised training on a dataset containing 
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both genuine and forged images, using optimization techniques such as backpropagation and 

gradient descent to fine-tune its weights and improve classification accuracy.By utilizing VGG16 

as a feature extractor, our system ensures that only the most relevant and informative features are 

used for classification, thereby enhancing the precision and reliability of image forgery detection. 

The extracted features are then passed to the next stage, where a GAN-based approach is employed 

for data augmentation and further strengthening the model’s detection capabilities. 

4.2 GAN’S Generator for Data Augmentation 

Deep learning models, including Convolutional Neural Networks (CNNs), typically require 

large-scale datasets to generalize well. However, in image forgery detection, datasets are often 

imbalanced or limited in diversity, making it challenging for traditional models to effectively learn 

the variations in forged images. To overcome this limitation, we employ Generative Adversarial 

Networks (GANs) for data augmentation. 

        

 Fig 4.3 : GAN Architecture 

GANs, introduced by Ian Goodfellow in 2014, consist of two neural networks—a Generator 

and a Discriminator that engage in a continuous adversarial process. This interplay results in the 

generation of increasingly realistic synthetic images, ultimately improving the generalization 

capability of the classifier. 

Generator: Creating Realistic Forged Image: 

The Generator network is responsible for synthesizing realistic forged images. It takes a 

random noise vector or an input image and applies splicing or copy-move manipulations to create 

forged samples that resemble real-world manipulated images. 

Key functions of the Generator: 

Mimicking real-world forgeries: It learns to replicate common manipulation techniques such as 

splicing, copy-move, and re-touching by transforming real images. 
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Diversity enhancement: By generating different types of forged images, it helps the detection 

model generalize to unseen cases. 

Adversarial improvement: Over successive training iterations, the generator refines its forgery 

techniques to fool the discriminator. 

4.3 Discriminator For Detecting Manipulations 

The Discriminator is a binary classifier that learns to differentiate between real and fake 

images. It plays a crucial role in refining the quality of generated forgeries by providing feedback 

to the Generator Key functions of the Discriminator: 

Forgery detection: It attempts to classify images as either authentic or manipulated. 

Adversarial training feedback: It continuously improves the Generator’s ability to produce 

realistic forgeries. 

Feature learning: By distinguishing between real and fake images, the Discriminator implicitly 

learns forgery patterns, strengthening its detection capability. 

Benefits of GAN-based Augmentation 

Addressing Data Scarcity: GAN-generated forgeries expand the dataset, helping VGG16 train 

on a wider variety of manipulated images. 

Reducing Overfitting: The additional training samples improve model generalization and prevent 

overfitting to a small set of training images. 

Enhancing Robustness: GANs ensure the model can handle real-world variations, including 

different image formats, compression artifacts, and complex manipulations. 

Self-improving System: The adversarial training dynamic ensures the constant refinement of both 

forged images and detection capabilities. 

Data Preparation and Preprocessing 

Preprocessing plays a critical role in ensuring that the dataset used for training is clean, 

structured, and optimized for deep learning models. Our system follows a structured pipeline to 

enhance the quality of input images and ensure they are ready for feature extraction and 

classification. 

Image Preprocessing Techniques 

Splitting: 
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  Fig 4.4: Data set Splitting 

Resizing and Normalization 

• All images are resized to 224×224 pixels to match the input dimension of VGG16. 

• Pixel values are normalized between 0 and 1 to ensure stable convergence during training. 

• Normalization helps in reducing bias and making the training process more efficient. 

Data Augmentation for Robustness 

To prevent overfitting and enhance diversity, the dataset is augmented using techniques like:  

1) Rotation (±15° to 30°): Helps in making the model invariant to orientation changes. 

2) Flipping (horizontal/vertical): Ensures robustness to different image alignments. 

3)  Gaussian Noise Addition: Helps the model handle real-world artifacts. 

Patch Extraction for Copy-Move Forgery Detection 

• Copy-move forgeries involve duplicating a region of an image and pasting it elsewhere. 

• We segment images into overlapping patches, enabling the model to focus on duplicated     

regions. 

• Feature matching techniques, such as SIFT (Scale-Invariant Feature Transform), are used 

to track duplicated areas. 
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Edge Detection and Masking for Splicing Detection 

• Splicing involves merging content from different images, leading to discontinuities at 

boundaries. 

• Sobel edge detection or Canny filtering is used to highlight forged boundaries. 

• Masking techniques further enhance boundary regions, improving feature extraction in 

tampered areas. 

Strategy for Training and Optimization 

To ensure the best performance, we employ multiple optimization strategies to enhance both 

training efficiency and model accuracy. 

Transfer Learning 

Instead of training VGG16 from scratch, we leverage pre-trained weights from ImageNet, 

fine-tuning the model on our dataset. This reduces training time and improves feature extraction 

for forgery detection. 

Joint Training of VGG16 and GAN 

1)The forged images generated by the GAN are continuously into VGG16 during training. 

2)This dynamic dataset expansion enhances VGG16’s ability to differentiate subtle 

manipulations. 

Adaptive Learning Rate and Optimizer Selection 

1) We use an adaptive learning rate scheduling technique called Reduce LR on Plateau, which 

lowers the learning rate when the validation accuracy plateaus, preventing overfitting. 

2) Adam optimizer is used for stable gradient updates. 

Regularization Techniques 

1) Batch Normalization ensures that feature distributions remain stable during training. 

2) Dropout layers (with 0.3–0.5 probability) are added to prevent overfitting. 

Fine-Tuning for Tampered Region Detection 

1) We introduce heatmap-based learning to focus attention on altered regions in an image. 

2) This makes the model more sensitive to subtle forgery patterns in spliced and copy-move 

manipulated images. 

4.4 Advantages of the Proposed System 
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Enhanced Forgery Detection Accuracy:The hybrid approach of CNNs and GANs improves 

detection performance by leveraging both feature extraction (VGG16) and synthetic data 

generation (GANs) for better model generalization. 

Robust Against Copy-Move and Splicing Attacks:Unlike traditional methods, the system is 

specifically designed to detect both copy-move and splicing forgeries, making it more versatile in 

real-world applications. 

Automated Feature Extraction:Using VGG16 eliminates the need for manual feature extraction, 

enabling faster and more efficient detection without human intervention. 

Improved Generalization with GANs:The data augmentation capability of GANs helps the 

model learn diverse forgery patterns, 

reducing overfitting and increasing reliability on unseen data. 

Efficient Classification with GAN Discriminator:The discriminator network from GANs, 

trained to distinguish real from fake images, serves as a powerful classifier, enhancing overall 

detection precision. 

Scalability and Adaptability:The system can be trained on different datasets, making it adaptable 

to various image forgery scenarios across domains like forensic analysis, media verification, and 

digital security. 

User-Friendly and Automated Detection:The model provides a simple image path input and 

outputs whether the image is forged or not, making it easy to integrate into practical applications. 
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 5. UML DIAGRAMS 

 

UML stands for Unified Modeling Language. UML is a standardized general-purpose 

modeling language in the field of object-oriented software engineering. The standard is managed, 

and was created by, the Object Management Group. The goal is for UML to become a common 

language for creating models of object-oriented computer software. In its current form UML is 

comprised of two major components: a Meta-model and a notation. In the future, some form of 

method or process may also be added to; or associated with, UML.The Unified Modeling 

Language is a standard language for specifying, Visualization, Constructing and documenting the 

artifacts of software system, as well as for business modeling and other non-software systems. The 

UML represents a collection of best engineering practices that have proven successful in the 

modeling of large and complex systems. The UML is a very important part of developing objects-

oriented software and the software development process. The UML uses mostly graphical notations 

to express the design of software projects. 

GOALS: The Primary goals in the design of the UML are as follows: 

Provide users a ready-to-use, expressive visual modeling Language so that they can develop 

and exchange meaningful models.Provide extendibility and specialization mechanisms to extend 

the core conceptsBe independent of particular programming languages and development 

process.Provide a formal basis for understanding the modeling language.Encourage the growth of  

tools market.Support higher level development concepts such as collaborations, frameworks, 

patterns and components.Integrate best practices. 

5.1 Class diagram 

The class diagram is used to refine the use case diagram and define a detailed design of the 

system. The class diagram classifies the actors defined in the use case diagram into a set of 

interrelated classes. The relationship or association between the classes can be either an "is-a" or 

"has-a" relationship. Each class in the class diagram may be capable of providing certain 

functionalities. These functionalities provided by the class are termed "methods" of the class. Apart 

from this, each class may have certain "attributes" that uniquely identify the class. 
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Fig  5.1 : Class Diagram of CNN-GAN(hybrid approach) 

5.2 Use case Diagram 

A use case diagram in the Unified Modeling Language (UML) is a type of behavioral 

diagram defined by and created from a Use-case analysis. Its purpose is to present a graphical 

overview of the functionality provided by a system in terms of actors, their goals (represented as 

use cases), and any dependencies between those use cases. The main purpose of a use case diagram 

is to show what system functions are performed for which actor. Roles of the actors in the system 

can be depicted. Sequence diagram 
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Fig 5.2 : Use Case diagram of CNN-GAN  

 

5.3 Sequence Diagram 

A sequence diagram in Unified Modeling Language (UML) is a kind of interaction diagram 

that shows how processes operate with one another and in what order. It is a construct of a Message 
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Sequence Chart. A sequence diagram shows, as parallel vertical lines ("lifelines"), different 

processes or objects that live simultaneously, and as horizontal arrows, the messages exchanged 

between them, in the order in which they occur. This allows the specification of simple runtime 

scenarios in a graphical manner. 

 

Fig 5.3: Sequence diagram of CNN-GAN 

 

5.4 Activity diagram 

Activity diagrams are graphical representations of Workflows ofstepwise activities and 

actions with support for choice, iteration, and concurrency. In the Unified Modeling Language, 
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activity diagrams can be used to describe the business and operational step-by-step workflows of 

components in a system. An activity diagram shows the overall flow control. 

 

                                          

                                              Fig 5.4: Activity diagram of CNN-GAN
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6. Software Environment    

   

6.1 What is Python? 

Below are some facts about Python. 

Python is currently the most widely used multi-purpose, high-level programming 

language. Python allows programming in Object-Oriented and Procedural paradigms. Python 

programs generallyare smaller than other programming languages like Java. 

Programmers have to type relatively less and indentation requirement of the language, makes them 

readable all the time. 

Python language is being used by almost all tech-giant companies like – Google, Amazon, 

Facebook, Instagram, Dropbox, Uber… etc 

The biggest strength of Python is huge collection of standard libraries which can be used for the 

following – 

1)Machine Learning 

2)GUI Applications (like Kivy, Tkinter, PyQt etc.) 

3)Web frameworks like Django (used by YouTube, Instagram, Dropbox) 

4)Image processing (like Opencv, Pillow) 

5)Web scraping (like Scrapy, BeautifulSoup, Selenium) 

6)Test frameworks 

7)Multimedia 

Advantages of Python 

Let’s see how Python dominates over other languages. 

Extensive Libraries: Python downloads with an extensive library and it contain code for 

various purposes like regular expressions, documentation-generation, unit-testing, web browsers, 

threading, databases, CGI, email, image manipulation, and more. So, we don’t have to write the 

complete code for that manually. 

Extensible: As we have seen earlier, Python can be extended to other languages. You can write 

some of your code in languages like C++ or C. This comes in handy, especially in projects 

Embeddable: Complimentary to extensibility, Python is embeddable as well. You can put your 

Python code in your source code of a different language, like C++. This lets us add scripting 

capabilities to our code in the other language. 
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Improved Productivity: The language’s simplicity and extensive libraries render programmers 

more productive than languages like Java and C++ do. Also, the fact that you need to write less 

and get more things done. 

IOT Opportunities: Since Python forms the basis of new platforms like Raspberry Pi, it finds the 

future bright for the Internet of Things. This is a way to connect the language with the real world. 

Simple and Easy: When working with Java, you may have to create a class to print ‘Hello World’. 

But in Python, just a print statement will do. It is also quite easy to learn, understand, and code. 

This is why when people pick up Python, they have a hard time adjusting to other more verbose 

languages like Java. 

Readable: Because it is not such a verbose language, reading Python is much like reading 

English. This is the reason why it is so easy to learn, understand, and code. It also does not need 

curly braces to define blocks, and indentation is mandatory. These further aids the readability of 

the code. 

Object-Oriented: This language supports both the procedural and object-oriented programming 

paradigms. While functions help us with code reusability, classes and objects let us model the 

real world. A class allows the encapsulation of data and functions into one. 

Free and Open-Source: Like we said earlier, Python is freely available. But not only can 

you download Python for free, but you can also download its source code, make changes 

to it, and even distribute it. It downloads with an extensive collection of libraries to help 

you with your tasks. 

Portable: When you code your project in a language like C++, you may need to make some 

changes to it if you want to run it on another platform. But it isn’t the same with Python. Here, you 

need to code only once, and you can run it anywhere. This is called Write Once Run Anywhere 

(WORA). However, you need to be careful enough not to include any system-dependent features. 

Interpreter: Lastly, we will say that it is an interpreted language. Since statements are executed 

one by one, debugging is easier than in compiled languages. 

Advantages of Python Over Other Languages 

 
Less Coding: Almost all of the tasks done in Python requires less coding when the same task is 

done in other languages. Python also has an awesome standard library support, so you don’t have 

to search for any third-party libraries to get your job done. This is the reason that many people 

suggest learning Python to beginners. 
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Affordable: Python is free therefore individuals, small companies or big organizations can 

leverage the free available resources to build applications. Python is popular and widely used so it 

gives you better community support. 

The 2019 Github annual survey showed us that Python has overtaken Java in the most popular 

programming language category. 

Python is for Everyone: Python code can run on any machine whether it is Linux, Mac or 

Windows. Programmers need to learn different languages for different jobs but with 

Python, you can professionally build web apps, perform data analysis and machine 

learning, automate things, do web scraping and also build games and powerful 

visualizations. It is an all-rounder programming language. 

Disadvantages of python 

So far, we’ve seen why Python is a great choice for your project. But if you choose it, you 

should be aware of its consequences as well. Let’s now see the downsides of choosing Python over 

another language. 

Speed Limitations: We have seen that Python code is executed line by line. But since Python is 

interpreted, it often results in slow execution. This, however, isn’t a problem unless speed is a focal 

point for the project. In other words, unless high speed is a requirement, the benefits offered by 

Python are enough to distract us from its speed limitations. 

Weak in Mobile Computing and Browsers: While it serves as an excellent server-side language, 

Python is much rarely seen on the client- side. Besides that, it is rarely ever used to implement 

smartphone-based applications. One such application is called Carbonnelle. 

The reason it is not so famous despite the existence of Brython is that it isn’t that secure. 

 

Design Restrictions: As you know, Python is dynamically-typed. This means that you don’t need 

to declare the type of variable while writing the code. It uses duck-typing. But wait, what’s that? 

Well, it just means that if it looks like a duck, it must be a duck. While this is easy on the 

programmers during coding, it can raise run-time errors. 

Underdeveloped Database Access Layers: Compared to more widely used technologies like 

JDBC (Java DataBase Connectivity) and ODBC (Open DataBase Connectivity), Python’s 

database access layers are a bit underdeveloped. Consequently, it is less often applied in huge 

enterprises. 

Simple: No, we’re not kidding.  

Python’s simplicity can indeed be a problem. Take my example. I don’t do Java, I’m more of a 
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Python person. To me, its syntax is so simple that the verbosity of Java code seems unnecessary. 

History of Python 

What do the alphabet and the programming language Python have in common? Right, both 

start with ABC. If we are talking about ABC in the Python context, it's clear that the programming 

language ABC is meant. ABC is a general-purpose programming language and programming 

environment, which had been developed in the Netherlands, Amsterdam, at the CWI (Centrum 

Wiskunde &Informatica). The greatest achievement of ABC was to influence the design of Python. 

Python was conceptualized in the late 1980s. Guido van Rossum worked that time in a project at 

the CWI, called Amoeba, a distributed operating system. In an interview with Bill Venners1, 

Guido van Rossum said: "In the early 1980s, I worked as an implementer on a team building a 

language called ABC at Centrum voor Wiskunde en Informatica (CWI). I don't know how well 

people know ABC's influence on Python. I try to mention ABC's influence because I'm indebted 

to everything I learned during that project and to the people who worked on it. "Later on in the 

same Interview, Guido van Rossum continued: "I remembered all my experience and some of my 

frustration with ABC. I decided to try to design a simple scripting language that possessed some 

of ABC's better properties, but without its problems. So, I started typing. I created a simple virtual 

machine, a simple parser, and a simple runtime. I made my own version of the various ABC parts 

that I liked. I created a basic syntax, used indentation for statement grouping instead of curly braces 

or begin-end blocks, and developed a small number of powerful data types: a hash table (or 

dictionary, as we call it), a list, strings, and numbers." 

Python Development Steps 
 

Guido Van Rossum published the first version of Python code (version 0.9.0) at alt. sources 

in February 1991. This release included already exception handling, functions, and the core data 

types of lists, dict, str and others. It was also object oriented and had a module system. Python 

version 1.0 was released in January 1994. The major new features included in this release were the 

functional programming tools lambda, map, filter and reduce, which Guido Van Rossum never 

liked. Six and a half years later in October 2000, Python 2.0 was introduced. This release included 

list comprehensions, a full garbage collector and it was supporting, unicode. Python flourished for 

another 8 years in the versions 2.x before the next major release as Python 3.0 (also known as 

"Python 3000" and "Py3K") was released. Python 3 is not backwards compatible with Python 2.x. 

The emphasis in Python 3 had been on the removal of duplicate programming constructs and 

modules, thus fulfilling or coming close to fulfilling the 13th law of the Zen of Python: "There 
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should be one -- and preferably only one -- obvious way to do it."Some changes in Python 7.3: 

Views and iterators instead of lists 

The rules for ordering comparisons have been simplified. E.g., a heterogeneous list cannot 

be  sorted, because all the elements of a list must be comparable to each other. 

There is only one integer type left, i.e., int. long is int as well. 

The division of two integers returns a float instead of an integer. "//" can be used to have the "old" 

behaviour. 

Text Vs. Data Instead of Unicode Vs. 8-bit 

Purpose 

We demonstrated that our approach enables successful segmentation of intra-retinal layers 

even with low-quality images containing speckle noise, low contrast, and different intensity ranges 

throughout—with the assistance of the ANIS feature. 

Python 

Python is an interpreted high-level programming language for general-purpose 

programming. Created by Guido van Rossum and first released in 1991, Python has a design 

philosophy that emphasizes code readability, notably using significant whitespace.Python features 

a dynamic type system and automatic memory management. It supports multiple programming 

paradigms, including object-oriented, imperative, functional and procedural, and has a large and 

comprehensive standard library. 

Python is Interpreted − Python is processed at runtime by the interpreter. You do not need 

to compile your program before executing it. This is similar to PERL and PHP. 

Python is Interactive − you can actually sit at a Python prompt and interact with the interpreter 

directly to write your programs.Python also acknowledges that speed of development is important. 

Readable and terse code is part of this, and so is access to powerful constructs that avoid tedious 

repetition of code. Maintainability also ties into this may be an all but useless metric, but it does 

say something about how much code you have to scan, read and/or understand to troubleshoot 

problems or tweak behaviors. This speed of development, the ease with which a programmer of 

other languages can pick up basic Python skills and the huge standard library is key to another area 

where Python excels. All its tools have been quick to implement, saved a lot of time, and several 

of them have later been patched and updated by people with no Python background - without 

breaking. 
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6.2 Modules Used In Project 

TensorFlow 

TensorFlow is a free and open-source software library for dataflow and differentiable 

programming across a range of tasks. It is a symbolic math library and is also used for machine 

learning applications such as neural networks. It is used for both research and production at 

Google. TensorFlow was developed by the Google Brain team for internal Google use. It was 

released under the Apache 2.0 open-source license on November 9, 2015. 

NumPy 

NumPy is a general-purpose array-processing package. It provides a high-performance 

multidimensional array object, and tools for working with these arrays. 

It is the fundamental package for scientific computing with Python. It contains various features 

including these important ones: 

A powerful N-dimensional array object 

Sophisticated (broadcasting) functions 

Tools for integrating C/C++ and Fortran code 

Useful linear algebra, Fourier transform, and random number capabilities 

Besides its obvious scientific uses, NumPy can also be used as an efficient multi-dimensional 

container of generic data. Arbitrary datatypes can be defined using NumPy which allows NumPy 

to seamlessly and speedily integrate with a wide variety of databases. 

Pandas 

Pandas is an open-source Python Library providing high-performance data manipulation 

and analysis tool using its powerful data structures. Python was majorly used for data munging and 

preparation. It had very little contribution towards data analysis. Pandas solved this problem. Using 

Pandas, we can accomplish five typical steps in the processing and analysis of data, regardless of 

the origin of data load, prepare, manipulate, model, and analyze. Python with Pandas is used in a 

wide range of fields including academic and commercial domains including finance, economics, 

Statistics, analytics, etc. 

Matplotlib 

Matplotlib is a Python 2D plotting library which produces publication quality figures in a 

variety of hardcopy formats and interactive environments across platforms. Matplotlib can be used 

in Python scripts, the Python and IPython shells, the Jupyter Notebook, web application servers, 

and four graphical user interface toolkits. Matplotlib tries to make easy things easy and hard things 

possible. You can generate plots, histograms, power spectra, bar charts, error charts, scatter plots, 
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etc., with just a few lines of code. For examples, see the sample plots and thumbnail gallery. 

For simple plotting the pyplot module provides a MATLAB-like interface, particularly when 

combined with IPython. For the power user, you have full control of line styles, font properties, 

axes properties, etc, via an object-oriented interface or via a set of functions familiar to MATLAB 

users. 

Scikit – learn 

Scikit-learn provides a range of supervised and unsupervised learning algorithms via a 

consistent interface in Python. It is licensed under a permissive simplified BSD license and is 

distributed under many Linux distributions, encouraging academic and commercial use. Python 

Python is an interpreted high-level programming language for general-purpose programming. 

Created by Guido van Rossum and first released in 1991, Python has a design philosophy that 

emphasizes code readability, notably using significant whitespace. 

Python features a dynamic type system and automatic memory management. It supports 

multiple programming paradigms, including object-oriented, imperative, functional and 

procedural, and has a large and comprehensive standard library. 

Python is Interpreted − Python is processed at runtime by the interpreter. You do not need to 

compile your program before executing it. This is similar to PERL and PHP. 

Python is Interactive − you can actually sit at a Python prompt and interact with the interpreter 

directly to write your programs. 

Python also acknowledges that speed of development is important. Readable and terse code 

is part of this, and so is access to powerful constructs that avoid tedious repetition of code. 

Maintainability also ties into this may be an all but useless metric, but it does say something about 

how much code you have to scan, read and/or understand to troubleshoot problems or tweak 

behaviors. This speed of development, the ease with which a programmer of other languages can 

pick up basic Python skills and the huge standard library is key to another area where Python 

excels. All its tools have been quick to implement, saved a lot of time, and several of them have 

later been patched and updated by people with no Python background - without breaking. 

Install Python Step-by-Step in Windows and Mac 

Python a versatile programming language doesn’t come pre-installed on your computer 

devices. Python was first released in the year 1991 and until today it is a very popular high- level 

programming language. Its style philosophy emphasizes code readability with its notable use of 

great whitespace.. 

How to Install Python on Windows and Mac 

There have been several updates in the Python version over the years. The question is how 
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to install Python? It might be confusing for the beginner who is willing to start learning Python 

but this tutorial will solve your query. The latest or the newest version of Python is version 

3.7.4 or in other words, it is Python 3. 

Note: The python version 3.7.4 cannot be used on Windows XP or earlier devices 

Before you start with the installation process of Python. First, you need to know about your 

System Requirements. Based on your system type i.e., operating system and based processor, you 

must download the python version. My system type is a Windows 64-bit operating system. So, the 

steps below are to install python version 3.7.4 on Windows 7 device or to install Python 3. 

Download the Python Cheatsheet here. The steps on how to install Python on Windows 10, 8 and 

7 are divided into 4 parts to help understand better. 

Before you start with the installation process of Python. First, you need to know about your 

System Requirements. Based on your system type i.e., operating system and based processor, you 

must download the python version. My system type is a Windows 64-bit operating system. So, the 

steps below are to install python version 3.7.4 on Windows 7 device or to install Python 3. 

Download the Python Cheatsheet here. The steps on how to install Python on Windows 10, 8 and 

7 are divided into 4 parts to help understand better. 

Download the Correct version into the system 

 

Step 1: Go to the official site to download and install python using Google Chrome or any other 

web browser. OR Click on the following link: https://www.python.org 

 

 

Now, check for the latest and the correct version for your operating 

system. 

Step 2: Click on the Download Tab. 

http://www.python.org/
http://www.python.org/


 
31 

 

 

 

 

 

Step 3: You can either select the Download Python for windows 3.7.4 button in Yellow Color or 

you can scroll further down and click on download with respective to their version. Here, we are 

downloading the most recent python version for windows 3.7.4 

 

 
Step 4: Scroll down the page until you find the Files option. 

 
Step 5: Here you see a different version of python along with the operating system. 



 
32 

 

 
 

• To download Windows 32-bit python, you can select any one from the three options: 

Windows x86 embeddable zip file, Windows x86 executable installer or Windows x86 

web-based installer. 

• To download Windows 64-bit python, you can select any one from the three options: 

Windows x86-64 embeddable zip file, Windows x86-64 executable installer or 

Windows x86-64 web-based installer. 

Here we will install Windows x86-64 web-based installer. Here your first part regarding 

which version of python is to be downloaded is completed. Now we move ahead with the second 

part in installing python i.e., Installation 

Note: To know the changes or updates that are made in the version you can click on the Release  

Installation of Python 

 

Step 1: Go to Download and Open the downloaded python version to carry out the installation 

process. 

 

 

Step 2: Before you click on Install Now, make sure to put a tick on Add Python 3.7 to PATH. 
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Step 3: Click on Install NOW After the installation is successful. Click on close. 

                
 

With these above three steps on python installation, you have successfully and correctly installed 

Python. Now is the time to verify the installation. 

Note: The installation process might take a couple of minutes. Verify the Python Installation 

Step 1: Click on Start 

 

Step 2: In the Windows Run Command, type “cmd”. 
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Step 3: Open the Command prompt option. 

 

Step 4: Let us test whether the python is correctly installed. Type python –V and press Enter. 

 

 
Step 5: You will get the answer as 3.7.4 

 
Note: If you have any of the earlier versions of Python already installed. You must first uninstall 

the earlier version and then install the new one. 

Check how the Python IDLE works Step 1: Click on Start 

Step 2: In the Windows Run command, type “python idle”. 
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Step 3: Click on IDLE (Python 3.7 64-bit) and launch the program 

 
Step 4: To go ahead with working in IDLE you must first save the file. Click on File >Click on 

Save 

 

 
Step 5: Name the file and save as type should be Python files. Click on SAVE. Here I have named 

the files as Hey World. 

Step 6: Now for e.g., enter print (“Hey World”) and Press Enter. 

 

You will see that the command given is launched. With this, we end our tutorial on how to 

install Python.  
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7. SOFTWARE REQUIREMENTS SPECIFICATIONS 

 

7.1 Software Requirements 

The functional requirements or the overall description documents include the product 

perspective and features, operating system and operating environment, graphics requirements, 

design constraints and user documentation. The appropriation of requirements and implementation 

constraints gives the general overview of the project in regard to what the areas of strength and 

deficit are and how to tackle them. 

• Python IDLE 3.7 version (or) 

• Anaconda 3.7 (or) 

• Jupiter (or) 

• Google colab 

7.2 Hardware Requirements 

Minimum hardware requirements are very dependent on the particular software being 

developed by a given Enthought Python / Canopy / VS Code user. Applications that need to store 

large arrays/objects in memory will require more RAM, whereas applications that need to perform 

numerous calculations or tasks more quickly will require a faster processor. 

Operating system :             Windows, Linux 

 
Processor : minimum intel i5 

 
Ram : minimum 4 GB 

 
Hard disk : minimum 250GB 
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8. FUNCTIONAL REQUIREMENTS 

 

8.1 Data Handling& Feature Extraction 

 
• The system must be able to load the CoMoFoD dataset from a specified directory. 

• It should preprocess the dataset, including resizing, normalization, and augmentation. 

• The dataset should be divided into training and testing sets, categorized as real and forged 

images. 

• The system should utilize VGG16 to extract features from input images. 

• The extracted features should be stored in a structured format for further processing. 

GAN-based Data Augmentation 

• The system should employ a Generative Adversarial Network (GAN) to generate synthetic 

forged and real images. 

• The GAN should consist of a generator and a discriminator, where the generator creates 

fake samples, and the discriminator classifies real vs. fake. 

Classification Model 

• The discriminator of the GAN should be fine-tuned to classify an image as forged or real. 

• A CNN-based classifier should be implemented for additional classification. 

• The model should be trained using appropriate loss functions and optimization algorithms. 

8.2  Model Training and Evaluation 

• The system should allow model training on the prepared dataset. 

• It should compute performance metrics such as accuracy, precision, recall, and F1-score. 

• The trained model should be tested on unseen data for validation. 

• The system should take an input image path from the user. 

• It should predict whether the given image is forged or real. 

• The output should be displayed in a clear text format (e.g., "The given image is forged" or 

"The given image is real"). 
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8.3   User Interaction and Input Handling 

• The system should be implemented as a Jupyter Notebook script for execution in an 

Anaconda environment. 

• It should allow users to input an image path for forgery detection. 

• The system should be optimized for limited computing resources (considering your 3rd 

gen HP i7 laptop). 

• The model training should be implemented in a step-by-step manner to avoid system 

crashes.
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9. SOURCE CODE 

 
A data set named Comofod is required for the model training purpose, which can be 

downloded from kaggle. 

 

#splitting the data set into test and train folders 

import os 

import shutil 

import random 

def split_dataset(source_dir, dest_dir, 

train_ratio=0.8): 

images = [f for f in os.listdir(source_dir) if 

f.endswith(('.jpg', 

'.png'))] 

 real_images = [f for f in images if '_O' in f or 

f.endswith('_O')] 

forged_images = [f for f in images if '_F' in f or 

f.endswith('_F')] 

random.shuffle(real_images) 

random.shuffle(forged_images) 

train_real, test_real = 

real_images[:int(len(real_images) * train_ratio)], 

real_images[int(len(real_images) *    train_ratio):] 

train_forged, test_forged = 

forged_images[:int(len(forged_images) * 

train_ratio)], forged_images[int(len(forged_images) 

* train_ratio):] 

for category, train_files, test_files in [('real', 

train_real, test_real), ('forged', train_forged, 

test_forged)]: 

os.makedirs(os.path.join(dest_dir, 'train', category), 

exist_ok=True) 

os.makedirs(os.path.join(dest_dir, 'test', category), 

exist_ok=True) 

for file in train_files: 
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shutil.copy(os.path.join(source_dir, file), 

os.path.join(dest_dir, 'train', category, file)) 

for file in test_files: 

shutil.copy(os.path.join(source_dir, file), 

os.path.join(dest_dir, 'test', category, file)) 

print("Dataset successfully split!") 

source_path = 

r"C:\Users\soudh\Downloads\CoMoFoD_small_v2" 

destination_path = 

r"C:\Users\soudh\Downloads\CoMoFoD_Split" 

split_dataset(source_path, destination_path) 

# vgg 16 model building and feature extraction of 

train_real , train_forged , saving them 

import os 

import numpy as np 

import tensorflow as tf 

from tensorflow.keras.applications import VGG16 

from tensorflow.keras.applications.vgg16 import 

preprocess_input 

from tensorflow.keras.preprocessing import image 

train_real_path = 

r"C:\Users\soudh\Downloads\CoMoFoD_Split\train

\real" 

train_real_features_path = 

r"C:\Users\soudh\Downloads\CoMoFoD_Split\train

\train_real_features" 

train_forged_path = 

r"C:\Users\soudh\Downloads\CoMoFoD_Split\train

\forged" 

train_forged_features_path = 

r"C:\Users\soudh\Downloads\CoMoFoD_Split\train

\train_forged_features" 

 

# Load VGG16 model (excluding the top 
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classification layer) 

vgg_model = VGG16(weights='imagenet', 

include_top=False) 

print("VGG16 model loaded successfully.") 

def extract_and_save_features(image_dir, save_dir, 

model): 

if not os.path.exists(save_dir): 

os.makedirs(save_dir) 

for img_name in os.listdir(image_dir): 

 img_path = os.path.join(image_dir, img_name) 

 # Load and preprocess image 

 img = image.load_img(img_path, target_size=(224, 

224))  # Resize to VGG16 input size 

img_array = image.img_to_array(img) 

img_array = np.expand_dims(img_array, axis=0) 

img_array = preprocess_input(img_array) 

 # Extract features 

features = model.predict(img_array) 

features = features.flatten()  # Flatten to 1D array 

# Save features 

feature_path = os.path.join(save_dir, 

img_name.split('.')[0] + '.npy') 

np.save(feature_path, features) 

print(f"Saved features for {img_name} in 

{save_dir}") 

# Extract and save features for real images 

extract_and_save_features(train_real_path, 

train_real_features_path, vgg_model) 

# Extract and save features for forged images 

extract_and_save_features(train_forged_path, 

train_forged_features_path, vgg_model) 

print("Feature extraction and saving completed.") 

#loading extracted features 

import os 
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import numpy as np 

import glob 

train_real_features_path = 

r"C:\Users\soudh\Downloads\CoMoFoD_Split\train

\train_real_features" 

train_forged_features_path = 

r"C:\Users\soudh\Downloads\CoMoFoD_Split\train

\train_forged_features" 

# Function to load saved features 

def load_saved_features(feature_dir): 

feature_files = glob.glob(os.path.join(feature_dir, 

"*.npy")) 

features = [np.load(f) for f in feature_files] 

return np.array(features) 

# Load extracted features 

real_features = 

load_saved_features(train_real_features_path) 

forged_features = 

load_saved_features(train_forged_features_path) 

# Normalize between -1 and 1 

real_features = (real_features - 

np.min(real_features)) / (np.max(real_features) - 

np.min(real_features)) * 2 - 1 

forged_features = (forged_features - 

np.min(forged_features)) / 

(np.max(forged_features) - 

np.min(forged_features)) * 2 - 1 

print(f"Loaded {real_features.shape[0]} real feature 

vectors and {forged_features.shape[0]} forged 

feature vectors.") 

#built and train gan’s generator model to generate 

fake features and save 

import tensorflow as tf 

from tensorflow.keras.models import Sequential 
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from tensorflow.keras.layers import Dense, 

LeakyReLU 

from tensorflow.keras.optimizers import Adam 

import numpy as np 

import os 

# Paths to save generated fake features 

fake_features_path = 

r"C:\Users\soudh\Downloads\CoMoFoD_Split\train

\fake_features" 

os.makedirs(fake_features_path, exist_ok=True)  # 

Create directory if not exists 

# GAN parameters 

latent_dim = 100  # Size of random noise vector 

feature_dim = forged_features.shape[1]  # Extracted 

feature size 

# Define Generator Model 

generator = Sequential([ 

Dense(128, input_dim=latent_dim), 

LeakyReLU(alpha=0.2), 

Dense(256), 

LeakyReLU(alpha=0.2), 

Dense(512), 

LeakyReLU(alpha=0.2), 

Dense(feature_dim, activation='tanh')  # Output: 

Fake feature vector]) 

# Compile Generator 

generator.compile(loss="binary_crossentropy", 

optimizer=Adam(0.0002, 0.5)) 

# Training Parameters 

epochs = 1000  # More training for better 

generalization 

batch_size = 32  # Generate 32 fake features per 

batch 

# Train the Generator 
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for epoch in range(epochs): 

 noise = np.random.normal(0, 1, (batch_size, 

latent_dim))  # Generate random noise 

generated_features = generator.predict(noise)  # 

Generate fake features 

# Save generated features every 20 epochs 

if epoch % 20 == 0: 

for i, feature in enumerate(generated_features): 

np.save(os.path.join(fake_features_path, 

f"fake_{epoch}_{i}.npy"), feature) 

print(f"Epoch {epoch}: Saved {batch_size} fake 

feature vectors.") 

print("   Fake feature generation complete. 

Features saved at:", fake_features_path) 

# loading all extrated features 

import os 

import numpy as np 

import glob 

# Paths to saved feature sets 

train_real_features_path = 

r"C:\Users\soudh\Downloads\CoMoFoD_Split\train

\train_real_features" 

train_forged_features_path = 

r"C:\Users\soudh\Downloads\CoMoFoD_Split\train

\train_forged_features" 

fake_features_path = 

r"C:\Users\soudh\Downloads\CoMoFoD_Split\train

\fake_features" 

# Function to load saved features 

def load_saved_features(feature_dir, label): 

feature_files = glob.glob(os.path.join(feature_dir, 

"*.npy")) 

features = np.array([np.load(f) for f in 

feature_files]) 
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labels = np.full((features.shape[0],), label)  # 

Assign label 

 return features, labels 

# Load features 

real_features, real_labels = 

load_saved_features(train_real_features_path, 0)  # 

Real = 0 

forged_features, forged_labels = 

load_saved_features(train_forged_features_path, 1)  

# Forged = 1 

fake_features, fake_labels = 

load_saved_features(fake_features_path, 1)  # Fake 

= 1 

# Combine all feature sets 

X_train = np.vstack((real_features, forged_features, 

fake_features)) 

y_train = np.hstack((real_labels, forged_labels, 

fake_labels)) 

# Shuffle dataset 

shuffle_indices = 

np.random.permutation(len(X_train)) 

X_train, y_train = X_train[shuffle_indices], 

y_train[shuffle_indices] 

print(f"   Data loaded: {X_train.shape[0]} 

samples") 

#create and compile discriminator model 

import tensorflow as tf 

from tensorflow.keras.models import Sequential 

from tensorflow.keras.layers import Dense, 

LeakyReLU 

from tensorflow.keras.optimizers import Adam 

# Define Discriminator Model 

discriminator = Sequential([ 

Dense(512, input_dim=X_train.shape[1]), 
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LeakyReLU(alpha=0.2), 

Dense(256), 

LeakyReLU(alpha=0.2), 

Dense(1, activation='sigmoid')  # Output: 0 (real) or 

1 (forged)]) 

# Compile Discriminator 

discriminator.compile(loss="binary_crossentropy", 

optimizer=Adam(0.0002, 0.5), metrics=['accuracy']) 

print("   Discriminator model created and 

compiled.") 

# Train Discriminator 

epochs = 50 

batch_size = 32 

history = discriminator.fit(X_train, y_train, 

epochs=epochs, batch_size=batch_size, 

shuffle=True) 

print("   Training complete.") 

# Save the trained model in the new Keras format 

discriminator.save(r"C:\Users\soudh\Downloads\Co

MoFoD_Split\train\discriminator_model.keras") 

print("   Model saved successfully in Keras 

format.") 

from tensorflow.keras.models import load_model 

# Load the discriminator without optimizer state 

discriminator = load_model( 

r"C:\Users\soudh\Downloads\CoMoFoD_Split\train

\discriminator_model.keras", 

compile=False  # This avoids the optimizer 

warning) 

print("   Discriminator model loaded successfully 

(without optimizer).") 

#loading vgg16 model 

from tensorflow.keras.applications import VGG16 

from tensorflow.keras.applications.vgg16 import 
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preprocess_input 

from tensorflow.keras.preprocessing import image 

import numpy as np 

# Load VGG16 for feature extraction 

vgg_model = VGG16(weights="imagenet", 

include_top=False) 

def extract_features(img_path): 

img = image.load_img(img_path, target_size=(224, 

224)) 

img_array = image.img_to_array(img) 

img_array = np.expand_dims(img_array, axis=0) 

img_array = preprocess_input(img_array) 

# Extract features using VGG16 

features = vgg_model.predict(img_array) 

return features.flatten()  # Flatten to match 

discriminator input shape 

print("   Feature extraction model (VGG16) 

loaded.") 

import tensorflow as tf 

# Convert feature extraction function to a 

tf.function 

@tf.function(reduce_retracing=True) 

def extract_features(img_path): 

img = tf.io.read_file(img_path) 

img = tf.image.decode_jpeg(img, channels=3) 

img = tf.image.resize(img, [224, 224]) 

img = 

tf.keras.applications.vgg16.preprocess_input(img) 

img = tf.expand_dims(img, axis=0) 

# Extract features using VGG16 

features = vgg_model(img, training=False) 

return tf.reshape(features, [-1])  # Flatten to match 

input shape 

#  Run predictions 
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new_image_path = 

r"C:\Users\soudh\Downloads\CoMoFoD_Split\train

\real\034_O_JC6.jpg" 

new_image_features = 

extract_features(new_image_path) 

# Reshape for model prediction 

new_image_features = 

tf.expand_dims(new_image_features, axis=0) 

# Predict using the trained discriminator 

prediction = 

discriminator.predict(new_image_features) 

label = "Forged" if prediction > 0.5 else "Real" 

print(f"   Prediction: The image is classified as 

{label}.") 

#Testing  

import os 

import numpy as np 

import random 

import tensorflow as tf 

# Paths to test images 

test_real_dir = 

r"C:\Users\soudh\Downloads\CoMoFoD_Split\test\

real" 

test_forged_dir = 

r"C:\Users\soudh\Downloads\CoMoFoD_Split\test\

forged" 

# Function to test on a few selected images 

def test_on_few_samples(real_count=3, 

forged_count=3): 

 # Select random real and forged images 

real_images = 

random.sample(os.listdir(test_real_dir), real_count) 

forged_images = 

random.sample(os.listdir(test_forged_dir), 
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forged_count) 

 test_images = [(os.path.join(test_real_dir, img), 

"Real") for img in real_images] + \ 

 [(os.path.join(test_forged_dir, img), "Forged") for 

img in forged_images] 

correct = 0 

total = len(test_images) 

for img_path, actual_label in test_images: 

 print(f"\n  Testing image: 

{os.path.basename(img_path)}") 

 # Extract features 

 features = extract_features(img_path) 

 features = tf.expand_dims(features, axis=0)  # 

Reshape for model input 

# Predict using the trained discriminator 

prediction = discriminator.predict(features) 

predicted_label = "Forged" if prediction > 0.5 else 

"Real" 

# Compare with true label 

if predicted_label == actual_label: 

correct += 1 

print(f"   Prediction: {predicted_label} (Actual: 

{actual_label})") 

accuracy = (correct / total) * 100 

print(f"\n  Accuracy on selected images: 

{accuracy:.2f}% ({correct}/{total} correct)") 

# Test on a few images 

test_on_few_samples(real_count=100, 

forged_count=100) 
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10. RESULTS AND DISCUSSIONS 

 

Introduction 

This chapter presents the results obtained from the proposed hybrid approach for image 

forgery detection. The performance of the model is evaluated using standard classification metrics 

such as accuracy, precision, recall, and F1-score, along with a confusion matrix to visualize the 

classification results. The discussion includes an analysis of the model's performance, key 

observations, challenges faced, and potential future improvements. 

10.1 Model Performance Evaluation 

To evaluate the trained model, a subset of 100 test images (50 real and 50 forged) from the 

CoMoFoD dataset was used. The classification results were recorded, and performance metrics 

were calculated. 

Upon execution, the model outputs the classification result for each test image in the format: 

 

                         

                                                   Fig 10.1 : Input image example 

 

                       Output: 

1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 150ms/step 

✅ Prediction: The image is classified as Real. 



 
51 

Web Application Interface 

The interface of the developed web application consists of a minimalistic design with the 

following key components: 

• A "Select Image" button that allows users to upload an image for verification. 

• The selected image is displayed on the screen for reference. 

• The system processes the image using the trained model and displays the classification 

result below the image. 

Example Results 

To demonstrate the effectiveness of the system, two example test cases are shown: 

Case 1: Real Image 

The following screenshot illustrates the output when a real (authentic) image is selected: 

                  

 

Fig 10.2 : Screenshot of Results for Real Image 

 

The model successfully classifies the image as Real, indicating that no forgery is detected. 

Case 2: Forged Image 

The following screenshot shows the result when a forged image is selected:  
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  Fig 10.3: Screenshot of Results For Forged Image 

   

The model correctly identifies the image as Forged, indicating the presence of tampering or 

modification. 

After classifying all test images, the final performance metrics are displayed in a structured table 

format for clarity. 

Performance Metrics Table 

The performance of the model is quantified using four key metrics: 

• Accuracy: Measures the overall correctness of the model. 

• Precision: Indicates how many of the predicted forged images were actually forged. 

• Recall: Measures how well the model identifies forged images from the dataset. 

• F1-Score: Provides a balance between precision and recall. 

Model Performance Metrics 
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                                                  Fig 10.4: Performance Metrics 

 

The higher the values of precision, recall, and F1-score, the more effective the model is at 

detecting image forgeries. 

Confusion Matrix: 

A confusion matrix is used to analyze the classification performance by displaying the 

number of correct and incorrect predictions. 

 

 

 

 

 

  

 

 

 

Here, 

• TP (True Positives): The number of correctly classified real images. 

 
Predicted Real Predicted Forged 

Actual Real TP (True Positives) FN (False Negatives) 

Actual Forged FP (False Positives) TN (True Negatives) 
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• TN (True Negatives): The number of correctly classified forged images. 

• FP (False Positives): Real images incorrectly classified as forged. 

• FN (False Negatives): Forged images incorrectly classified as real. 

           

 

                        Fig 10.5: Confusion Matrix 

10.2 COMPARISON OF DIFFERENT METHODS 

                                  

Fig 10.6 : Comparison of Different Methods 
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Discussion of Results 

The results indicate that the proposed hybrid CNN-GAN approach is highly effective for 

detecting forged images. The following key observations can be made: 

The performance of various forgery detection methods is evaluated using key metrics, including 

Accuracy, Precision, Recall, and F1-Score. The three approaches analyzed are: 

1.Traditional CNN Model 

This approach utilizes a Convolutional Neural Network (CNN) to classify images as real or 

forged. While CNNs are effective in feature extraction and pattern recognition, they may not be 

able to capture complex forgeries effectively. Some key observations from this model include: 

Achieves an accuracy of approximately 90%, indicating a fairly reliable but not optimal 

performance.Precision and recall values remain in the high 80s, showing that the model is 

moderately capable of distinguishing between real and forged images. 

Fails to generalize well for highly manipulated images, especially those involving sophisticated 

splicing techniques. 

2.Handcrafted Features Approach 

This method relies on manual feature extraction, such as edge detection, texture analysis, 

and statistical methods, to differentiate between real and forged images. However, it presents 

significant limitations: 

Accuracy drops to around 85% or lower, reflecting the inability of manually designed 

features to fully capture the intricacies of digital forgery.Precision, recall, and F1-score values are 

inconsistent, indicating poor robustness against advanced forgery techniques.The method is highly 

dependent on feature selection, meaning its performance can vary drastically across different 

datasets. 

2.Proposed CNN-GAN Model (Hybrid Approach) 

This model integrates CNNs with Generative Adversarial Networks (GANs) to enhance 

feature learning and improve classification performance. The CNN component extracts features, 

while the GAN component helps generate synthetic training samples, improving the model’s 

robustness. Key advantages include: 

• Achieves an accuracy close to 98-100%, significantly outperforming both previous 

approaches. 

• Recall reaches 100%, ensuring that no forged images are overlooked, making it highly 

reliable for real-world applications. 

• Precision and F1-score also remain high, indicating the model’s ability to reduce false 

positives and maintain balanced detection capabilities. 
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• The GAN component enhances feature learning, enabling the model to detect even subtle 

forgery artifacts, making it superior to traditional CNNs and handcrafted feature 

approaches. 

Model Strengths 

High Accuracy: The model achieves above 98% accuracy, demonstrating its ability to 

differentiate real and forged images effectively. 

 Robust Feature Extraction: The VGG16-based feature extraction ensures meaningful features 

are extracted before classification. 

 GAN-based Discriminator Efficiency: The discriminator correctly classifies most forged 

images, proving its effectiveness in identifying manipulated images. 

Limitations and Challenges 

• False Negatives (FN): Some forged images are classified as real due to subtle 

manipulations that are difficult to detect. 

• False Positives (FP): Some real images are misclassified as forged, which may be caused 

by lighting differences or compression artifacts. 

• Computational Constraints: The model’s reliance on deep learning and GANs makes it 

computationally demanding. Training on a low-end system may take considerable time, 

limiting real-time detection capabilities. 

 

 

Potential Improvements 

• Fine-tuning GAN Discriminator: Adjusting learning rates and training iterations could 

improve classification accuracy. 

• Ensemble Models: Combining CNN-GAN with other architectures (e.g., ResNet, 

EfficientNet) may enhance robustness. 

• Data Augmentation: Further augmentation techniques such as rotation, blurring, and 

noise addition can improve the model's ability to generalize to unseen manipulations. 

 

In this chapter, we analyzed the results obtained from the image forgery detection model. 

The performance metrics demonstrated that the proposed CNN-GAN hybrid approach is effective 

in classifying forged and real images. The confusion matrix analysis helped in understanding the 

classification strengths and weaknesses.
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11. CONCLUSION AND FUTURE SCOPE 

 

CONCLUSION 

This research introduces an innovative and effective method for detecting image forgery by 

combining VGG16, a Convolutional Neural Network (CNN) for extracting features, and 

Generative Adversarial Networks (GANs) for enhancing data. Conventional forgery detection 

techniques frequently face challenges in generalizing across various manipulation methods 

because they depend on manually crafted features. In comparison, our method utilizes the 

hierarchical feature extraction ability of VGG16, allowing accurate detection of splicing and copy-

move alterations, while GANs produce realistic forged images to improve the model’s resilience. 

This two-part system greatly enhances detection precision by presenting the detection model with 

adversarially created counterfeit images, thus increasing its resilience to advanced image 

modifications that may not be easily identified by traditional techniques. Through understanding 

deep spatial relationships and texture irregularities, the system successfully detects even minor 

distortions and changes in an image, guaranteeing high accuracy and dependability. Experimental 

assessments using the CoMoFoD dataset showcase the effectiveness of this method, attaining 

strong detection performance even in difficult scenarios like lighting changes, compression 

artifacts, and partial obstructions. The adversarial training approach utilized guarantees that the 

model consistently adjusts to new forgery methods, rendering it a crucial instrument for digital 

forensics, media validation, and security uses. Furthermore, incorporating adversarial learning 

improves model generalization, enabling it to identify both recognized and unrecognized types of 

manipulation, thus greatly bolstering the trustworthiness of digital authentication systems.     

Future improvements will concentrate on boosting computational efficiency to facilitate 

real-time forgery detection, rendering the system more viable for widespread use. Optimization 

methods like model pruning, quantization, and knowledge distillation can aid in lowering 

computational costs while maintaining accuracy. Moreover, broadening the training dataset to 

encompass a broader range of intricate forgery methods, including deepfake alterations, AI-created 

synthetic visuals, and multi-source image integration, will enhance the model's strength. 

Incorporating attention mechanisms, like Transformer-based architectures, may enhance the 

model’s capacity to concentrate on altered areas more efficiently, resulting in improved accuracy 

of forgery localization. Cross-domain adaptability is another focus area, enabling the system to be 

applied to medical imaging, legal document verification, forensic analysis, and satellite imagery 

evaluation, where maintaining image integrity is essential for decision-making.                                                      

Additionally, using self-supervised learning methods may decrease dependence on 



 
58 

extensive labeled datasets, enhancing the system's efficiency and scalability. Future developments 

might also investigate hybrid deep learning models that integrate CNNs, GANs, and transformer 

networks to improve the precision and resilience of forgery detection. Moreover, incorporating 

blockchain technology for secure image validation could offer an additional layer of tamper-

resistant authentication, rendering the system useful in cybersecurity, law enforcement, and digital 

media sectors. In conclusion, this research aids in the progress of automated image forgery 

detection, enhancing digital authentication methods and addressing the rising dangers of false 

information, online deception, and cybersecurity risks in an ever-evolving digital landscape. 

Through ongoing enhancement of this methodology, the suggested system establishes a solid base 

for future advancements in deep learning-driven forensic analysis, promoting a more reliable and 

secure digital environment for multiple uses. 

FUTURE SCOPE 

Future enhancements to this system may involve integrating advanced deep learning 

techniques, like attention mechanisms in CNNs, to improve feature extraction from altered areas. 

These mechanisms may assist the model in concentrating more effectively on altered regions, 

enhancing detection precision. Moreover, incorporating transformer-based models, particularly 

Vision Transformers (ViTs), may enhance the system's capability to assess long-range 

dependencies in images, thereby improving its effectiveness in detecting complex and subtle 

forgeries. Transformers are particularly adept at capturing global contextual details, which may 

greatly enhance the identification of subtle image alterations. Moreover, self-supervised learning 

methods may be investigated to lessen reliance on extensive labeled datasets, enabling the model 

to derive significant representations from unlabeled data. This would improve its flexibility in 

different fields, including forensic investigations, digital media verification, and scientific imaging 

evaluation. 

Expanding the dataset to include a broader range of authentic forgeries, such as adversarial 

attacks, synthetic image modifications, and multi-modal image evaluations (like thermal, 

hyperspectral, and infrared imagery), might greatly enhance the model’s resilience against various 

forgery methods. Moreover, improving GAN-centered training techniques to lower computational 

demand and memory usage would increase the system's scalability, enabling real-time 

implementation in resource-limited settings, like mobile devices and embedded AI systems. 

Another possible improvement is the incorporation of blockchain-supported digital watermarking 

methods, guaranteeing secure image verification and hindering tampering in legal and forensic 

contexts. Moreover, implementing the system as a cloud-based or edge AI solution would allow 

for smooth incorporation into digital forensic processes, supporting real-time and extensive 
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forgery identification. Subsequent studies might investigate hybrid deep learning models that 

merge CNNs, GANs, and Transformer architectures to create a more robust and flexible forgery 

detection system. These developments will guarantee that the system stays leading in image 

verification technologies,offering a safe and trustworthy method for identifying alterations in 

digital images across various sectors. 
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