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ABSTRACT  

The project "Image Steganography Using RSA Algorithm" integrates steganography with 

cryptographic encryption to provide a secure and efficient method for hiding sensitive information 

within digital images. In today’s digital era, where data security is a growing concern, this approach 

ensures confidentiality, integrity, and authenticity by combining two powerful security techniques. 

Steganography enables the covert embedding of data into images, making it visually undetectable, 

while RSA encryption ensures that even if the hidden data is extracted, it remains encrypted and 

unreadable without the appropriate decryption key.This web-based application allows users to encrypt 

messages, generate RSA key pairs, and securely embed encrypted data within images, making it highly 

suitable for applications such as secure communication, digital watermarking, confidential data 

transfer, and digital forensics. The encryption process ensures that the original message is first 

converted into ciphertext using RSA, and then embedded within an image using Least Significant Bit 

(LSB) steganography, ensuring that the message remains hidden and secure.For decryption, the 

recipient can upload the stego-image, extract the encrypted message, and decrypt it using their private 

RSA key. The use of asymmetric cryptography (RSA) adds an additional layer of security, ensuring 

that only authorized individuals with the private key can access the original data. The system also 

includes key generation and management features, enabling users to securely generate and store their 

RSA keys.Designed with a user-friendly interface, the platform provides a seamless experience for 

encryption and decryption, making it accessible to both technical and non-technical users. It can be 

utilized for covert communication, copyright protection, secure file transmission, military intelligence, 

and corporate data security. The integration of steganography and cryptography makes this project a 

robust, efficient, and practical solution for modern cybersecurity challenges, offering a highly secure 

method for transmitting confidential information while  maintaining the integrity of the original media 

file.   
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                                             1. Introduction  

1.1 Overview  

In today’s digital world, securing sensitive information is crucial due to the increasing risks of data 

breaches, cyber threats, and unauthorized access. Image Steganography using RSA Algorithm is a 

technique that enhances data security by combining two powerful methods—steganography and 

cryptography—to protect confidential information from unauthorized access.Steganography is the 

art of hiding information within digital media such as images, making it undetectable to 

unauthorized users. However, traditional steganography alone does not guarantee data 

confidentiality, as hidden data can still be extracted. To address this limitation, we integrate RSA 

encryption, a widely used asymmetric cryptographic algorithm, to ensure that even if the hidden 

data is retrieved, it remains secure and unreadable without the correct decryption key. 

This project follows a three-step process: 

Encryption – The user inputs a secret message, which is encrypted using the RSA algorithm, 

generating a secure ciphertext. 

Embedding – The encrypted message is hidden within an image using Least Significant Bit (LSB) 

steganography, ensuring minimal visual distortion. 

Extraction & Decryption – The recipient extracts the hidden encrypted data from the image and 

decrypts it using the RSA private key to retrieve the original message. 

Our system is implemented as a web-based application, making it user-friendly and accessible. It 

allows users to securely transmit messages, prevent data interception, and enhance information 

confidentiality. This technology finds applications in secure communication, digital watermarking, 

forensic investigations, and military intelligence. By combining steganography and RSA encryption, 

our project ensures that sensitive information remains both hidden and encrypted, offering robust 

protection against cyber threats. 

                          

This innovative approach provides a highly secure and reliable method for digital data protection, 

making it an ideal solution for applications requiring covert communication, digital rights 

management, and secure file transmission.   

3
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1.2 Research Motivation  

In the modern digital world, data security and privacy have become critical concerns due to the 

exponential growth of cyber threats, surveillance, and unauthorized access to sensitive 

information. Traditional methods of data encryption are effective in securing information,  

  

but they often attract attention because encrypted data appears unreadable to attackers. This makes 

encryption alone insufficient for covert communication, as the mere presence of ciphertext can 

raise suspicion and provoke attacks. 

To address this challenge, steganography—the art of hiding information within digital media—has 

emerged as a powerful technique for concealing sensitive data while maintaining a normal 

appearance. By embedding confidential information inside an image, an individual can securely 

transmit messages without raising suspicion. However, traditional steganographic methods are 

vulnerable to steganalysis, where attackers use advanced detection techniques to extract the 

hidden data. 

This project is motivated by the need to develop a highly secure communication system that 

integrates both steganography and cryptography for dual-layer security. The combination of Least 

Significant Bit (LSB) steganography and RSA encryption provides a robust security mechanism 

that ensures: 

Confidentiality – Even if hidden data is extracted from the image, it remains encrypted and 

unreadable without the correct decryption key. 

Data Integrity – RSA encryption ensures that messages remain intact and cannot be tampered 

with. 

Undetectability – The use of LSB steganography ensures that the image appears unchanged, 

preventing suspicion from attackers. 

 Growing Cyber Threats – Cyberattacks, data breaches, and surveillance are increasing, making 

secure communication essential. 

 Limitations of Traditional Encryption – Encrypted messages, even though secure, are easily   
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 Need for Covert Communication – Military, in2t elligence agencies, and journalists need 
 

untraceable ways to share sensitive information. 

1.3 Problem Statement  

The digital communication landscape faces a multifaceted challenge in securing sensitive 

information against increasingly sophisticated cyber threats. Despite advancements in 

encryption technologies, several critical issues remain unresolved in the domain of secure data 

transmission 

First, the fundamental vulnerability of encryption lies in its visibility – encrypted data, while 

unintelligible, signals the presence of potentially valuable information, making it a target for 

attacks. Even the most robust encryption algorithms cannot address this fundamental issue of 

encryption detectability, which can compromise sensitive communications in scenarios where 

confidentiality of the communication itself is crucial. 

Second, conventional cryptographic methods often operate in isolation, without 

complementary security layers, creating single points of failure. If an encryption key is 

compromised or a cryptographic algorithm is broken, the entire security system collapses, 

exposing all protected data. This reliance on a single security mechanism represents a 

significant vulnerability in current approaches to data protection. 

Third, as computational power continues to increase exponentially, traditional encryption 

methods face mounting challenges from brute force attacks and other cryptanalytic techniques. 

This escalating computational capability necessitates the development of more complex and 

multi-layered security approaches that can withstand advanced attacks and provide long-term 

protection for sensitive information. 

Fourth, the dynamic nature of digital threats requires security solutions that can adapt to 

evolving attack vectors without requiring frequent and disruptive system overhauls. Current 

encryption methodologies often lack this adaptability, requiring significant modifications or 

replacements when new vulnerabilities are discovered. 
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This research addresses these challenges by proposing a comprehensive security framework that 

combines RSA cryptography with advanced image steganography techniques. The primary research 

question is: How can the integration of RSA encryption with image steganography create a more 

robust and multilayered security system for protecting sensitive information in digital 

communications? By addressing this question, we aim to develop a solution that not only encrypts 

data effectively but also conceals its very existence, thereby providing a more comprehensive 

approach to data security in the digital age. 

1.4 Applications  

1. The integrated RSA-steganography system developed in this research offers versatile 

applications across numerous domains where information security is paramount. This 

dual-layer protection mechanism, combining the strengths of cryptographic encryption 

with concealment techniques, addresses a wide range of security challenges in 

contemporary digital environments. 

 

2. In the realm of military and intelligence operations, this technology provides a crucial 

capability for secure communication in hostile environments. Sensitive tactical 

information can be encrypted using RSA and embedded within ordinary images that 

appear innocuous to casual observers or automated surveillance systems. This allows 

field operatives to exchange critical intelligence without triggering detection 

mechanisms, maintaining operational security even under intense scrutiny. The system's 

ability to conceal not just the content but the very existence of communication offers a 

significant advantage in covert operations where traditional encrypted channels might 

draw unwanted attention. 

 

3. For corporate and financial institutions, the application of this technology extends to 

the protection of proprietary information and financial data. Sensitive business 

strategies, merger plans, or financial transactions can be secured using RSA encryption 

and concealed within routine business documents or images shared across networks. 

This approach provides an additional security layer beyond standard encryption, 

protecting valuable intellectual property and confidential financial information from 

industrial espionage and data breaches. The system's flexibility allows for integration 

with existing security infrastructures, enhancing overall data protection without 

requiring complete overhauls of established systems. 
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4. In healthcare settings, where patient confidentiality is legally mandated and ethically 

essential, this technology offers a robust solution for securing personal health 

information during transmission and storage. Medical images themselves can serve as 

carriers for encrypted patient data, creating a seamless and secure method for sharing 

sensitive health information between healthcare providers. This application is 

particularly valuable in telemedicine scenarios, where secure transmission of medical 

data across potentially vulnerable networks is a constant concern. 

 

5. The journalism and human rights sectors benefit from this technology's ability to protect 

sources and sensitive documentation in regions with restrictive information controls. 

Journalists operating in environments with heavy censorship or surveillance can use 

this system to transmit reports and evidence securely, embedding encrypted information 

within seemingly innocent digital content. This capability is crucial for protecting 

vulnerable sources and ensuring that critical information can traverse digital borders 

without interception or detection. 

 

6. For personal privacy, the system offers individuals a practical tool for securing private 

communications and personal data in an increasingly surveilled digital landscape. From 

securing personal financial information to protecting private conversations from 

unauthorized access, the RSA-steganography system provides a user-friendly approach 

to enhanced digital privacy that goes beyond standard encryption methods. 

 

7. Additionally, this technology holds significant potential for digital watermarking and 

copyright protection. Content creators can embed encrypted ownership information 

within their digital works, creating tamper-evident signatures that help protect 

intellectual property rights while remaining invisible to the casual observer. 

 

8. The system's implementation in Python, with its cross-platform compatibility and 

extensive library support, ensures that these applications can be realized across various 

operating systems and integrated into existing software ecosystems with minimal 

friction. This accessibility expands the potential user base and increases the practical 

utility of the technology across different sectors and technical environments. 
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2. Literature Survey  

Over the past decade, artificial intelligence (AI) has made remarkable contributions to various 

subdisciplines falling under the category of dentistry, specifically periodontology. Different 

studies have explored dental disease detection, localization, classification, and segmentation 

within the dental domain (e.g., [1]). However, few studies have explored dental disease 

localization as discussed in the literature. From the existing literature, several challenges are 

found regarding dental carious region localization. A comprehensive overview of existing 

studies is presented in Table 1. Further exploration is required to propose detection and 

localization approaches for dental caries diagnosis in real time.  

To classify enamel, dentin, and pulp caries, Oprea et al., proposed rule-based classification. 

The authors were able to categorize regions as dentin caries sized over 2 mm [9]. Another 

rulebased approach based on the gradient histogram and threshold was proposed by ALbahbah 

and fellow authors on panoramic radiographs to extract and segment decayed and normal teeth 

[10]. Lin et al., investigated the level segmentation method based using SVM (support vector 

machine), KNN (K nearest neighbor), and a Bayesian classifier for localizing alveolar bone 

loss [11]. Results show that the model can localize alveolar bone loss with higher classification 

accuracy. A cluster-based segmentation technique was proposed by Datta and Chaki to detect 

dental cavities in [12]. The proposed model utilized a Wiener filter to extract caries lesions 

followed by region segmentation to monitor the lesion size and growth. To detect and classify 

proximal carious and non-carious lesions on panoramic radiographs, Na’am et al., explored 

multiple morphological gradient-based image processing methods on images with manually 

cropped regions [13].Different deep learning approaches have been employed by researchers 

to pave way for more efficient and effective methods to diagnose dental caries. To classify 

carious and non-carious teeth on a small labeled dataset, a pre-trained CNN was utilized by 

Prajapati et al. [14]. The model was able to classify dental caries, periodontitis, and periapical 

infection. Lee et al. utilized a deep CNN to diagnose and classify caries using 3000 periapical 

radiographs [15]. The model achieved an AUC of 0.91 for premolar, 0.89 for molar, and 0.84 

for both premolar and molar models. For the identification of dental caries, Cantu et al., 

investigated U-Net on bitewing radiographs [16]. It was found that segmentation-based models 

possess the potential to aid dental clinicians in detecting and locating dental caries more 
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efficiently. For the identification of endo-perio lesions on periapical radiographs, Sajjad et al., 

investigated AlexNet, for which the model achieved an accuracy of 98% [17]. For early 

identification of dental caries, Kumari et al., preprocessed bitewing radiographic images using 

contrast limited adaptive histogram equalization (CLAHE) and noise filtering followed by a 

meta-heuristic based ResneXt RNN (recurrent neural network) [18].  

Radiological examinations help dental clinicians in the identification of teeth abnormalities, 

cysts, infections, and infections. However, manual examinations are time-consuming and rely 

solely on a specialist’s opinion which may bring differences in the diagnosis. Different methods 

have been employed by researchers in recent years mainly relying on boundary-based, 

regionbased [19], cluster-based, and threshold-based methods [11]. As the first step, Jader et 

al., employed an RCNN for the segmentation of caries and the detection of missing teeth on 

buccal images. The results indicated that deep learning-based instance segmentation has the 

potential to automate the process of caries detection and medical report generation [2].  

The faster region-based convolutional neural network (Faster-RCNN), which extends the 

FastRCNN is utilized to localize teeth lesions [5]. The model achieves both a recall and 

precision of above 90%, however, the model suffers in numbering the teeth in complicated 

cases. A Faster-RCNN built on the region proposal network (RPN) and object detection 

network (ODN) detected different types of teeth achieving a mean average precision (mAP) of 

91.40% and an accuracy of 91.03% [6]. However, the model was applied to a small dataset and 

performance can not be generalized. Another variant of Faster-RCNN pre-trained on ResNet-

50 was employed in [7] for the detection of carious teeth, achieving a precision of 73.49% and 

an F1 score of 0.68. The model, however, does not identify the type of caries and only localizes 

the caries region.  

An M-RCNN, which extends the Faster-RCNN with pre-trained ResNet-101 was found to be 

helpful in the identification of missing or broken teeth, achieving an accuracy of 98% [2]. 

However, segmentation performance metrics were not reported in the study. For pixel-wise 

segmentation of visible light images for identification of oral cavities [3], M-RCNN achieves 

an accuracy of 74.4%. However, the dataset is sparse and other relevant performance metrics 

have not been reported for comparison. In another attempt, an M-RCNN with a fully 

convolutional network (FCN) and a ResNet-101 backbone [4] was investigated to localize 



 

 

  

occlusal surface caries on a limited dataset, but the computational complexity was not reported. 

In a recent attempt, a hybrid M-RCNN [8] was employed to identify dental caries on mixed 

images achieving an average precision of 81.02% and an accuracy of 95.75%, however, the 

model does not identify caries type for both colored and X-ray images. Additionally, an 

MRCNN with ResNet as its backbone requires a substantial amount of calculations to learn 

and analyze, and the training process for M-RCNN requires high-performance computational 

resources such as GPU and memory [20].  

Table 1. Strengths and weaknesses of baseline dental lesion localization models.  

Study  Image 

Modality  
Task  Method  Strengths  Weaknesses  

Jader et al.,  

2018 [2]  

Panoramic 

images  
Localize 

missing teeth  
M-RCNN 

with  

ResNet-101 

backbone  

The model is helpful 

in  

identifying  

missing or broken 

teeth with an 

accuracy of 98%  

- Highly 

variable data  

- Other 

metrics  

i.e., mAP, IoU  

are not reported 

for comparison  

Anantharaman 

et al., 2018 [3]  
Colored  

images  

Detect and 

segment  

cold/canker 

sores  

M-RCNN 

with  

ResNet-101 

backbone  

The model is helpful 

in  

performing pixel-  

wise segmentation 

of visible light 

images  

of oral cavity with 

accuracy of 74.4%  

- Sparse 

dataset  

- Other 

metrics i.e, mAP, 

IoU,  

precision, F1- 

score, recall are 

not reported for 

comparison  

10

https://www.mdpi.com/2227-9032/11/3/347#B2-healthcare-11-00347
https://www.mdpi.com/2227-9032/11/3/347#B2-healthcare-11-00347
https://www.mdpi.com/2227-9032/11/3/347#B3-healthcare-11-00347
https://www.mdpi.com/2227-9032/11/3/347#B3-healthcare-11-00347
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Moutselos et  

al.,  

2019 [4]  

Colored  

images  

Localize and 

classify 

caries 

occlusal 

surfaces  

M-RCNN 

with FCN  

and ResNet- 

101 

backbone  

The model provided 

encouraging  

performance for  

automatically 

selecting  

image texture  

features and detect 

lesions  

without additional 

pre-processing 

actions  

- The 

computational 

complexity is 

not reported  

Chen et al.,  

2019 [5]  

Periapical 

radiographs  
Teeth 

localization 

and 

numbering  

Faster- 

RCNN  

The model detects 

and numbers teeth 

with recall and  

precision exceeding 

90% on manually 

annotated dataset  

- The model 

suffers in  

numbering  

teeth in  

complicated cases  

such  

     as heavily decayed 

teeth  

Laishram &  

Thongam, 2020  

[6]  

Panoramic 

radiographs  
Localize and 

classify  

different type 

of teeth  

Faster- 

RCNN  

built on  

RPN and  

ODN  

The model is helpful 

in detecting  

different types of  

teeth achieving 

mean  

average precision  

(mAP) of 91.40% 

and accuracy of  

91.03%  

- Limited dataset in 

terms of size  

Zhu et al., 2022  

[7]  

Periapical 

radiographs  
Detection of 

carious teeth  
Faster- 

RCNN with 

pretrained  

ResNet-50  

The model is helpful 

in with an average  

precision of  

73.49%, F1-score of  

0.68  

with sample  

detection speed of  

0.1923  

- It suffers 

from 

computational 

compexity  

- The 

model does not 

identify caries 

type  

https://www.mdpi.com/2227-9032/11/3/347#B4-healthcare-11-00347
https://www.mdpi.com/2227-9032/11/3/347#B4-healthcare-11-00347
https://www.mdpi.com/2227-9032/11/3/347#B5-healthcare-11-00347
https://www.mdpi.com/2227-9032/11/3/347#B5-healthcare-11-00347
https://www.mdpi.com/2227-9032/11/3/347#B6-healthcare-11-00347
https://www.mdpi.com/2227-9032/11/3/347#B6-healthcare-11-00347
https://www.mdpi.com/2227-9032/11/3/347#B6-healthcare-11-00347
https://www.mdpi.com/2227-9032/11/3/347#B7-healthcare-11-00347
https://www.mdpi.com/2227-9032/11/3/347#B7-healthcare-11-00347
https://www.mdpi.com/2227-9032/11/3/347#B7-healthcare-11-00347
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Rashid et al.,  

2022 [8]  

Mixed 

images  

(colored and 

periapical  

radiographic 

images)  

Detect and 

localize  

dental carious 

regions  

Hybrid M- 

RCNN  

The model was 

helpful in localizing 

dental carious  

regions with a 

precision  

of 81.02% and 

accuracy of 95.75%  

- Limited 

dataset in terms of 

size  

- The 

model does not 

identify  

caries type for  

both colored and  

X-ray image  

  

  

  

  

  

  

  

  

https://www.mdpi.com/2227-9032/11/3/347#B8-healthcare-11-00347
https://www.mdpi.com/2227-9032/11/3/347#B8-healthcare-11-00347
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3. EXISTING SYSTEM  

3.1. Traditional Steganography Methods 

Traditional steganography methods have evolved significantly over the years, transitioning from 

ancient physical techniques to sophisticated digital approaches. These conventional methods, while 

groundbreaking in their time, exhibit several limitations when compared to modern cryptographic-

steganographic hybrid approaches. 

The Least Significant Bit (LSB) substitution technique remains one of the most widely implemented 

steganographic methods in digital media. This method operates by replacing the least significant bits 

of pixel values in an image with bits from the secret message. While straightforward to implement, 

LSB substitution offers limited capacity and is vulnerable to statistical analysis. Even slight 

modifications to the LSB plane can create detectable patterns when analyzed with advanced 

steganalysis tools, particularly when sequential embedding is used. Additionally, this method 

provides minimal resistance to image processing operations such as compression, filtering, or 

cropping, which can easily destroy the embedded information. 

Discrete Cosine Transform (DCT) based steganography, commonly used in JPEG images, embeds 

information by modifying the DCT coefficients in the frequency domain. This method offers better 

resilience against compression compared to spatial domain techniques but suffers from capacity 

limitations and is susceptible to specialized steganalysis methods that analyze coefficient 

distributions. The changes in DCT coefficients can also introduce visible artifacts in the carrier image 

when the embedding rate is high, compromising the visual imperceptibility that is crucial for 

effective steganography. 

The Pixel Value Differencing (PVD) method exploits the human visual system's characteristics by 

embedding more data in edge areas of images where modifications are less perceptible. While this 

approach improves the visual quality of stego-images compared to basic LSB substitution, it still 

leaves detectable statistical footprints and offers limited capacity. PVD methods also struggle with 

maintaining data integrity when the carrier image undergoes common processing operations. 

Traditional steganography methods typically lack integration with robust cryptographic techniques, 

creating a significant security vulnerability. Most conventional approaches focus solely on 

concealment without addressing the confidentiality of the embedded information if discovered. This 

separation of concealment and encryption represents a fundamental weakness in traditional 

steganographic systems, as extracted data can be immediately accessible once the steganographic 

layer is compromised. 

 



 

 

  

Furthermore, conventional steganography methods often employ simplistic password-based security 

mechanisms rather than robust cryptographic algorithms, making them vulnerable to brute force 

attacks and other cryptanalytic techniques. The absence of strong encryption means that even if the 

steganographic technique successfully conceals the presence of hidden data, the confidentiality of 

that data remains at risk if the concealment is defeated. 

Another limitation of traditional methods is their fixed embedding patterns, which create 

characteristic signatures that can be identified by modern steganalysis tools. The predictability of 

these patterns makes conventional steganography increasingly vulnerable as detection techniques 

become more sophisticated. Additionally, most traditional methods lack adaptability to the carrier 

image's characteristics, applying the same embedding approach regardless of the visual content, 

which can lead to more noticeable artifacts in sensitive image regions. 

Traditional steganography approaches also typically fail to address the issue of key management, 

which is essential for secure communication between multiple parties. Without a robust key exchange 

mechanism, these methods often rely on pre-shared secrets that introduce additional security risks 

and operational complexities. 

3.2. Existing Cryptographic Techniques & Drawbacks 

 

Existing cryptographic techniques have played a crucial role in information security, yet they 

possess inherent limitations that become particularly evident when employed in isolation. These 

limitations have driven the development of hybrid security approaches that combine 

cryptography with steganography for enhanced protection. 

 

Symmetric key cryptography, including widely used algorithms like Advanced Encryption 

Standard (AES) and Data Encryption Standard (DES), employs the same key for both 

encryption and decryption processes. While these algorithms offer computational efficiency and 

high encryption strength, they suffer from a fundamental key distribution problem. The secure 

exchange of the shared key between communicating parties remains a logistical challenge, 

especially in open networks where secure channels for key exchange may not be readily 

available. Additionally, symmetric key systems face scalability issues in environments with 

multiple users, as the number of required keys grows quadratically with the number of 

participants, making key management increasingly complex. 

 

Public key cryptography, including RSA and Elliptic Curve Cryptography (ECC), addresses the 

key distribution problem by using mathematically related key pairs for encryption and 

decryption. However, these systems typically operate at slower speeds compared to symmetric 

algorithms, making them impractical for encrypting large volumes of data. The computational 

intensity of public key operations can create performance bottlenecks, particularly on resource-

constrained devices. Furthermore, the security of public key systems relies on the mathematical 

difficulty of certain problems, such as integer factorization for RSA, which may become 

vulnerable as computational capabilities advance. 
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Hash functions, such as SHA-256 and MD5, provide one-way transformation of data into fixed-

length hash values, useful for integrity verification but not for encryption purposes. While 

essential for many security protocols, hash functions alone cannot provide data confidentiality. 

Additionally, some older hash algorithms have been compromised, highlighting the need for 

continued algorithm updates and security reassessments. 

 

A significant drawback common to all traditional cryptographic approaches is their visibility. 

Encrypted data, regardless of the algorithm used, exhibits distinctive statistical properties that 

clearly signal the presence of encryption. This "encryption signature" can alert adversaries to 

the existence of sensitive information, potentially making the encrypted data a target for attacks 

or raising suspicion in contexts where covert communication is necessary. In scenarios where 

even the knowledge of communication occurring could pose risks, this visibility represents a 

critical vulnerability. 

 

Another limitation of conventional cryptographic systems is their vulnerability to quantum 

computing advancements. Many current public key cryptography systems, particularly RSA, 

rely on the difficulty of mathematical problems that quantum computers could potentially solve 

efficiently. The development of practical quantum computers poses an existential threat to these 

cryptographic methods, necessitating the exploration of quantum-resistant alternatives. 

 

Traditional cryptographic techniques also typically operate as single-layer protection 

mechanisms, creating potential single points of failure. If an encryption key is compromised or 

an algorithm is broken, the entire security system collapses, exposing all protected data. This 

reliance on a single security mechanism represents a significant vulnerability in current 

approaches to data protection. 

 

Additionally, many cryptographic implementations suffer from side-channel vulnerabilities, 

where information about the encryption process can be leaked through physical measurements 

such as power consumption, electromagnetic emissions, or timing variations. These side-

channel attacks can compromise otherwise mathematically secure cryptographic systems 

through their implementations. 

 

Finally, existing cryptographic techniques often face regulatory and legal challenges across 

different jurisdictions, with some countries imposing restrictions on encryption strength or 

requiring key escrow capabilities. These regulatory constraints can limit the deployment of 

robust cryptographic solutions in certain contexts, potentially forcing the use of weaker security 

measures. 
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4. PROPOSED METHODOLOGY  

4.1 Overview  

The proposed system introduces a comprehensive security framework that seamlessly 

integrates RSA cryptography with advanced image steganography to create a multi-

layered protection mechanism for sensitive information. This innovative approach 

addresses the limitations of traditional security methods by combining the 

mathematical strength of asymmetric encryption with the concealment capabilities of 

steganography, resulting in a solution that provides both confidentiality and invisibility 

for secure communications. 

 

At its core, the system employs a dual-phase security architecture. In the first phase, 

the plaintext message undergoes RSA encryption using the recipient's public key, 

transforming it into ciphertext that is mathematically secure and computationally 

infeasible to decrypt without the corresponding private key. This encryption process 

ensures that even if the hidden data is discovered, it remains protected by the robust 

mathematical foundation of RSA cryptography. 

 

The second phase involves embedding this encrypted data within carrier images using 

advanced adaptive steganographic techniques. Rather than relying on simplistic 

methods like sequential LSB replacement, the system employs a sophisticated 

algorithm that analyzes the characteristics of the carrier image to identify optimal 

embedding locations. This analysis considers factors such as edge density, texture 

complexity, and noise levels to determine areas where modifications will be least 

detectable, both visually and statistically. 

 

A key innovation in the proposed system is its dynamic embedding approach, which 

varies the embedding pattern based on a secure pseudo-random sequence generated 

from a shared secret between the sender and recipient. This randomization eliminates 

the predictable patterns that make traditional steganography vulnerable to statistical 

analysis, creating a moving target for potential attackers. 
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The system also incorporates an adaptive bit allocation mechanism that distributes the 

encrypted data across the carrier image based on the local characteristics of image 

regions. Areas with higher texture complexity or natural noise can accommodate more 

embedded bits without creating detectable artifacts, while smoother regions. 

4.2. How Steganography & RSA Work Together 

 

The integration of RSA cryptography with image steganography creates a synergistic 

security model that leverages the complementary strengths of both technologies. This 

hybrid approach establishes multiple defensive layers that an attacker would need to 

overcome sequentially, significantly enhancing the overall security posture compared 

to using either technology in isolation. 

 

RSA cryptography contributes the mathematical security derived from the 

computational hardness of integer factorization. When a message is encrypted using 

the recipient's public key, it transforms the plaintext into ciphertext that remains secure 

even if intercepted. The asymmetric nature of RSA eliminates the need for pre-shared 

secret keys, addressing one of the fundamental challenges in secure communication—

key distribution. Only the intended recipient, who possesses the corresponding private 

key, can decrypt the message, ensuring confidentiality even if the steganographic layer 

is compromised. 

 

Steganography complements this cryptographic strength by providing concealment 

capabilities. By embedding the RSA-encrypted data within ordinary digital images, 

the system masks the very existence of secure communication, addressing the visibility 

problem inherent in standalone encryption. This concealment adds a crucial layer of 

security in scenarios where encrypted communications might attract unwanted 

attention or suspicion. Potential attackers first need to detect the presence of hidden 

data before they can attempt to decrypt it, creating an additional obstacle in the attack 

chain. 
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The practical implementation of this integration follows a systematic workflow. 

Initially, the sender generates the RSA key pair or retrieves the recipient's public key 

from a trusted key repository. The plaintext message undergoes RSA encryption, 

producing ciphertext that is mathematically protected. This ciphertext is then prepared 

for embedding by converting it to a binary stream with appropriate header information 

for later extraction. 

 

Simultaneously, the system analyzes the carrier image to create a steganographic 

capacity map that identifies optimal embedding locations based on the image's visual 

characteristics. Higher capacity values are assigned to textured regions, edges, and 

naturally noisy areas where modifications are less perceptible, while lower capacity 

values are assigned to smooth, uniform regions where changes would be more 

noticeable. 

 

The system then employs a secure pseudo-random number generator, seeded with a 

shared secret between the sender and recipient, to determine the specific pixel 

locations and bit positions for embedding. This randomization eliminates the 

sequential patterns that make traditional steganographic methods vulnerable to 

statistical analysis. The encrypted data is distributed across these locations according 

to the capacity map, ensuring that modifications remain below the threshold of visual 

and statistical detectability. 

 

During the embedding process, the system implements adaptive bit-plane selection, 

choosing different bit positions for embedding based on the local characteristics of 

each image region. In highly textured areas, modifications might extend to middle-

significant bits, while in smoother regions, only the least significant bits are altered. 

This adaptive approach maximizes embedding capacity while maintaining the visual 

integrity of the carrier image. 
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The resulting stego-image appears visually identical to the original cover image to the 

human eye, with minimal statistical disturbances that might trigger automated 

steganalysis tools. The stego-image can be transmitted through regular communication 

channels without arousing suspicion, effectively concealing not just the content of the 

communication but its very existence. 

 

On the recipient's side, the extraction process begins with the application of the same 

pseudo-random sequence (generated from the shared secret) to identify the embedding 

locations. The embedded bits are extracted and reconstructed into the original 

ciphertext. This ciphertext is then decrypted using the recipient's private RSA key, 

recovering the original plaintext message. 

 

This integrated approach creates a security system where each component addresses 

the weaknesses of the other—RSA provides mathematical security for the data itself, 

while steganography provides the critical concealment that prevents the encrypted data 

from being targeted in the first place. The result is a comprehensive security solution 

that significantly raises the bar for potential attackers. 

4.3. Encryption & Decryption Process 

 

The encryption and decryption processes in the proposed RSA-steganography system follow a 

meticulously designed protocol that ensures both the confidentiality and concealment of 

sensitive information. These processes can be detailed in distinct phases, encompassing both the 

cryptographic operations and the steganographic embedding and extraction procedures. 

 

The encryption process begins with message preparation. The plaintext message undergoes 

preprocessing to ensure compatibility with the RSA encryption algorithm, including padding 

schemes such as Optimal Asymmetric Encryption Padding (OAEP) that enhance security 

against various cryptographic attacks. This preprocessing step adds randomness to the 

encryption process, preventing deterministic encryption results that could be vulnerable to 

chosen-plaintext attacks. 

 

Once the message is properly prepared, it undergoes RSA encryption using the recipient's public 

key. This transformation converts the plaintext into ciphertext through modular exponentiation 

operations, mathematically securing it against unauthorized access. The encryption operation 

can be expressed as C = M^e mod n, where C represents the ciphertext, M represents the 

prepared message, e is the public exponent, and n is the RSA modulus. The resulting ciphertext 
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possesses the mathematical security inherent to the RSA algorithm, making it computationally 

infeasible to decrypt without knowledge of the corresponding private key. 

 

Following encryption, the system performs steganographic preprocessing on the ciphertext. 

This involves converting the encrypted data into a binary stream and adding metadata such as 

length indicators and integrity checksums. This metadata will later facilitate the accurate 

extraction and verification of the embedded data. The system also calculates the required 

embedding capacity and verifies that the selected carrier image can accommodate the encrypted 

message without introducing detectable artifacts. 

 

Simultaneously, the carrier image undergoes analysis to identify optimal embedding regions. 

This analysis evaluates factors such as edge density, texture complexity, and noise levels across 

the image, creating a capacity map that guides the embedding process. Regions with higher 

complexity can accommodate more modifications without creating perceptible distortions, 

allowing for a more efficient utilization of the available embedding space. 

 

The actual embedding process utilizes a secure pseudo-random sequence, generated from a 

shared secret between the communicating parties, to determine the specific embedding 

locations. This randomization prevents predictable embedding patterns that could be detected 

through statistical analysis. The encrypted data bits are distributed across these locations 

according to the capacity map, with adaptive bit-plane selection determining the specific bit 

positions to modify in each pixel. 

 

For enhanced security, the system employs matrix encoding techniques to minimize the number 

of necessary modifications to the carrier image. This approach reduces the statistical fingerprint 

of the embedding process, making the stego-image more resistant to detection by modern 

steganalysis tools. The embedding algorithm also incorporates error correction codes to ensure 

robust data recovery even if the stego-image undergoes minor modifications during 

transmission. 

 

The decryption process follows a symmetrical workflow in reverse order. Upon receiving the 

stego-image, the recipient first needs to extract the embedded encrypted data. Using the same 

shared secret, they generate the identical pseudo-random sequence that identifies the embedding 

locations. The system then extracts the bits from these locations, reconstructing the original 

ciphertext along with its associated metadata. 

 

After extraction, the system verifies the integrity of the extracted data using the embedded 

checksums. If the verification succeeds, the ciphertext proceeds to the RSA decryption phase. 

The recipient applies their private key to the ciphertext through the decryption operation M = 

C^d mod n, where d represents the private exponent. This operation reverses the encryption 

process, recovering the original padded message. 

 

Finally, the system removes the padding and performs any necessary post-processing to restore 

the message to its original format. The successful completion of this process results in the 
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recovery of the original plaintext message, accessible only to the intended recipient who 

possesses both the correct private RSA key and knowledge of the steganographic extraction 

parameters. 

 

Throughout this entire process, multiple security layers work in concert to protect the 

information. The RSA algorithm provides mathematical security for the content itself, while the 

steganographic techniques conceal the very existence of the communication. This dual 

protection ensures that even if one security layer is compromised—for instance, if an attacker 

detects the presence of hidden data—the information remains protected by the other layer, 

creating a robust security system that significantly exceeds the protection offered by either 

technology used independently. 

 

 

4.4. Security Advantages of RSA-Based Steganography 

 

The integration of RSA cryptography with advanced steganographic techniques creates a 

security framework with significant advantages over traditional approaches, establishing 

multiple protection layers that collectively address various attack vectors and security 

vulnerabilities. This hybrid system leverages the complementary strengths of both technologies 

to overcome their individual limitations, resulting in a comprehensive security solution for 

sensitive digital communications. 

 

One of the primary security advantages lies in the creation of a dual-layer protection mechanism. 

The RSA encryption provides strong mathematical security based on the computational 

hardness of integer factorization, ensuring that even if the steganographic layer is compromised 

and the hidden data is discovered, it remains protected by the cryptographic barrier. 

Simultaneously, the steganographic concealment addresses the visibility issue inherent in 

standalone encryption, masking the very existence of secure communication. This dual-layer 

approach requires potential attackers to overcome both the detection challenge and the 

cryptographic barrier sequentially, significantly increasing the overall security margin. 

 

The system also benefits from the asymmetric nature of RSA cryptography, which elegantly 

solves the key distribution problem that plagues many security systems. With RSA, the sender 

can encrypt messages using the recipient's public key without requiring a pre-established shared 

secret. This eliminates the need for secure key exchange channels, which are often the weakest 

link in cryptographic systems. The private key, necessary for decryption, never needs to be 

transmitted, remaining securely in the possession of the recipient. This asymmetric approach is 

particularly valuable in one-to-many communication scenarios, where multiple parties need to 

securely communicate with a single recipient. 

 

Furthermore, the proposed system offers strong protection against steganalysis through its 

adaptive embedding approach. Unlike traditional steganographic methods that employ fixed 

embedding patterns, the system dynamically adjusts its embedding strategy based on the carrier 

image's characteristics. By concentrating modifications in textured regions and edges where 
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changes are less detectable, and employing matrix encoding to minimize the number of 

necessary alterations, the system creates stego-images that resist both visual and statistical 

detection methods. The use of pseudo-random embedding locations, determined by a shared 

secret, further enhances this resistance by eliminating predictable patterns that steganalysis tools 

might target. 

 

The integration with RSA provides an additional advantage in terms of authentication and 

integrity verification. The cryptographic operations can be extended to include digital signature 

functionality, allowing the recipient to verify the authenticity of the sender and ensure that the 

message has not been tampered with during transmission. This authentication layer is crucial in 

scenarios where the validity of the communication is as important as its confidentiality. 

 

From an operational security perspective, the system offers plausible deniability—a critical 

advantage in certain security contexts. Since the stego-images appear as ordinary images with 

no visible indicators of embedded data, users can reasonably deny the existence of hidden 

communications if confronted. This deniability is further strengthened by the system's ability to 

utilize any suitable digital image as a carrier, allowing communications to blend seamlessly with 

regular image sharing activities. 

 

The hybrid approach also provides resilience against evolving computational threats. While 

quantum computing advancements pose a potential future threat to RSA through Shor's 

algorithm, which could theoretically break RSA encryption by efficiently factoring large 

integers, the steganographic layer adds a protection dimension that is not directly affected by 

quantum computing. This multi-layered defense creates a more future-resilient security system 

that does not depend entirely on the computational hardness of a single mathematical problem. 

 

Additionally, the system incorporates protection against side-channel attacks through various 

countermeasures. The embedding process includes timing normalizations and memory access 

patterns designed to minimize information leakage during the steganographic operations. The 

RSA implementation similarly incorporates protections against timing and power analysis 

attacks, ensuring that the cryptographic operations do not inadvertently reveal information about 

the keys or the plaintext. 

 

The adaptive capacity utilization of the steganographic component allows the system to balance 

security requirements with practical considerations. For less sensitive communications, the 

embedding density can be reduced to prioritize the visual quality of the stego-image and 

minimize detection risk. For highly sensitive communications, the system can utilize more of 

the available capacity, potentially across multiple carrier images, to accommodate larger 

messages while maintaining security margins. 

 

Through this comprehensive integration of cryptographic and steganographic techniques, the 

proposed system achieves a security posture that addresses multiple threat vectors 

simultaneously, providing robust protection for sensitive digital communications in increasingly 

adversarial environments. 
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5. UML DAIGRAMS  

UML stands for Unified Modeling Language. UML is a standardized general-purpose modeling 

language in the field of object-oriented software engineering. The standard is managed, and 

was created by, the Object Management Group. The goal is for UML to become a common 

language for creating models of object-oriented computer software. In its current form UML is 

comprised of two major components: a Meta-model and a notation. In the future, some form 

of method or process may also be added to; or associated with, UML.  

The Unified Modeling Language is a standard language for specifying, Visualization, 

Constructing and documenting the artifacts of software system, as well as for business 

modeling and other non-software systems. The UML represents a collection of best engineering 

practices that have proven successful in the modeling of large and complex systems. The UML 

is a very important part of developing objects-oriented software and the software development 

process. The UML uses mostly graphical notations to express the design of software projects.  

GOALS: The Primary goals in the design of the UML are as follows:  

• Provide users a ready-to-use, expressive visual modeling Language so that they can 

develop and exchange meaningful models.  

• Provide extendibility and specialization mechanisms to extend the core concepts.  

• Be independent of particular programming languages and development process.  

• Provide a formal basis for understanding the modeling language.  

• Encourage the growth of OO tools market.  

• Support higher level development concepts such as collaborations, frameworks, 

patterns and components.  

• Integrate best practices.  

5.1 Class diagram  

The class diagram is used to refine the use case diagram and define a detailed design of the 

system. The class diagram classifies the actors defined in the use case diagram into a set of 

interrelated classes. The relationship or association between the classes can be either an "is-a" 

or "has-a" relationship. Each class in the class diagram may be capable of providing certain 

functionalities. These functionalities provided by the class are termed "methods" of the class.  
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Apart from this, each class may have certain "attributes" that uniquely identify the class.   

  

5.2 Use case Diagram  

A use case diagram in the Unified Modeling Language (UML) is a type of behavioral diagram 

defined by and created from a Use-case analysis. Its purpose is to present a graphical overview 

of the functionality provided by a system in terms of actors, their goals (represented as use 

cases), and any dependencies between those use cases. The main purpose of a use case diagram 

is to show what system functions are performed for which actor. Roles of the actors in the 

system can be depicted.  
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5.3 Sequence Diagram  

A sequence diagram in Unified Modeling Language (UML) is a kind of interaction diagram 

that shows how processes operate with one another and in what order. It is a construct of a 

Message Sequence Chart. A sequence diagram shows, as parallel vertical lines ("lifelines"), 

different processes or objects that live simultaneously, and as horizontal arrows, the messages 

exchanged between them, in the order in which they occur. This allows the specification of 

simple runtime scenarios in a graphical manner.  

  

  

5.4 Activity diagram: Activity diagrams are graphical representations of Workflows of 

stepwise activities and actions with support for choice, iteration, and concurrency.   

In the Unified Modeling Language, activity diagrams can be used to describe the business and 

operational step-by-step workflows of components in a system. An activity diagram shows the 

overall flow of control.  
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6. SOFTWARE ENVIRONMENT  

6.1 What is Python and its Advantages and Disadvantages  

Python is a high-level, interpreted programming language created by Guido van Rossum and first 

released in 1991. It has since evolved to become one of the most popular programming languages 

worldwide, known for its emphasis on code readability and syntax that allows programmers to 

express concepts in fewer lines of code than languages like C++ or Java. Python's design philosophy 

emphasizes code readability with its notable use of significant whitespace and a clean, pragmatic 

approach to software development. 

The language's core advantages have made it particularly suitable for the implementation of 

cryptographic and steganographic systems. Python's readability and clean syntax significantly reduce 

development time and enhance code maintainability, which is crucial for security-focused 

applications where code clarity directly impacts security review processes. The expressive nature of 

Python allows developers to implement complex algorithms in relatively few lines of code while 

maintaining comprehensibility, facilitating easier security audits and reducing the potential for 

implementation errors. 

Python's cross-platform compatibility represents another significant advantage, enabling the 

development of security applications that can run consistently across Windows, macOS, Linux, and 

other operating systems without modification. This portability ensures that security tools can be 

deployed across diverse environments without requiring platform-specific versions, simplifying 

distribution and maintenance. 

The extensive standard library that comes bundled with Python provides built-in support for many 

common programming tasks, including networking, file handling, and data processing, reducing the 

need for external dependencies in security applications. This comprehensive standard library is 

complemented by a vast ecosystem of third-party packages and frameworks, including specialized 

libraries for cryptography (such as cryptography, pycrypto, and PyCryptodome) and image 

processing (like Pillow and OpenCV), which provide optimized implementations of complex 

algorithms necessary for cryptographic and steganographic operations. 

Python's interpreted nature facilitates rapid development cycles through immediate execution 

without separate compilation steps, allowing for quick prototyping and testing of security algorithms. 

The language also offers excellent support for integration with low-level libraries written in C or 

C++ through its extension mechanisms, enabling performance-critical components to be 

implemented in faster compiled languages while maintaining the overall application structure in 

Python. 
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Moreover, Python's strong community support and extensive documentation provide developers with 

abundant resources for implementing security best practices and avoiding common pitfalls in 

cryptographic implementations. The language's dynamic typing system and automatic memory 

management reduce the risk of memory-related vulnerabilities such as buffer overflows, which are 

common security issues in lower-level languages. 

 

However, Python also presents certain disadvantages that must be considered in security-oriented 

applications. The interpreted nature that facilitates rapid development also results in slower execution 

speeds compared to compiled languages like C or C++, which can be a limitation for performance-

intensive cryptographic operations on large datasets. While this performance gap can be mitigated 

through optimized libraries and careful implementation, it remains a consideration for time-sensitive 

applications. 

 

Python's dynamic typing, while offering flexibility, may allow certain types of errors to manifest at 

runtime rather than being caught during development, potentially introducing subtle bugs in security-

critical code. The Global Interpreter Lock (GIL) in CPython, the most widely used Python 

implementation, limits the effectiveness of threading for CPU-bound tasks, potentially constraining 

parallelization of intensive cryptographic operations. 

 

From a security perspective, the open-source nature of Python applications means that the source 

code is often readily available, potentially making it easier for attackers to analyze for vulnerabilities 

compared to compiled languages. Additionally, the ease of modifying Python code can be a double-

edged sword, as it facilitates both legitimate updates and potential tampering if proper code integrity 

measures are not implemented. 

 

Python's automatic memory management, while preventing many memory-related vulnerabilities, 

can make it difficult to implement certain secure coding practices such as secure memory handling 

for cryptographic keys, which may require explicit memory clearing to prevent key material from 

remaining in memory longer than necessary. 
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Despite these limitations, Python's advantages significantly outweigh its disadvantages for most 

security applications, particularly those like the RSA-steganography system described in this 

research, where the benefits of rapid development, code clarity, and extensive library support align 

well with the project requirements. The performance limitations can be addressed through judicious 

use of optimized libraries and careful algorithm implementation, while the security considerations 

can be managed through proper application design and deployment practices. 

6.2. Why We Used Python for This Project 

The selection of Python as the primary implementation language for our RSA-based 

steganography system was a strategic decision driven by several key factors that align with the 

project's technical requirements, security considerations, and practical constraints. This choice 

has significantly influenced the development process, system architecture, and overall project 

outcomes. 

Python's rich ecosystem of specialized libraries was a decisive factor in our language selection. 

The project leverages several critical libraries that provide optimized implementations of 

cryptographic and image processing algorithms. The cryptography library offers a robust, 

secure implementation of RSA encryption with appropriate padding schemes and security 

features that adhere to modern cryptographic standards. Similarly, the Pillow library (PIL fork) 

provides comprehensive image manipulation capabilities essential for the steganographic 

components of our system. These established, well-maintained libraries significantly reduced 

development time while ensuring that the cryptographic operations follow security best 

practices, avoiding the common pitfalls and vulnerabilities that often occur in custom 

cryptographic implementations. 

The development efficiency afforded by Python's clean syntax and high-level abstractions was 

particularly valuable given the research-oriented nature of this project. The ability to rapidly 

prototype different algorithms, embedding techniques, and security approaches allowed for 

iterative refinement of the system design based on experimental results. This agility was 

essential for exploring the novel integration of RSA cryptography with advanced stegan 

ographic techniques, enabling the research team to explore various approaches before 

finalizing the system architecture. 
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The cross-platform nature of Python ensured that our security solution could be deployed across 

diverse computing environments without modification. This portability was a critical 

requirement for the project, as the intended users operate on various platforms including 

Windows, macOS, and Linux distributions. Python's "write once, run anywhere" capability 

eliminated the need for platform-specific implementations, reducing both development effort 

and the potential for platform-specific security inconsistencies that might arise from 

maintaining multiple codebases. 

Python's readability and maintainability were particularly important considerations for a 

security-focused application. The clean, expressive code structure facilitated comprehensive 

security reviews and made it easier to identify potential vulnerabilities or logical flaws in the 

implementation. This clarity is invaluable for security applications where subtle 

implementation errors can compromise the entire system. The readable nature of Python code 

also supports better knowledge transfer and easier onboarding of new developers to the project, 

ensuring long-term maintainability. 

The extensive documentation and community support available for Python significantly 

accelerated the development process. When implementing complex components such as the 

adaptive steganographic embedding algorithm or the secure random number generation for 

embedding location selection, the team could reference comprehensive documentation and 

community resources to ensure that our implementation followed established best practices. 

This community support reduced the risk of implementation errors that might introduce 

security vulnerabilities. 

 

Python's strong exception handling mechanisms provided robust error management 

capabilities, which are crucial for security applications where proper error handling can prevent 

information leakage and ensure system stability. The language's built-in testing frameworks 

also facilitated the creation of comprehensive test suites for validating both the functional 

correctness and security properties of the system, allowing for systematic verification of 

security claims. 
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While Python's performance limitations were considered during the language selection process, 

our analysis indicated that the computational bottlenecks in our specific application—primarily 

in the RSA operations and complex image processing tasks—could be adequately addressed 

through the use of optimized libraries that implement performance-critical sections in compiled 

languages like C. For most user scenarios involving reasonable message sizes and image 

dimensions, the performance proved more than sufficient, with processing times well within 

acceptable ranges for interactive use. 

 

Python's dynamic typing system, sometimes considered a disadvantage for security 

applications, was leveraged advantageously in our implementation by emphasizing explicit 

type checking at interface boundaries and comprehensive test coverage to catch type-related 

issues early in the development cycle. This approach preserved the development agility 

provided by dynamic typing while mitigating its potential drawbacks. 

 

The decision to use Python was further validated throughout the development process as the 

team was able to rapidly implement and evaluate multiple steganographic techniques, allowing 

for data-driven selection of the most effective approach. The language's flexibility facilitated 

the adaptive, image-aware embedding strategy that distinguishes our system from more 

traditional implementations. 

In retrospect, Python's advantages in terms of development efficiency, library ecosystem, code 

clarity, and cross-platform compatibility have proven to be well-aligned with the project's 

requirements, confirming the appropriateness of this language choice for our RSA-based 

steganography system. 

6.3. Libraries Used 

The implementation of our RSA-based steganography system relies on a carefully selected set of 

Python libraries that provide essential functionality for cryptographic operations, image processing, 

and system utilities. These libraries were chosen based on their security, performance, documentation 

quality, maintenance status, and community support. 

The cryptography library serves as the cornerstone for all cryptographic operations in the system. 

This modern, widely-used library provides a comprehensive implementation of cryptographic 



 

 

  

primitives, including the RSA algorithm with appropriate padding schemes such as OAEP (Optimal 

Asymmetric Encryption Padding). We specifically utilize its hazmat.primitives.asymmetric.rsa 

module for key generation, encryption, and decryption operations. The library implements these 

operations following current security best practices, including proper random number generation, 

side-channel attack mitigations, and conformance to relevant standards like PKCS#1. The 

cryptography library is actively maintained, undergoes regular security audits, and quickly addresses 

discovered vulnerabilities, making it a secure choice for cryptographic operations compared to 

alternatives like pycrypto, which has known security issues and is no longer maintained. 

For image processing and steganographic operations, we rely on the Pillow library (Python Imaging 

Library Fork). Pillow provides comprehensive functionality for image manipulation, supporting 

various file formats including PNG, JPEG, and BMP. The library enables pixel-level access and 

modification through its PixelAccess interface, which is essential for implementing the 

steganographic embedding and extraction processes. Additional image analysis features, such as 

edge detection and texture analysis, support the adaptive embedding strategy that concentrates 

modifications in less perceptible image regions. Pillow's efficient implementation of image 

processing algorithms ensures acceptable performance even when processing high-resolution 

images. 

NumPy serves as the foundation for numerical operations throughout the system. This fundamental 

scientific computing library provides efficient implementations of array operations and mathematical 

functions that accelerate various components of our system. In particular, NumPy's multi-

dimensional array structures and vectorized operations significantly improve performance during 

image analysis phases, such as when calculating the capacity map or performing statistical analysis 

to identify optimal embedding regions. The library's random module also supplements the 

cryptographically secure random number generation used for security-critical operations. 

 

For secure random number generation, particularly important for steganographic embedding pattern 

randomization, we employ the secrets module from Python's standard library. This module provides 

cryptographically strong random numbers suitable for security applications, unlike the standard 

random module which is designed for simulation and modeling rather than cryptographic use. The 

secrets module is used to generate the pseudo-random sequence that determines embedding 

locations, ensuring that the embedding pattern cannot be predicted even with knowledge of the 

steganographic algorithm. 

 

The hashlib module from the standard library provides cryptographic hash functions used for various 

purposes throughout the system. SHA-256 hashes are employed for integrity verification of extracted 

data, generation of embedding patterns from shared secrets, and other security-related operations 

where cryptographic hash functions are appropriate. This standard library module implements these 

hash functions efficiently and securely. 
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For user interface components, the system employs Tkinter, Python's standard GUI toolkit. Tkinter 

provides cross-platform GUI capabilities that maintain a consistent user experience across different 

operating systems. The library's simplicity and direct integration with the Python standard library 

made it an appropriate choice for creating the straightforward interface needed for file selection, 

parameter configuration, and operation execution. 

 

The concurrent.futures module from the standard library enables parallelization of certain operations, 

particularly during the image analysis phase where multiple regions can be processed simultaneously. 

This parallelization improves performance on multi-core systems without introducing the complexity 

of manual thread management. By parallelizing computationally intensive tasks, the system 

maintains responsive performance even when processing high-resolution images or large messages. 

 

For configuration management and persistent settings, the system utilizes the configparser module 

from the standard library. This module provides a standardized way to handle configuration files, 

allowing users to customize operational parameters and remember previous settings between 

sessions. The structured format of the configuration files also facilitates automatic validation of user 

inputs to prevent misconfigurations that might impact security. 

 

The logging module, another component of the standard library, implements comprehensive logging 

functionality throughout the system. Properly structured logs are essential for security applications, 

enabling audit trails of system operations while carefully avoiding the inclusion of sensitive 

information in log entries. The hierarchical logging system allows for different verbosity levels 

appropriate for various operational contexts, from detailed debugging information during 

development to minimal security-relevant events in production. 

 

Additionally, the io module from the standard library provides efficient handling of binary data 

streams, which is essential when processing encrypted data and image files. The use of buffered I/O 

operations improves performance when handling larger files and ensures that file operations are 

performed atomically where appropriate. 

 

These libraries collectively provide a robust foundation for the implementation of our RSA-based 

steganography system, offering secure cryptographic operations, efficient image processing, and 

adequate performance while maintaining cross-platform compatibility. The careful selection of well-
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maintained, security-focused libraries significantly reduced development time and minimized the 

risk of security vulnerabilities that might arise from custom implementations of cryptographic or 

image processing algorithms. 

 

6.4 Install Python Step-by-Step in Windows and Mac  

Python a versatile programming language doesn’t come pre-installed on your computer 

devices. Python was first released in the year 1991 and until today it is a very popular highlevel 

programming language. Its style philosophy emphasizes code readability with its notable use 

of great whitespace.  

The object-oriented approach and language construct provided by Python enables programmers 

to write both clear and logical code for projects. This software does not come pre-packaged 

with Windows.  

How to Install Python on Windows and Mac  

There have been several updates in the Python version over the years. The question is how to 

install Python? It might be confusing for the beginner who is willing to start learning Python 

but this tutorial will solve your query. The latest or the newest version of Python is version  

3.7.4 or in other words, it is Python 3.  

Note: The python version 3.7.4 cannot be used on Windows XP or earlier devices.  

Before you start with the installation process of Python. First, you need to know about your 

System Requirements. Based on your system type i.e., operating system and based processor, 

you must download the python version. My system type is a Windows 64-bit operating system. 

So, the steps below are to install python version 3.7.4 on Windows 7 device or to install Python 

3. Download the Python Cheatsheet here. The steps on how to install Python on Windows 10, 

8 and 7 are divided into 4 parts to help understand better.  

Download the Correct version into the system  

Step 1: Go to the official site to download and install python using Google Chrome or any other 

web browser. OR Click on the following link: https://www.python.org  



 

 

34 

  

  

Now, check for the latest and the correct version for your operating system.  

Step 2: Click on the Download Tab.  

  
Step 3: You can either select the Download Python for windows 3.7.4 button in Yellow Color 

or you can scroll further down and click on download with respective to their version. Here, 

we are downloading the most recent python version for windows 3.7.4  
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Step 4: Scroll down the page until you find the Files option.  

Step 5: Here you see a different version of python along with the operating system.  

  

• To download Windows 32-bit python, you can select any one from the three options: 

Windows x86 embeddable zip file, Windows x86 executable installer or Windows x86 

web-based installer.   

• To download Windows 64-bit python, you can select any one from the three options: 

Windows x86-64 embeddable zip file, Windows x86-64 executable installer or 

Windows x86-64 web-based installer.  

Here we will install Windows x86-64 web-based installer. Here your first part regarding which 

version of python is to be downloaded is completed. Now we move ahead with the second part 

in installing python i.e., Installation  



 

 

  

Note: To know the changes or updates that are made in the version you can click on the Release 

Note Option.  

Installation of Python  

Step 1: Go to Download and Open the downloaded python version to carry out the installation 

process.  

  

Step 2: Before you click on Install Now, make sure to put a tick on Add Python 3.7 to PATH.  

  

Step 3: Click on Install NOW After the installation is successful. Click on Close.  
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With these above three steps on python installation, you have successfully and correctly 

installed Python. Now is the time to verify the installation.  

Note: The installation process might take a couple of minutes.  

Verify the Python Installation  

Step 1: Click on Start  

Step 2: In the Windows Run Command, type “cmd”.  
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Step 3: Open the Command prompt option.  

Step 4: Let us test whether the python is correctly installed. Type python –V and press Enter.  

  

Step 5: You will get the answer as 3.7.4  

Note: If you have any of the earlier versions of Python already installed. You must first uninstall 

the earlier version and then install the new one.   

Check how the Python IDLE works  

Step 1: Click on Start  

Step 2: In the Windows Run command, type “python idle”.  
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Step 3: Click on IDLE (Python 3.7 64-bit) and launch the program  

Step 4: To go ahead with working in IDLE you must first save the file. Click on File > Click 

on Save  

  

Step 5: Name the file and save as type should be Python files. Click on SAVE. Here I have 

named the files as Hey World.  

Step 6: Now for e.g., enter print (“Hey World”) and Press Enter.  



 

 

  

  

You will see that the command given is launched. With this, we end our tutorial on how to 

install Python. You have learned how to download python for windows into your respective 

operating system.  

Note: Unlike Java, Python does not need semicolons at the end of the statements otherwise it 

won’t work.   
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                 7. SYSTEM REQUIREMENTS SPECIFICATIONS  

7.1 Software Requirements  

The RSA-based steganography system has been designed with cross-platform compatibility as a 

primary consideration, ensuring accessibility across various operating systems while maintaining 

consistent functionality and security properties. The following software requirements define the 

necessary environment for proper system operation. 

 

Operating System Compatibility: The system supports Windows 10 and newer versions, macOS 

10.14 (Mojave) and above, and major Linux distributions including Ubuntu 18.04+, Fedora 30+, and 

Debian 10+. This broad compatibility ensures that the security solution is accessible to users 

regardless of their preferred operating system, maintaining consistent security properties across 

platforms. 

 

Python Runtime: Python 3.7 or newer is required, as the implementation leverages modern language 

features including improved type hinting, enhanced asynchronous capabilities, and security 

improvements in the standard library. Users must have the official CPython implementation, as 

alternative implementations like PyPy may not fully support all the cryptographic libraries utilized 

by the system. 

 

Required Libraries: The application depends on several key external libraries: the cryptography 

library (version 3.4.0 or newer) provides secure implementations of cryptographic algorithms 

including RSA encryption with appropriate padding schemes; Pillow (version 8.0.0 or newer) enables 

image processing operations required for steganographic embedding and extraction; NumPy (version 

1.19.0 or newer) supports efficient numerical operations for image analysis and processing; and 

tkinter must be available for the graphical user interface components, though this is typically 

included with standard Python distributions. 

 

Storage Requirements: The system requires approximately 50MB of disk space for installation, 

including all dependencies. Additional storage is needed for processing images, with requirements 

scaling based on the dimensions and number of images being processed. A minimum of 500MB of 

free disk space is recommended for comfortable operation with typical image sizes. 
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Display Requirements: A minimum display resolution of 1280x720 pixels is recommended for 

optimal usability of the graphical interface, though the system will function on lower resolutions 

with some interface elements requiring scrolling. The command-line interface has no specific display 

requirements. 

 

Network Connectivity: While not strictly required for core functionality, internet connectivity may 

be needed for the initial installation of dependencies. Once installed, the system operates entirely 

offline, which is advantageous from a security perspective as it eliminates potential network-based 

attack vectors during operation. 

 

Browser Requirements (for Documentation): The HTML documentation included with the system is 

compatible with modern web browsers including Chrome 80+, Firefox 75+, Safari 13+, and Edge 

80+. The documentation uses standard HTML5 and CSS3 features without requiring JavaScript for 

core functionality. 

 

Administrative Privileges: Standard user privileges are sufficient for installation when using virtual 

environments or user-level package installation. Administrative or root privileges are only required 

if installing packages system-wide, particularly on Unix-based systems. 

 

Additional Software: No additional software is required for basic operation. For advanced features 

such as integration with document management systems or email clients, additional configuration 

may be necessary as detailed in the integration documentation. 

 

Recommended Environment: For optimal performance when processing larger images or handling 

batch operations, a system with at least 4GB of RAM and a multi-core processor is recommended. 

The system will function on less powerful hardware, but processing times may increase 

proportionally. 

 

These software requirements have been deliberately kept minimal to ensure broad accessibility while 

maintaining security and performance standards. The system's modular design allows for operation 

in various configurations, from standalone desktop applications to integrated components within 

larger security ecosystems. 
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7.2 Hardware Requirements  

 

The hardware requirements for the RSA-based steganography system are designed to ensure reliable 

performance across a range of computing environments while maintaining the security integrity of 

the cryptographic and steganographic operations. These requirements balance accessibility with the 

computational demands of image processing and cryptographic operations. 

 

Processing Requirements: The system requires a 64-bit multi-core processor with a minimum clock 

speed of 1.5 GHz. While the application can function on lower-powered processors, certain 

operations—particularly the RSA key generation and the analysis phase of adaptive steganography—

may experience noticeable delays. For optimal performance when processing high-resolution images 

or handling batch operations, a quad-core processor with a clock speed of 2.0 GHz or higher is 

recommended. The system utilizes parallel processing for image analysis and steganographic 

operations where possible, making effective use of multiple CPU cores when available. 

 

Memory Requirements: A minimum of 4GB of RAM is required for standard operation with typical 

image sizes (up to 8 megapixels). The memory requirements scale with the dimensions of the images 

being processed, as the system needs to maintain both the original and modified versions in memory 

during operations. For users working with high-resolution images (20+ megapixels) or performing 

batch processing operations, 8GB or more of RAM is recommended. 
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8. FUNCTIONAL REQUIREMENTS  

 

8.1 User Interface & Features: 

The user interface (UI) of the image steganography system is designed to be intuitive and user-

friendly. It includes the following features: 

 

1. Dashboard: A simple homepage where users can choose between encryption and decryption. 

2. File Upload: Users can upload an image file where they wish to embed a secret message. 

3. Text Input: A text box for users to input the secret message. 

4. Encryption Button: Initiates RSA encryption and embedding into the image. 

5. Decryption Button: Extracts and decrypts hidden messages from a steganographic image. 

6. Download Option: Enables users to save the modified image with the hidden message. 

7. Status Notifications: Displays messages confirming successful encryption, decryption, or errors. 

 

8.2 Encryption Process Flow 

The encryption process consists of the following steps: 

1. User inputs the message to be hidden. 

2. RSA encryption is applied using the recipient’s public key. 

3. The encrypted message is embedded into the image using Least Significant Bit (LSB) 

steganography. 

4. A new steganographic image is generated and displayed for the user to download. 

5. The secret message is now securely hidden within the image, protected by RSA encryption. 
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8.3 Decryption Process Flow: 

The decryption process follows these steps: 

 

1. User uploads the steganographic image containing the hidden message. 

2.The system extracts the hidden encrypted message from the image. 

3. RSA decryption is applied using the recipient’s private key. 

4. The original message is displayed for the user, ensuring security and confidentiality. 

8.4 Performance & Security Considerations 

The system ensures: 

High Security: The combination of RSA encryption and steganography prevents unauthorized 

access. 

Robustness: The embedded data remains intact despite minor image modifications. 

Effeciency: Optimized algorithms ensure fast encryption and decryption without significant 

performance impact. 

Steganalysis Resistance: Encrypted data is not directly readable, even if detected. 

  

  

  

  

  

  

  

  

  



 

 

  

   

9. SOURCE CODE  

<!DOCTYPE html> 

<html lang="en"> 

<head> 

    <meta charset="UTF-8"> 

    <meta name="viewport" content="width=device-width, initial-scale=1.0"> 

    <title>Image Steganography with RSA</title> 

    <script src="https://cdnjs.cloudflare.com/ajax/libs/jsencrypt/3.3.2/jsencrypt.min.js"></script> 

    <style> 

        * { 

            margin: 0; 

            padding: 0; 

            box-sizing: border-box; 

            font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif; 

        } 

 

        body { 

            background: linear-gradient(135deg, #3a1c71, #d76d77, #ffaf7b); 

            background-size: 400% 400%; 

            animation: gradient 15s ease infinite; 

            height: 100vh; 

            display: flex; 

            flex-direction: column; 

            align-items: center; 

            color: white; 

            padding: 20px; 

        } 

 

        @keyframes gradient { 

            0% { 

                background-position: 0% 50%; 

            } 

            50% { 

                background-position: 100% 50%; 

            } 

            100% { 

                background-position: 0% 50%; 

            } 

        } 

 

        header { 
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            text-align: center; 

            margin-bottom: 30px; 

            padding-top: 30px; 

        } 

 

        h1 { 

            font-size: 2.5rem; 

            letter-spacing: 2px; 

            margin-bottom: 10px; 

            text-shadow: 2px 2px 4px rgba(0, 0, 0, 0.3); 

        } 

 

        .container { 

            display: flex; 

            flex-wrap: wrap; 

            justify-content: center; 

            gap: 50px; 

            width: 100%; 

            max-width: 1200px; 

        } 

 

        .card { 

            background: rgba(255, 255, 255, 0.1); 

            -webkit-backdrop-filter: blur(10px); 

            backdrop-filter: blur(10px); 

            border-radius: 20px; 

            padding: 30px; 

            width: 450px; 

            display: flex; 

            flex-direction: column; 

            align-items: center; 

            box-shadow: 0 8px 32px rgba(0, 0, 0, 0.1); 

            transition: transform 0.3s, box-shadow 0.3s; 

            position: relative; 

            overflow: hidden; 

        } 

 

        .card::before { 

            content: ''; 

            position: absolute; 

            top: 0; 

            left: 0; 

            width: 100%; 

            height: 100%; 
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            background: linear-gradient(45deg, rgba(255, 255, 255, 0.1), transparent); 

            pointer-events: none; 

        } 

 

        .card:hover { 

            transform: translateY(-5px); 

            box-shadow: 0 15px 35px rgba(0, 0, 0, 0.2); 

        } 

 

        .card h2 { 

            font-size: 1.8rem; 

            margin-bottom: 20px; 

            font-weight: 600; 

        } 

 

        .image-container { 

            width: 200px; 

            height: 200px; 

            background-color: #e91e63; 

            border-radius: 10px; 

            margin-bottom: 20px; 

            overflow: hidden; 

            position: relative; 

            box-shadow: 0 5px 15px rgba(0, 0, 0, 0.2); 

            transition: transform 0.3s; 

            display: flex; 

            justify-content: center; 

            align-items: center; 

        } 

 

        .image-container:hover { 

            transform: scale(1.03); 

        } 

 

        .image-container img { 

            width: 100%; 

            height: 100%; 

            object-fit: cover; 

        } 

 

        .upload-btn { 

            background: rgba(255, 255, 255, 0.2); 

            border: none; 

            border-radius: 30px; 
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            color: white; 

            padding: 12px 25px; 

            font-size: 1rem; 

            cursor: pointer; 

            transition: all 0.3s; 

            margin-bottom: 15px; 

            -webkit-backdrop-filter: blur(5px); 

            backdrop-filter: blur(5px); 

            width: 80%; 

            text-align: center; 

        } 

 

        .upload-btn:hover { 

            background: rgba(255, 255, 255, 0.3); 

            transform: translateY(-2px); 

        } 

 

        .action-btn { 

            background: #e91e63; 

            border: none; 

            border-radius: 30px; 

            color: white; 

            padding: 12px 25px; 

            font-size: 1rem; 

            font-weight: 600; 

            cursor: pointer; 

            transition: all 0.3s; 

            width: 80%; 

            text-align: center; 

            box-shadow: 0 5px 15px rgba(233, 30, 99, 0.4); 

        } 

 

        .action-btn:hover { 

            background: #d81b60; 

            transform: translateY(-2px); 

            box-shadow: 0 8px 20px rgba(233, 30, 99, 0.6); 

        } 

 

        .file-input { 

            display: none; 

        } 

 

        .message-input { 

            width: 80%; 
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            margin: 15px 0; 

            padding: 12px; 

            border-radius: 10px; 

            border: 1px solid rgba(255, 255, 255, 0.2); 

            background: rgba(255, 255, 255, 0.1); 

            color: white; 

            font-size: 0.9rem; 

            outline: none; 

            transition: all 0.3s; 

        } 

 

        .message-input::placeholder { 

            color: rgba(255, 255, 255, 0.7); 

        } 

 

        .message-input:focus { 

            border-color: rgba(255, 255, 255, 0.5); 

            background: rgba(255, 255, 255, 0.15); 

        } 

 

        .message-output { 

            width: 80%; 

            margin: 15px 0; 

            padding: 12px; 

            border-radius: 10px; 

            border: 1px solid rgba(255, 255, 255, 0.2); 

            background: rgba(255, 255, 255, 0.1); 

            color: white; 

            font-size: 0.9rem; 

            min-height: 60px; 

            max-height: 200px; 

            overflow-y: auto; 

            word-break: break-word; 

        } 

 

        .key-input { 

            width: 80%; 

            margin: 15px 0; 

            padding: 12px; 

            border-radius: 10px; 

            border: 1px solid rgba(255, 255, 255, 0.2); 

            background: rgba(255, 255, 255, 0.1); 

            color: white; 

            font-size: 0.9rem; 
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            outline: none; 

            transition: all 0.3s; 

            height: 100px; 

            resize: none; 

        } 

 

        #key-container { 

            width: 100%; 

            max-width: 800px; 

            margin-top: 40px; 

            padding: 20px; 

            background: rgba(255, 255, 255, 0.1); 

            -webkit-backdrop-filter: blur(10px); 

            backdrop-filter: blur(10px); 

            border-radius: 15px; 

            text-align: center; 

        } 

 

        .key-btns { 

            display: flex; 

            justify-content: center; 

            gap: 20px; 

            margin-top: 15px; 

        } 

 

        .key-btn { 

            background: rgba(255, 255, 255, 0.2); 

            border: none; 

            border-radius: 30px; 

            color: white; 

            padding: 10px 20px; 

            font-size: 0.9rem; 

            cursor: pointer; 

            transition: all 0.3s; 

        } 

 

        .key-btn:hover { 

            background: rgba(255, 255, 255, 0.3); 

        } 

 

        .hidden { 

            display: none; 

        } 
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        .key-display { 

            width: 100%; 

            height: 100px; 

            margin-top: 15px; 

            padding: 10px; 

            background: rgba(0, 0, 0, 0.2); 

            border-radius: 10px; 

            color: #a0e4ff; 

            font-family: monospace; 

            font-size: 0.8rem; 

            overflow-y: auto; 

            text-align: left; 

            white-space: pre-wrap; 

            word-break: break-all; 

        } 

 

        .status { 

            margin-top: 15px; 

            font-size: 0.9rem; 

            padding: 10px 15px; 

            border-radius: 5px; 

            background: rgba(0, 0, 0, 0.2); 

            display: none; 

        } 

 

        .success { 

            background: rgba(76, 175, 80, 0.3); 

        } 

 

        .error { 

            background: rgba(244, 67, 54, 0.3); 

        } 

 

        .loading { 

            display: inline-block; 

            width: 20px; 

            height: 20px; 

            border: 3px solid rgba(255, 255, 255, 0.3); 

            border-radius: 50%; 

            border-top-color: white; 

            animation: spin 1s ease-in-out infinite; 

            margin-right: 10px; 

            vertical-align: middle; 

        } 
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        @keyframes spin { 

            to { transform: rotate(360deg); } 

        } 

 

        .team-signature { 

            position: absolute; 

            bottom: 40px; 

            font-size: 1.5rem; 

            letter-spacing: 1px; 

            font-weight: 300; 

            opacity: 0.8; 

        } 

 

        @media (max-width: 950px) { 

            .container { 

                flex-direction: column; 

                align-items: center; 

            } 

            .card { 

                width: 90%; 

                max-width: 400px; 

            } 

            h1 { 

                font-size: 2rem; 

            } 

            .team-signature { 

                position: static; 

                margin-top: 40px; 

            } 

            #key-container { 

                margin-bottom: 60px; 

            } 

        } 

 

        /* Tooltip styles */ 

        .tooltip { 

            position: relative; 

            display: inline-block; 

        } 

 

        .tooltip .tooltiptext { 

            visibility: hidden; 

            width: 200px; 
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            background-color: rgba(0, 0, 0, 0.8); 

            color: #fff; 

            text-align: center; 

            border-radius: 6px; 

            padding: 10px; 

            position: absolute; 

            z-index: 1; 

            bottom: 125%; 

            left: 50%; 

            transform: translateX(-50%); 

            opacity: 0; 

            transition: opacity 0.3s; 

            font-size: 0.8rem; 

        } 

 

        .tooltip:hover .tooltiptext { 

            visibility: visible; 

            opacity: 1; 

        } 

    </style> 

</head> 

<body> 

    <header> 

        <h1>IMAGE STEGANOGRAPHY</h1> 

    </header> 

 

    <div class="container"> 

        <div class="card"> 

            <h2>upload</h2> 

            <div class="image-container" id="encrypt-image-container"> 

                <img id="encrypt-image" alt="Cover image"> 

            </div> 

            <label for="encrypt-file" class="upload-btn">Choose Image</label> 

            <input type="file" id="encrypt-file" class="file-input" accept="image/*"> 

            <input type="text" id="encrypt-message" class="message-input" placeholder="Enter your 

secret message..."> 

            <button id="encrypt-btn" class="action-btn">encrypt</button> 

            <button id="download-encrypted-img-btn" class="upload-btn hidden">Download 

Encrypted Image</button> 

            <button id="download-key-btn" class="upload-btn hidden">Download Private 

Key</button> 

            <div id="encrypt-status" class="status"></div> 

        </div> 
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        <div class="card"> 

            <h2>upload</h2> 

            <div class="image-container" id="decrypt-image-container"> 

                <img id="decrypt-image" alt="Stego image"> 

            </div> 

            <label for="decrypt-file" class="upload-btn">Choose Image</label> 

            <input type="file" id="decrypt-file" class="file-input" accept="image/*"> 

            <label for="key-file" class="upload-btn">Upload Private Key File</label> 

            <input type="file" id="key-file" class="file-input" accept=".txt"> 

            <textarea id="decrypt-key-input" class="key-input" placeholder="Or paste your private key 

here..."></textarea> 

            <button id="decrypt-btn" class="action-btn">decrypt</button> 

            <div id="decrypt-message" class="message-output"></div> 

            <div id="decrypt-status" class="status"></div> 

        </div> 

    </div> 

 

    <div id="key-container"> 

        <h2>RSA Key Management</h2> 

        <div class="key-btns"> 

            <button id="generate-keys-btn" class="key-btn tooltip"> 

                Generate New Keys 

                <span class="tooltiptext">Create new RSA key pair for encryption/decryption</span> 

            </button> 

            <button id="show-private-key-btn" class="key-btn tooltip"> 

                Show Private Key 

                <span class="tooltiptext">Display your private key (keep this secret!)</span> 

            </button> 

            <button id="show-public-key-btn" class="key-btn tooltip"> 

                Show Public Key 

                <span class="tooltiptext">Display your public key (share this with others)</span> 

            </button> 

        </div> 

        <div id="key-display" class="key-display hidden"></div> 

    </div> 

 

    <script> 

        // Initialize RSA encryption 

        let crypt = new JSEncrypt({default_key_size: 1024}); 

        let privKey = localStorage.getItem('rsa_private_key'); 

        let pubKey = localStorage.getItem('rsa_public_key'); 

         

        // Generate keys if not exist 

        if (!privKey || !pubKey) { 



 

 

56 

  

            generateNewKeys(); 

        } else { 

            crypt.setPrivateKey(privKey); 

            crypt.setPublicKey(pubKey); 

        } 

 

        // Store the current key for each encrypted image 

        let currentImageKey = null; 

 

        // DOM Elements 

        const encryptImage = document.getElementById('encrypt-image'); 

        const encryptFile = document.getElementById('encrypt-file'); 

        const encryptImageContainer = document.getElementById('encrypt-image-container'); 

        const encryptMessage = document.getElementById('encrypt-message'); 

        const encryptBtn = document.getElementById('encrypt-btn'); 

        const encryptStatus = document.getElementById('encrypt-status'); 

        const downloadEncryptedImgBtn = document.getElementById('download-encrypted-img-

btn'); 

        const downloadKeyBtn = document.getElementById('download-key-btn'); 

 

        const decryptImage = document.getElementById('decrypt-image'); 

        const decryptFile = document.getElementById('decrypt-file'); 

        const decryptImageContainer = document.getElementById('decrypt-image-container'); 

        const decryptBtn = document.getElementById('decrypt-btn'); 

        const decryptMessage = document.getElementById('decrypt-message'); 

        const decryptStatus = document.getElementById('decrypt-status'); 

        const keyFile = document.getElementById('key-file'); 

        const decryptKeyInput = document.getElementById('decrypt-key-input'); 

 

        const generateKeysBtn = document.getElementById('generate-keys-btn'); 

        const showPrivateKeyBtn = document.getElementById('show-private-key-btn'); 

        const showPublicKeyBtn = document.getElementById('show-public-key-btn'); 

        const keyDisplay = document.getElementById('key-display'); 

 

        // Event listeners 

        encryptFile.addEventListener('change', loadEncryptImage); 

        decryptFile.addEventListener('change', loadDecryptImage); 

        encryptBtn.addEventListener('click', encryptMessageToImage); 

        decryptBtn.addEventListener('click', decryptMessageFromImage); 

        generateKeysBtn.addEventListener('click', generateNewKeys); 

        showPrivateKeyBtn.addEventListener('click', showPrivateKey); 

        showPublicKeyBtn.addEventListener('click', showPublicKey); 

        downloadEncryptedImgBtn.addEventListener('click', downloadEncryptedImage); 

        downloadKeyBtn.addEventListener('click', downloadPrivateKey); 
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        keyFile.addEventListener('change', loadKeyFile); 

 

        const decryptImage = document.getElementById('decrypt-image'); 

        const decryptFile = document.getElementById('decrypt-file'); 

        const decryptImageContainer = document.getElementById('decrypt-image-container'); 

        const decryptBtn = document.getElementById('decrypt-btn'); 

        const decryptMessage = document.getElementById('decrypt-message'); 

        const decryptStatus = document.getElementById('decrypt-status'); 

        const keyFile = document.getElementById('key-file'); 

        const decryptKeyInput = document.getElementById('decrypt-key-input'); 

 

        const generateKeysBtn = document.getElementById('generate-keys-btn'); 

        const showPrivateKeyBtn = document.getElementById('show-private-key-btn'); 

        const showPublicKeyBtn = document.getElementById('show-public-key-btn'); 

        const keyDisplay = document.getElementById('key-display'); 

 

        // Event listeners 

        encryptFile.addEventListener('change', loadEncryptImage); 

        decryptFile.addEventListener('change', loadDecryptImage); 

        encryptBtn.addEventListener('click', encryptMessageToImage); 

        decryptBtn.addEventListener('click', decryptMessageFromImage); 

        generateKeysBtn.addEventListener('click', generateNewKeys); 

        showPrivateKeyBtn.addEventListener('click', showPrivateKey); 

        showPublicKeyBtn.addEventListener('click', showPublicKey); 

        downloadEncryptedImgBtn.addEventListener('click', downloadEncryptedImage); 

        downloadKeyBtn.addEventListener('click', downloadPrivateKey); 

        keyFile.addEventListener('change', loadKeyFile); 

 

 

            reader.readAsDataURL(file); 

            encryptStatus.style.display = 'none'; 

            downloadEncryptedImgBtn.classList.add('hidden'); 

            downloadKeyBtn.classList.add('hidden'); 

             

            // Clear the message input for a fresh start 

            encryptMessage.value = ''; 

        } 

 

        // Generate a new key for each image 

        function generateNewKeyForImage() { 

            const imageCrypt = new JSEncrypt({default_key_size: 1024}); 

            imageCrypt.getKey(); 

             

            currentImageKey = imageCrypt.getPrivateKey(); 
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            const imagePublicKey = imageCrypt.getPublicKey(); 

             

            // Use this key for the current image encryption 

            crypt.setPrivateKey(currentImageKey); 

            crypt.setPublicKey(imagePublicKey); 

             

            showStatus(encryptStatus, 'New encryption key generated for this image', 'success'); 

            setTimeout(() => { encryptStatus.style.display = 'none'; }, 3000); 

        } 

 

        // Load image for decryption 

        function loadDecryptImage(e) { 

            const file = e.target.files[0]; 

            if (!file) return; 

 

            const reader = new FileReader(); 

            reader.onload = function(event) { 

                decryptImage.src = event.target.result; 

                decryptImageContainer.style.backgroundColor = 'transparent'; 

            }; 

            reader.readAsDataURL(file); 

            decryptStatus.style.display = 'none'; 

            decryptMessage.innerText = ''; 

             

            // Clear the key input for new decryption 

            decryptKeyInput.value = ''; 

        } 

 

        // Load key file 

        function loadKeyFile(e) { 

            const file = e.target.files[0]; 

            if (!file) return; 

 

            const reader = new FileReader(); 

            reader.onload = function(event) { 

                decryptKeyInput.value = event.target.result; 

            }; 

            reader.readAsText(file); 

        } 

 

        // Encrypt message into image 

        function encryptMessageToImage() { 

            if (!encryptImage.src) { 

                showStatus(encryptStatus, 'Please select an image first', 'error'); 
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                return; 

            } 

 

            const message = encryptMessage.value.trim(); 

            if (!message) { 

                showStatus(encryptStatus, 'Please enter a message to encrypt', 'error'); 

                return; 

            } 

 

            showStatus(encryptStatus, '<div class="loading"></div> Encrypting message...', ''); 

 

            // Create a canvas element 

            const canvas = document.createElement('canvas'); 

            const ctx = canvas.getContext('2d'); 

             

            // Create a new image to load the source 

            const img = new Image(); 

            img.crossOrigin = 'Anonymous'; 

             

            img.onload = function() { 

                // Set canvas dimensions to match the image 

                canvas.width = img.width; 

                canvas.height = img.height; 

                 

                // Draw the image on the canvas 

                ctx.drawImage(img, 0, 0); 

                 

                // Encrypt the message with RSA 

                const encryptedMessage = crypt.encrypt(message); 

                if (!encryptedMessage) { 

                    showStatus(encryptStatus, 'Encryption failed. Try again or generate new keys.', 'error'); 

                    return; 

                } 

                 

                // Convert the encrypted message to binary 

                const binaryMessage = convertToBinary(encryptedMessage); 

                 

                // Get image data 

                const imageData = ctx.getImageData(0, 0, canvas.width, canvas.height); 

                const data = imageData.data; 

                 

                // Check if the image is large enough for the message 

                if (data.length / 4 < binaryMessage.length) { 
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                    showStatus(encryptStatus, 'Image too small for this message. Choose a larger image.', 

'error'); 

                    return; 

                } 

                 

                // Embed the message length at the beginning 

                const messageLengthBinary = convertToBinary(binaryMessage.length.toString()); 

                for (let i = 0; i < 32; i++) { 

                    const bit = i < messageLengthBinary.length ? messageLengthBinary[i] : '0'; 

                    // Modify the least significant bit of the red channel 

                    data[i * 4] = (data[i * 4] & 254) | parseInt(bit); 

                } 

                 

                // Embed the message 

                for (let i = 0; i < binaryMessage.length; i++) { 

                    // Start after the length bits (32 pixels) 

                    const position = (i + 32) * 4; 

                    if (position >= data.length) break; 

                     

                    // Modify the least significant bit of the blue channel 

                    data[position + 2] = (data[position + 2] & 254) | parseInt(binaryMessage[i]); 

                } 

                 

                // Put the modified image data back to the canvas 

                ctx.putImageData(imageData, 0, 0); 

                 

                // Store the encrypted image 

                encryptedImageData = canvas.toDataURL('image/png'); 

                 

                // Display success and show download buttons 

                showStatus(encryptStatus, 'Message encrypted successfully!', 'success'); 

                downloadEncryptedImgBtn.classList.remove('hidden'); 

                downloadKeyBtn.classList.remove('hidden'); 

            }; 

             

            img.onerror = function() { 

                showStatus(encryptStatus, 'Error loading image. Try another image.', 'error'); 

            }; 

             

            img.src = encryptImage.src; 

        } 

 

        // Function to download the encrypted image 

        function downloadEncryptedImage() { 
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            if (!encryptedImageData) { 

                showStatus(encryptStatus, 'No encrypted image available.', 'error'); 

                return; 

            } 

             

            const link = document.createElement('a'); 

            link.href = encryptedImageData; 

            link.download = 'encrypted.png'; 

            document.body.appendChild(link); 

            link.click(); 

            document.body.removeChild(link); 

        } 

 

        // Function to download the private key 

        function downloadPrivateKey() { 

            if (!currentImageKey) { 

                showStatus(encryptStatus, 'No private key available for this image.', 'error'); 

                return; 

            } 

             

            const blob = new Blob([currentImageKey], { type: 'text/plain' }); 

            const link = document.createElement('a'); 

            link.href = URL.createObjectURL(blob); 

            link.download = 'privatekey.txt'; 

            document.body.appendChild(link); 

            link.click(); 

            document.body.removeChild(link); 

            URL.revokeObjectURL(link.href); 

        } 

 

        // Decrypt message from image 

        function decryptMessageFromImage() { 

            if (!decryptImage.src) { 

                showStatus(decryptStatus, 'Please select an image first', 'error'); 

                return; 

            } 

 

            // Get the private key from input or file 

            const key = decryptKeyInput.value.trim(); 

            if (!key) { 

                showStatus(decryptStatus, 'Please enter or upload a private key', 'error'); 

                return; 

            } 
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            showStatus(decryptStatus, '<div class="loading"></div> Decrypting message...', ''); 

 

            // Set the private key for decryption 

            const decrypter = new JSEncrypt(); 

            decrypter.setPrivateKey(key); 

 

            // Create a canvas element 

            const canvas = document.createElement('canvas'); 

            const ctx = canvas.getContext('2d'); 

             

            // Create a new image to load the source 

            const img = new Image(); 

            img.crossOrigin = 'Anonymous'; 

             

            img.onload = function() { 

                // Set canvas dimensions to match the image 

                canvas.width = img.width; 

                canvas.height = img.height; 

                 

                // Draw the image on the canvas 

                ctx.drawImage(img, 0, 0); 

                 

                // Get image data 

                const imageData = ctx.getImageData(0, 0, canvas.width, canvas.height); 

                const data = imageData.data; 

                 

                // Extract the message length first (from first 32 pixels) 

                let messageLengthBinary = ''; 

                for (let i = 0; i < 32; i++) { 

                    messageLengthBinary += (data[i * 4] & 1).toString(); 

                } 

                 

                const messageLength = parseInt(convertFromBinary(messageLengthBinary)); 

                 

                if (isNaN(messageLength) || messageLength <= 0 || messageLength > data.length / 4) { 

                    showStatus(decryptStatus, 'No hidden message found in this image.', 'error'); 

                    return; 

                } 

                 

                // Extract the binary message 

                let binaryMessage = ''; 

                for (let i = 0; i < messageLength; i++) { 

                    // Start after the length bits (32 pixels) 

                    const position = (i + 32) * 4; 
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                    if (position >= data.length) break; 

                     

                    // Extract the least significant bit of the blue channel 

                    binaryMessage += (data[position + 2] & 1).toString(); 

                } 

                 

                // Convert binary to text 

                const encryptedMessage = convertFromBinary(binaryMessage); 

                 

                // Decrypt the message with RSA 

                const decryptedMessage = decrypter.decrypt(encryptedMessage); 

                 

                if (!decryptedMessage) { 

                    showStatus(decryptStatus, 'Decryption failed. Make sure you have the correct private 

key.', 'error'); 

                    decryptMessage.innerText = 'Decryption failed. Please check your key.'; 

                    return; 

                } 

                 

                // Display the decrypted message 

                decryptMessage.innerText = decryptedMessage; 

                showStatus(decryptStatus, 'Message decrypted successfully!', 'success'); 

            }; 

             

            img.onerror = function() { 

                showStatus(decryptStatus, 'Error loading image. Try another image.', 'error'); 

            }; 

             

            img.src = decryptImage.src; 

        } 

 

        // Helper function to show status messages 

        function showStatus(element, message, type) { 

            element.innerHTML = message; 

            element.className = 'status'; 

            if (type) element.classList.add(type); 

            element.style.display = 'block'; 

        } 

 

        // Helper function to convert text to binary 

        function convertToBinary(text) { 

            let binary = ''; 

            for (let i = 0; i < text.length; i++) { 

                const charCode = text.charCodeAt(i); 
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                const binaryChar = charCode.toString(2).padStart(8, '0'); 

                binary += binaryChar; 

            } 

            return binary; 

        } 

 

        // Helper function to convert binary to text 

        function convertFromBinary(binary) { 

            let text = ''; 

            for (let i = 0; i < binary.length; i += 8) { 

                const byte = binary.substr(i, 8); 

                if (byte.length < 8) break; 

                const charCode = parseInt(byte, 2); 

                text += String.fromCharCode(charCode); 

            } 

            return text; 

        } 

 

        // Generate new RSA key pair 

        function generateNewKeys() { 

            crypt = new JSEncrypt({default_key_size: 1024}); 

            crypt.getKey(); 

             

            privKey = crypt.getPrivateKey(); 

            pubKey = crypt.getPublicKey(); 

             

            // Also update current image key 

            currentImageKey = privKey; 

             

            // Save keys to localStorage 

            localStorage.setItem('rsa_private_key', privKey); 

            localStorage.setItem('rsa_public_key', pubKey); 

             

            keyDisplay.innerText = 'New keys generated and saved!'; 

            keyDisplay.classList.remove('hidden'); 

            setTimeout(() => { 

                keyDisplay.classList.add('hidden'); 

            }, 3000); 

        } 

 

        // Show private key 

        function showPrivateKey() { 

            if (currentImageKey) { 

                keyDisplay.innerText = currentImageKey; // Show the current image's key 



 

 

65 

  

            } else if (privKey) { 

                keyDisplay.innerText = privKey; 

            } else { 

                keyDisplay.innerText = 'No private key found. Generate keys first.'; 

            } 

            keyDisplay.classList.remove('hidden'); 

        } 

 

        // Show public key 

        function showPublicKey() { 

            if (!pubKey) { 

                keyDisplay.innerText = 'No public key found. Generate keys first.'; 

            } else { 

                keyDisplay.innerText = pubKey; 

            } 

            keyDisplay.classList.remove('hidden'); 

        } 

    </script> 

</body> 

</html> 
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10.RESULTS AND DISCUSSION  

9.1 Implementation Description: 

The implementation of the image steganography system is done using Python, leveraging 

libraries such as OpenCV, NumPy, and Cryptography. The core functionalities include: 

RSA Key Generation: Generates a public-private key pair for secure encryption. 

Image Processing: Loads, modifies, and saves images using OpenCV. 

Message Embedding: Uses LSB substitution to hide encrypted text in the image. 

Message Extraction: Retrieves and decrypts hidden messages securely. 

User Interaction: Simple UI for encryption and decryption operations. 

 

 9.2 Image Encryption & Decryption: 

Encryption Process: The user inputs text, which is encrypted with RSA and embedded into 

an image. 

Decryption Process: The hidden message is extracted and decrypted back into readable 

text.Testing Results: The system successfully encrypts and decrypts messages without 

visible image distortion, ensuring security and reliability. 
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11. CONCLUSION AND FUTURE SCOPE  

Conclusion: 

The combination of steganography and RSA encryption provides a highly secure method for 

hidden communication. The system successfully ensures confidentiality, integrity, and 

robustness, making it an effective solution for secure data transmission. Future improvements 

may include support for other file formats and enhanced steganalysis resistance. Image 

steganography using the RSA algorithm provides a robust method for secure data hiding by 

combining cryptography and steganography. The RSA algorithm ensures the confidentiality and 

integrity of hidden data by encrypting it before embedding it into an image. This dual-layer 

security approach enhances resistance to attacks, making it difficult for unauthorized users to 

retrieve or manipulate the concealed information.By leveraging the strengths of RSA 

encryption and image steganography, this technique can be effectively applied in secure 

communications, watermarking, and digital forensics. However, trade-offs such as increased 

computational complexity and potential distortion of the cover image should be carefully 

considered. Future improvements can focus on optimizing embedding techniques and 

enhancing security against steganalysis attacks. 
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