

i

A

Major Project Report

On

Image Steganography using RSA Algorithm

Submitted to CMREC, HYDERABAD

In Partial Fulfillment of the requirements for the Award of Degree of

BACHELOR OF TECHNOLOGY

IN

COMPUTER SCIENCE AND ENGINEERING (DATA SCIENCE)

Submitted

By

T.Swetha (218R1A6761)

 G.Vineesha (218R1A6726)

 G.Raghuram (218R1A6728)

A.Venkat Sai (218R1A6707)

Under the Esteemed guidance of

Mrs. V. Sravani Kumari

 Associate Professor, Department of CSE (Data Science)

Department of Computer Science & Engineering (Data Science)

CMR ENGINEERING COLLEGE
UGC AUTONOMOUS

(Approved by AICTE, NEW DELHI, Affiliated to JNTU, Hyderabad)

Kandlakoya, Medchal Road, R.R. Dist. Hyderabad-501 401.

2024-2025

ii

CMR ENGINEERING COLLEGE

UGC AUTONOMOUS

 (Accredited by NBA,Approved by AICTE NEW DELHI, Affiliated to JNTU, Hyderabad)
Kandlakoya, Medchal Road, Hyderabad-501 401

Department of Computer Science & Engineering(Data Science)

 CERTIFICATE

This is to certify that the project entitled “Image Steganography using RSA Algorithm” is a bonafide

work carried out by

T.Swetha (218R1A6761)

 G.Vineesha (218R1A6726)

 G.Raghuram (218R1A6728)

A.Venkat Sai (218R1A6707)

in partial fulfillment of the requirement for the award of the degree of BACHELOR OF TECHNOLOGY in

COMPUTER SCIENCE AND ENGINEERING (DATA SCIENCE) from CMR Engineering College,

affiliated to JNTU, Hyderabad, under our guidance and supervision.

The results presented in this Major project have been verified and are found to be satisfactory. The results

embodied in this Major project have not been submitted to any other university for the award of any other degree

or diploma.

Internal Guide Major Project

Coordinator

Head of the Department External Examiner

Mrs.V. sravani Kumari Mrs. G. Shruthi Dr. M. Laxmaiah

Associate Professor Assistant Professor Professor & H.O.D

CSE (Data Science),

CMREC

CSE (Data Science),

CMREC

CSE (Data Science),

CMREC

iii

DECLARATION

This is to certify that the work reported in the present Major project entitled " Image Steganography

using RSA Algorithm” is a record of bonafide work done by us in the Department of Computer

Science and Engineering (Data Science), CMR Engineering College, JNTU Hyderabad. The reports

are based on the project work done entirely by us and not copied from any other source.We submit our

project for further development by any interested students who share similar interests to improve the

project in the future.

The results embodied in this Major project report have not been submitted to any other University or

Institute for the award of any degree or diploma to the best of our knowledge and belief.

 T.Swetha (218R1A6761)

 G.Vineesha (218R1A6726)

 G.Raghuram (218R1A6728)

 A.Venkat Sai (218R1A6707)

iv

ACKNOWLEDGMENT

We are extremely grateful to Dr. A. Srinivasula Reddy, Principal and Dr. M. Laxmaiah, HOD,

Department of CSE (Data Science), CMR Engineering College for their constant support.

We are extremely thankful to Mr.V. Sravani Kumari, Associate Professor, Internal Guide, Department

of CSE(DS), for his/ her constant guidance, encouragement and moral support throughout the project.

 We will be failing in duty if We do not acknowledge with grateful thanks to the authors of the references

and other literatures referred in this Project.

We thank Mr.G. Shruthi, Associate Professor ,CSE(DS) Department ,Major Project Coordinator for her

constant support in carrying out the project activities and reviews.

We express my thanks to all staff members and friends for all the help and co-ordination extended in

bringing out this project successfully in time.

Finally, We are very much thankful to our parents who guided me for every step.

 T.Swetha (218R1A6761)

 G.Vineesha (218R1A6726)

 G.Raghuram (218R1A6728)

 A.Venkat Sai (218R1A6707)

v

ABSTRACT

The project "Image Steganography Using RSA Algorithm" integrates steganography with

cryptographic encryption to provide a secure and efficient method for hiding sensitive information

within digital images. In today’s digital era, where data security is a growing concern, this approach

ensures confidentiality, integrity, and authenticity by combining two powerful security techniques.

Steganography enables the covert embedding of data into images, making it visually undetectable,

while RSA encryption ensures that even if the hidden data is extracted, it remains encrypted and

unreadable without the appropriate decryption key.This web-based application allows users to encrypt

messages, generate RSA key pairs, and securely embed encrypted data within images, making it highly

suitable for applications such as secure communication, digital watermarking, confidential data

transfer, and digital forensics. The encryption process ensures that the original message is first

converted into ciphertext using RSA, and then embedded within an image using Least Significant Bit

(LSB) steganography, ensuring that the message remains hidden and secure.For decryption, the

recipient can upload the stego-image, extract the encrypted message, and decrypt it using their private

RSA key. The use of asymmetric cryptography (RSA) adds an additional layer of security, ensuring

that only authorized individuals with the private key can access the original data. The system also

includes key generation and management features, enabling users to securely generate and store their

RSA keys.Designed with a user-friendly interface, the platform provides a seamless experience for

encryption and decryption, making it accessible to both technical and non-technical users. It can be

utilized for covert communication, copyright protection, secure file transmission, military intelligence,

and corporate data security. The integration of steganography and cryptography makes this project a

robust, efficient, and practical solution for modern cybersecurity challenges, offering a highly secure

method for transmitting confidential information while maintaining the integrity of the original media

file.

1

CONTENTS

TOPIC PAGE NO

ABSTRACT v

1. INTRODUCTION

1.1. Overview 3

1.2. Research Motivation 4

1.3. Problem Statement 5

1.4. Application 6

2. LITERATURE SURVEY 8

3. EXISTING SYSTEM

3.1. Traditional Steganography Methods 13

3.2. Existing Cryptographic Techniques & Drawbacks 14

4. PROPOSED SYSTEM

4.1. Overview 16

4.2. How Steganography & R SA Work Together 17

4.3. Encryption & Decryption Process 19

4.4. Security Advantages of RSA-Based Steganography 21

5. UML DIAGRAMS

5.1. Class Diagram 23

5.2. Use Case Diagram 24

5.3. Sequence Diagram 25

5.4. Activity Diagram 25

6. SOFTWARE ENVIRONMENT

6.1. What is python and its Advantages and Disadvantages 26

6.2. Why We Used Python for this project 28

6.3. Libraries Used 30

6.4. Installing Dependencies & Running the Project
 33

7. SYSTEM REQUIREMENTS SPECIFICATIONS

7.1. Software Requirements 41

7.2. Hardware Requirements 43

8. FUNCTIONAL REQUIREMENTS

8.1. Used Interface & Features

 44

8.2. Encryption Process Flow

 44

8.3. Decryption Process Flow

 45

8.4. Performance & Security Considerate ions
 45

2

9. SOURCE CODE 46

10. RESULTS AND DISCUSSION

10.1. Implementation description 66

10.2. Image Encryption & Decryption 66

11. CONCLUSION AND REFERENCES 68

 1. Introduction

1.1 Overview

In today’s digital world, securing sensitive information is crucial due to the increasing risks of data

breaches, cyber threats, and unauthorized access. Image Steganography using RSA Algorithm is a

technique that enhances data security by combining two powerful methods—steganography and

cryptography—to protect confidential information from unauthorized access.Steganography is the

art of hiding information within digital media such as images, making it undetectable to

unauthorized users. However, traditional steganography alone does not guarantee data

confidentiality, as hidden data can still be extracted. To address this limitation, we integrate RSA

encryption, a widely used asymmetric cryptographic algorithm, to ensure that even if the hidden

data is retrieved, it remains secure and unreadable without the correct decryption key.

This project follows a three-step process:

Encryption – The user inputs a secret message, which is encrypted using the RSA algorithm,

generating a secure ciphertext.

Embedding – The encrypted message is hidden within an image using Least Significant Bit (LSB)

steganography, ensuring minimal visual distortion.

Extraction & Decryption – The recipient extracts the hidden encrypted data from the image and

decrypts it using the RSA private key to retrieve the original message.

Our system is implemented as a web-based application, making it user-friendly and accessible. It

allows users to securely transmit messages, prevent data interception, and enhance information

confidentiality. This technology finds applications in secure communication, digital watermarking,

forensic investigations, and military intelligence. By combining steganography and RSA encryption,

our project ensures that sensitive information remains both hidden and encrypted, offering robust

protection against cyber threats.

This innovative approach provides a highly secure and reliable method for digital data protection,

making it an ideal solution for applications requiring covert communication, digital rights

management, and secure file transmission.

3

4

1.2 Research Motivation

In the modern digital world, data security and privacy have become critical concerns due to the

exponential growth of cyber threats, surveillance, and unauthorized access to sensitive

information. Traditional methods of data encryption are effective in securing information,

but they often attract attention because encrypted data appears unreadable to attackers. This makes

encryption alone insufficient for covert communication, as the mere presence of ciphertext can

raise suspicion and provoke attacks.

To address this challenge, steganography—the art of hiding information within digital media—has

emerged as a powerful technique for concealing sensitive data while maintaining a normal

appearance. By embedding confidential information inside an image, an individual can securely

transmit messages without raising suspicion. However, traditional steganographic methods are

vulnerable to steganalysis, where attackers use advanced detection techniques to extract the

hidden data.

This project is motivated by the need to develop a highly secure communication system that

integrates both steganography and cryptography for dual-layer security. The combination of Least

Significant Bit (LSB) steganography and RSA encryption provides a robust security mechanism

that ensures:

Confidentiality – Even if hidden data is extracted from the image, it remains encrypted and

unreadable without the correct decryption key.

Data Integrity – RSA encryption ensures that messages remain intact and cannot be tampered

with.

Undetectability – The use of LSB steganography ensures that the image appears unchanged,

preventing suspicion from attackers.

 Growing Cyber Threats – Cyberattacks, data breaches, and surveillance are increasing, making

secure communication essential.

 Limitations of Traditional Encryption – Encrypted messages, even though secure, are easily

5

 Need for Covert Communication – Military, in2t elligence agencies, and journalists need

untraceable ways to share sensitive information.

1.3 Problem Statement

The digital communication landscape faces a multifaceted challenge in securing sensitive

information against increasingly sophisticated cyber threats. Despite advancements in

encryption technologies, several critical issues remain unresolved in the domain of secure data

transmission

First, the fundamental vulnerability of encryption lies in its visibility – encrypted data, while

unintelligible, signals the presence of potentially valuable information, making it a target for

attacks. Even the most robust encryption algorithms cannot address this fundamental issue of

encryption detectability, which can compromise sensitive communications in scenarios where

confidentiality of the communication itself is crucial.

Second, conventional cryptographic methods often operate in isolation, without

complementary security layers, creating single points of failure. If an encryption key is

compromised or a cryptographic algorithm is broken, the entire security system collapses,

exposing all protected data. This reliance on a single security mechanism represents a

significant vulnerability in current approaches to data protection.

Third, as computational power continues to increase exponentially, traditional encryption

methods face mounting challenges from brute force attacks and other cryptanalytic techniques.

This escalating computational capability necessitates the development of more complex and

multi-layered security approaches that can withstand advanced attacks and provide long-term

protection for sensitive information.

Fourth, the dynamic nature of digital threats requires security solutions that can adapt to

evolving attack vectors without requiring frequent and disruptive system overhauls. Current

encryption methodologies often lack this adaptability, requiring significant modifications or

replacements when new vulnerabilities are discovered.

6

This research addresses these challenges by proposing a comprehensive security framework that

combines RSA cryptography with advanced image steganography techniques. The primary research

question is: How can the integration of RSA encryption with image steganography create a more

robust and multilayered security system for protecting sensitive information in digital

communications? By addressing this question, we aim to develop a solution that not only encrypts

data effectively but also conceals its very existence, thereby providing a more comprehensive

approach to data security in the digital age.

1.4 Applications

1. The integrated RSA-steganography system developed in this research offers versatile

applications across numerous domains where information security is paramount. This

dual-layer protection mechanism, combining the strengths of cryptographic encryption

with concealment techniques, addresses a wide range of security challenges in

contemporary digital environments.

2. In the realm of military and intelligence operations, this technology provides a crucial

capability for secure communication in hostile environments. Sensitive tactical

information can be encrypted using RSA and embedded within ordinary images that

appear innocuous to casual observers or automated surveillance systems. This allows

field operatives to exchange critical intelligence without triggering detection

mechanisms, maintaining operational security even under intense scrutiny. The system's

ability to conceal not just the content but the very existence of communication offers a

significant advantage in covert operations where traditional encrypted channels might

draw unwanted attention.

3. For corporate and financial institutions, the application of this technology extends to

the protection of proprietary information and financial data. Sensitive business

strategies, merger plans, or financial transactions can be secured using RSA encryption

and concealed within routine business documents or images shared across networks.

This approach provides an additional security layer beyond standard encryption,

protecting valuable intellectual property and confidential financial information from

industrial espionage and data breaches. The system's flexibility allows for integration

with existing security infrastructures, enhancing overall data protection without

requiring complete overhauls of established systems.

7

4. In healthcare settings, where patient confidentiality is legally mandated and ethically

essential, this technology offers a robust solution for securing personal health

information during transmission and storage. Medical images themselves can serve as

carriers for encrypted patient data, creating a seamless and secure method for sharing

sensitive health information between healthcare providers. This application is

particularly valuable in telemedicine scenarios, where secure transmission of medical

data across potentially vulnerable networks is a constant concern.

5. The journalism and human rights sectors benefit from this technology's ability to protect

sources and sensitive documentation in regions with restrictive information controls.

Journalists operating in environments with heavy censorship or surveillance can use

this system to transmit reports and evidence securely, embedding encrypted information

within seemingly innocent digital content. This capability is crucial for protecting

vulnerable sources and ensuring that critical information can traverse digital borders

without interception or detection.

6. For personal privacy, the system offers individuals a practical tool for securing private

communications and personal data in an increasingly surveilled digital landscape. From

securing personal financial information to protecting private conversations from

unauthorized access, the RSA-steganography system provides a user-friendly approach

to enhanced digital privacy that goes beyond standard encryption methods.

7. Additionally, this technology holds significant potential for digital watermarking and

copyright protection. Content creators can embed encrypted ownership information

within their digital works, creating tamper-evident signatures that help protect

intellectual property rights while remaining invisible to the casual observer.

8. The system's implementation in Python, with its cross-platform compatibility and

extensive library support, ensures that these applications can be realized across various

operating systems and integrated into existing software ecosystems with minimal

friction. This accessibility expands the potential user base and increases the practical

utility of the technology across different sectors and technical environments.

8

2. Literature Survey

Over the past decade, artificial intelligence (AI) has made remarkable contributions to various

subdisciplines falling under the category of dentistry, specifically periodontology. Different

studies have explored dental disease detection, localization, classification, and segmentation

within the dental domain (e.g., [1]). However, few studies have explored dental disease

localization as discussed in the literature. From the existing literature, several challenges are

found regarding dental carious region localization. A comprehensive overview of existing

studies is presented in Table 1. Further exploration is required to propose detection and

localization approaches for dental caries diagnosis in real time.

To classify enamel, dentin, and pulp caries, Oprea et al., proposed rule-based classification.

The authors were able to categorize regions as dentin caries sized over 2 mm [9]. Another

rulebased approach based on the gradient histogram and threshold was proposed by ALbahbah

and fellow authors on panoramic radiographs to extract and segment decayed and normal teeth

[10]. Lin et al., investigated the level segmentation method based using SVM (support vector

machine), KNN (K nearest neighbor), and a Bayesian classifier for localizing alveolar bone

loss [11]. Results show that the model can localize alveolar bone loss with higher classification

accuracy. A cluster-based segmentation technique was proposed by Datta and Chaki to detect

dental cavities in [12]. The proposed model utilized a Wiener filter to extract caries lesions

followed by region segmentation to monitor the lesion size and growth. To detect and classify

proximal carious and non-carious lesions on panoramic radiographs, Na’am et al., explored

multiple morphological gradient-based image processing methods on images with manually

cropped regions [13].Different deep learning approaches have been employed by researchers

to pave way for more efficient and effective methods to diagnose dental caries. To classify

carious and non-carious teeth on a small labeled dataset, a pre-trained CNN was utilized by

Prajapati et al. [14]. The model was able to classify dental caries, periodontitis, and periapical

infection. Lee et al. utilized a deep CNN to diagnose and classify caries using 3000 periapical

radiographs [15]. The model achieved an AUC of 0.91 for premolar, 0.89 for molar, and 0.84

for both premolar and molar models. For the identification of dental caries, Cantu et al.,

investigated U-Net on bitewing radiographs [16]. It was found that segmentation-based models

possess the potential to aid dental clinicians in detecting and locating dental caries more

9

efficiently. For the identification of endo-perio lesions on periapical radiographs, Sajjad et al.,

investigated AlexNet, for which the model achieved an accuracy of 98% [17]. For early

identification of dental caries, Kumari et al., preprocessed bitewing radiographic images using

contrast limited adaptive histogram equalization (CLAHE) and noise filtering followed by a

meta-heuristic based ResneXt RNN (recurrent neural network) [18].

Radiological examinations help dental clinicians in the identification of teeth abnormalities,

cysts, infections, and infections. However, manual examinations are time-consuming and rely

solely on a specialist’s opinion which may bring differences in the diagnosis. Different methods

have been employed by researchers in recent years mainly relying on boundary-based,

regionbased [19], cluster-based, and threshold-based methods [11]. As the first step, Jader et

al., employed an RCNN for the segmentation of caries and the detection of missing teeth on

buccal images. The results indicated that deep learning-based instance segmentation has the

potential to automate the process of caries detection and medical report generation [2].

The faster region-based convolutional neural network (Faster-RCNN), which extends the

FastRCNN is utilized to localize teeth lesions [5]. The model achieves both a recall and

precision of above 90%, however, the model suffers in numbering the teeth in complicated

cases. A Faster-RCNN built on the region proposal network (RPN) and object detection

network (ODN) detected different types of teeth achieving a mean average precision (mAP) of

91.40% and an accuracy of 91.03% [6]. However, the model was applied to a small dataset and

performance can not be generalized. Another variant of Faster-RCNN pre-trained on ResNet-

50 was employed in [7] for the detection of carious teeth, achieving a precision of 73.49% and

an F1 score of 0.68. The model, however, does not identify the type of caries and only localizes

the caries region.

An M-RCNN, which extends the Faster-RCNN with pre-trained ResNet-101 was found to be

helpful in the identification of missing or broken teeth, achieving an accuracy of 98% [2].

However, segmentation performance metrics were not reported in the study. For pixel-wise

segmentation of visible light images for identification of oral cavities [3], M-RCNN achieves

an accuracy of 74.4%. However, the dataset is sparse and other relevant performance metrics

have not been reported for comparison. In another attempt, an M-RCNN with a fully

convolutional network (FCN) and a ResNet-101 backbone [4] was investigated to localize

occlusal surface caries on a limited dataset, but the computational complexity was not reported.

In a recent attempt, a hybrid M-RCNN [8] was employed to identify dental caries on mixed

images achieving an average precision of 81.02% and an accuracy of 95.75%, however, the

model does not identify caries type for both colored and X-ray images. Additionally, an

MRCNN with ResNet as its backbone requires a substantial amount of calculations to learn

and analyze, and the training process for M-RCNN requires high-performance computational

resources such as GPU and memory [20].

Table 1. Strengths and weaknesses of baseline dental lesion localization models.

Study Image

Modality
Task Method Strengths Weaknesses

Jader et al.,

2018 [2]

Panoramic

images
Localize

missing teeth
M-RCNN

with

ResNet-101

backbone

The model is helpful

in

identifying

missing or broken

teeth with an

accuracy of 98%

- Highly

variable data

- Other

metrics

i.e., mAP, IoU

are not reported

for comparison

Anantharaman

et al., 2018 [3]
Colored

images

Detect and

segment

cold/canker

sores

M-RCNN

with

ResNet-101

backbone

The model is helpful

in

performing pixel-

wise segmentation

of visible light

images

of oral cavity with

accuracy of 74.4%

- Sparse

dataset

- Other

metrics i.e, mAP,

IoU,

precision, F1-

score, recall are

not reported for

comparison

10

https://www.mdpi.com/2227-9032/11/3/347#B2-healthcare-11-00347
https://www.mdpi.com/2227-9032/11/3/347#B2-healthcare-11-00347
https://www.mdpi.com/2227-9032/11/3/347#B3-healthcare-11-00347
https://www.mdpi.com/2227-9032/11/3/347#B3-healthcare-11-00347

11

Moutselos et

al.,

2019 [4]

Colored

images

Localize and

classify

caries

occlusal

surfaces

M-RCNN

with FCN

and ResNet-

101

backbone

The model provided

encouraging

performance for

automatically

selecting

image texture

features and detect

lesions

without additional

pre-processing

actions

- The

computational

complexity is

not reported

Chen et al.,

2019 [5]

Periapical

radiographs
Teeth

localization

and

numbering

Faster-

RCNN

The model detects

and numbers teeth

with recall and

precision exceeding

90% on manually

annotated dataset

- The model

suffers in

numbering

teeth in

complicated cases

such

 as heavily decayed

teeth

Laishram &

Thongam, 2020

[6]

Panoramic

radiographs
Localize and

classify

different type

of teeth

Faster-

RCNN

built on

RPN and

ODN

The model is helpful

in detecting

different types of

teeth achieving

mean

average precision

(mAP) of 91.40%

and accuracy of

91.03%

- Limited dataset in

terms of size

Zhu et al., 2022

[7]

Periapical

radiographs
Detection of

carious teeth
Faster-

RCNN with

pretrained

ResNet-50

The model is helpful

in with an average

precision of

73.49%, F1-score of

0.68

with sample

detection speed of

0.1923

- It suffers

from

computational

compexity

- The

model does not

identify caries

type

https://www.mdpi.com/2227-9032/11/3/347#B4-healthcare-11-00347
https://www.mdpi.com/2227-9032/11/3/347#B4-healthcare-11-00347
https://www.mdpi.com/2227-9032/11/3/347#B5-healthcare-11-00347
https://www.mdpi.com/2227-9032/11/3/347#B5-healthcare-11-00347
https://www.mdpi.com/2227-9032/11/3/347#B6-healthcare-11-00347
https://www.mdpi.com/2227-9032/11/3/347#B6-healthcare-11-00347
https://www.mdpi.com/2227-9032/11/3/347#B6-healthcare-11-00347
https://www.mdpi.com/2227-9032/11/3/347#B7-healthcare-11-00347
https://www.mdpi.com/2227-9032/11/3/347#B7-healthcare-11-00347
https://www.mdpi.com/2227-9032/11/3/347#B7-healthcare-11-00347

12

Rashid et al.,

2022 [8]

Mixed

images

(colored and

periapical

radiographic

images)

Detect and

localize

dental carious

regions

Hybrid M-

RCNN

The model was

helpful in localizing

dental carious

regions with a

precision

of 81.02% and

accuracy of 95.75%

- Limited

dataset in terms of

size

- The

model does not

identify

caries type for

both colored and

X-ray image

https://www.mdpi.com/2227-9032/11/3/347#B8-healthcare-11-00347
https://www.mdpi.com/2227-9032/11/3/347#B8-healthcare-11-00347

13

3. EXISTING SYSTEM

3.1. Traditional Steganography Methods

Traditional steganography methods have evolved significantly over the years, transitioning from

ancient physical techniques to sophisticated digital approaches. These conventional methods, while

groundbreaking in their time, exhibit several limitations when compared to modern cryptographic-

steganographic hybrid approaches.

The Least Significant Bit (LSB) substitution technique remains one of the most widely implemented

steganographic methods in digital media. This method operates by replacing the least significant bits

of pixel values in an image with bits from the secret message. While straightforward to implement,

LSB substitution offers limited capacity and is vulnerable to statistical analysis. Even slight

modifications to the LSB plane can create detectable patterns when analyzed with advanced

steganalysis tools, particularly when sequential embedding is used. Additionally, this method

provides minimal resistance to image processing operations such as compression, filtering, or

cropping, which can easily destroy the embedded information.

Discrete Cosine Transform (DCT) based steganography, commonly used in JPEG images, embeds

information by modifying the DCT coefficients in the frequency domain. This method offers better

resilience against compression compared to spatial domain techniques but suffers from capacity

limitations and is susceptible to specialized steganalysis methods that analyze coefficient

distributions. The changes in DCT coefficients can also introduce visible artifacts in the carrier image

when the embedding rate is high, compromising the visual imperceptibility that is crucial for

effective steganography.

The Pixel Value Differencing (PVD) method exploits the human visual system's characteristics by

embedding more data in edge areas of images where modifications are less perceptible. While this

approach improves the visual quality of stego-images compared to basic LSB substitution, it still

leaves detectable statistical footprints and offers limited capacity. PVD methods also struggle with

maintaining data integrity when the carrier image undergoes common processing operations.

Traditional steganography methods typically lack integration with robust cryptographic techniques,

creating a significant security vulnerability. Most conventional approaches focus solely on

concealment without addressing the confidentiality of the embedded information if discovered. This

separation of concealment and encryption represents a fundamental weakness in traditional

steganographic systems, as extracted data can be immediately accessible once the steganographic

layer is compromised.

Furthermore, conventional steganography methods often employ simplistic password-based security

mechanisms rather than robust cryptographic algorithms, making them vulnerable to brute force

attacks and other cryptanalytic techniques. The absence of strong encryption means that even if the

steganographic technique successfully conceals the presence of hidden data, the confidentiality of

that data remains at risk if the concealment is defeated.

Another limitation of traditional methods is their fixed embedding patterns, which create

characteristic signatures that can be identified by modern steganalysis tools. The predictability of

these patterns makes conventional steganography increasingly vulnerable as detection techniques

become more sophisticated. Additionally, most traditional methods lack adaptability to the carrier

image's characteristics, applying the same embedding approach regardless of the visual content,

which can lead to more noticeable artifacts in sensitive image regions.

Traditional steganography approaches also typically fail to address the issue of key management,

which is essential for secure communication between multiple parties. Without a robust key exchange

mechanism, these methods often rely on pre-shared secrets that introduce additional security risks

and operational complexities.

3.2. Existing Cryptographic Techniques & Drawbacks

Existing cryptographic techniques have played a crucial role in information security, yet they

possess inherent limitations that become particularly evident when employed in isolation. These

limitations have driven the development of hybrid security approaches that combine

cryptography with steganography for enhanced protection.

Symmetric key cryptography, including widely used algorithms like Advanced Encryption

Standard (AES) and Data Encryption Standard (DES), employs the same key for both

encryption and decryption processes. While these algorithms offer computational efficiency and

high encryption strength, they suffer from a fundamental key distribution problem. The secure

exchange of the shared key between communicating parties remains a logistical challenge,

especially in open networks where secure channels for key exchange may not be readily

available. Additionally, symmetric key systems face scalability issues in environments with

multiple users, as the number of required keys grows quadratically with the number of

participants, making key management increasingly complex.

Public key cryptography, including RSA and Elliptic Curve Cryptography (ECC), addresses the

key distribution problem by using mathematically related key pairs for encryption and

decryption. However, these systems typically operate at slower speeds compared to symmetric

algorithms, making them impractical for encrypting large volumes of data. The computational

intensity of public key operations can create performance bottlenecks, particularly on resource-

constrained devices. Furthermore, the security of public key systems relies on the mathematical

difficulty of certain problems, such as integer factorization for RSA, which may become

vulnerable as computational capabilities advance.

14

15

Hash functions, such as SHA-256 and MD5, provide one-way transformation of data into fixed-

length hash values, useful for integrity verification but not for encryption purposes. While

essential for many security protocols, hash functions alone cannot provide data confidentiality.

Additionally, some older hash algorithms have been compromised, highlighting the need for

continued algorithm updates and security reassessments.

A significant drawback common to all traditional cryptographic approaches is their visibility.

Encrypted data, regardless of the algorithm used, exhibits distinctive statistical properties that

clearly signal the presence of encryption. This "encryption signature" can alert adversaries to

the existence of sensitive information, potentially making the encrypted data a target for attacks

or raising suspicion in contexts where covert communication is necessary. In scenarios where

even the knowledge of communication occurring could pose risks, this visibility represents a

critical vulnerability.

Another limitation of conventional cryptographic systems is their vulnerability to quantum

computing advancements. Many current public key cryptography systems, particularly RSA,

rely on the difficulty of mathematical problems that quantum computers could potentially solve

efficiently. The development of practical quantum computers poses an existential threat to these

cryptographic methods, necessitating the exploration of quantum-resistant alternatives.

Traditional cryptographic techniques also typically operate as single-layer protection

mechanisms, creating potential single points of failure. If an encryption key is compromised or

an algorithm is broken, the entire security system collapses, exposing all protected data. This

reliance on a single security mechanism represents a significant vulnerability in current

approaches to data protection.

Additionally, many cryptographic implementations suffer from side-channel vulnerabilities,

where information about the encryption process can be leaked through physical measurements

such as power consumption, electromagnetic emissions, or timing variations. These side-

channel attacks can compromise otherwise mathematically secure cryptographic systems

through their implementations.

Finally, existing cryptographic techniques often face regulatory and legal challenges across

different jurisdictions, with some countries imposing restrictions on encryption strength or

requiring key escrow capabilities. These regulatory constraints can limit the deployment of

robust cryptographic solutions in certain contexts, potentially forcing the use of weaker security

measures.

16

4. PROPOSED METHODOLOGY

4.1 Overview

The proposed system introduces a comprehensive security framework that seamlessly

integrates RSA cryptography with advanced image steganography to create a multi-

layered protection mechanism for sensitive information. This innovative approach

addresses the limitations of traditional security methods by combining the

mathematical strength of asymmetric encryption with the concealment capabilities of

steganography, resulting in a solution that provides both confidentiality and invisibility

for secure communications.

At its core, the system employs a dual-phase security architecture. In the first phase,

the plaintext message undergoes RSA encryption using the recipient's public key,

transforming it into ciphertext that is mathematically secure and computationally

infeasible to decrypt without the corresponding private key. This encryption process

ensures that even if the hidden data is discovered, it remains protected by the robust

mathematical foundation of RSA cryptography.

The second phase involves embedding this encrypted data within carrier images using

advanced adaptive steganographic techniques. Rather than relying on simplistic

methods like sequential LSB replacement, the system employs a sophisticated

algorithm that analyzes the characteristics of the carrier image to identify optimal

embedding locations. This analysis considers factors such as edge density, texture

complexity, and noise levels to determine areas where modifications will be least

detectable, both visually and statistically.

A key innovation in the proposed system is its dynamic embedding approach, which

varies the embedding pattern based on a secure pseudo-random sequence generated

from a shared secret between the sender and recipient. This randomization eliminates

the predictable patterns that make traditional steganography vulnerable to statistical

analysis, creating a moving target for potential attackers.

17

The system also incorporates an adaptive bit allocation mechanism that distributes the

encrypted data across the carrier image based on the local characteristics of image

regions. Areas with higher texture complexity or natural noise can accommodate more

embedded bits without creating detectable artifacts, while smoother regions.

4.2. How Steganography & RSA Work Together

The integration of RSA cryptography with image steganography creates a synergistic

security model that leverages the complementary strengths of both technologies. This

hybrid approach establishes multiple defensive layers that an attacker would need to

overcome sequentially, significantly enhancing the overall security posture compared

to using either technology in isolation.

RSA cryptography contributes the mathematical security derived from the

computational hardness of integer factorization. When a message is encrypted using

the recipient's public key, it transforms the plaintext into ciphertext that remains secure

even if intercepted. The asymmetric nature of RSA eliminates the need for pre-shared

secret keys, addressing one of the fundamental challenges in secure communication—

key distribution. Only the intended recipient, who possesses the corresponding private

key, can decrypt the message, ensuring confidentiality even if the steganographic layer

is compromised.

Steganography complements this cryptographic strength by providing concealment

capabilities. By embedding the RSA-encrypted data within ordinary digital images,

the system masks the very existence of secure communication, addressing the visibility

problem inherent in standalone encryption. This concealment adds a crucial layer of

security in scenarios where encrypted communications might attract unwanted

attention or suspicion. Potential attackers first need to detect the presence of hidden

data before they can attempt to decrypt it, creating an additional obstacle in the attack

chain.

18

The practical implementation of this integration follows a systematic workflow.

Initially, the sender generates the RSA key pair or retrieves the recipient's public key

from a trusted key repository. The plaintext message undergoes RSA encryption,

producing ciphertext that is mathematically protected. This ciphertext is then prepared

for embedding by converting it to a binary stream with appropriate header information

for later extraction.

Simultaneously, the system analyzes the carrier image to create a steganographic

capacity map that identifies optimal embedding locations based on the image's visual

characteristics. Higher capacity values are assigned to textured regions, edges, and

naturally noisy areas where modifications are less perceptible, while lower capacity

values are assigned to smooth, uniform regions where changes would be more

noticeable.

The system then employs a secure pseudo-random number generator, seeded with a

shared secret between the sender and recipient, to determine the specific pixel

locations and bit positions for embedding. This randomization eliminates the

sequential patterns that make traditional steganographic methods vulnerable to

statistical analysis. The encrypted data is distributed across these locations according

to the capacity map, ensuring that modifications remain below the threshold of visual

and statistical detectability.

During the embedding process, the system implements adaptive bit-plane selection,

choosing different bit positions for embedding based on the local characteristics of

each image region. In highly textured areas, modifications might extend to middle-

significant bits, while in smoother regions, only the least significant bits are altered.

This adaptive approach maximizes embedding capacity while maintaining the visual

integrity of the carrier image.

19

The resulting stego-image appears visually identical to the original cover image to the

human eye, with minimal statistical disturbances that might trigger automated

steganalysis tools. The stego-image can be transmitted through regular communication

channels without arousing suspicion, effectively concealing not just the content of the

communication but its very existence.

On the recipient's side, the extraction process begins with the application of the same

pseudo-random sequence (generated from the shared secret) to identify the embedding

locations. The embedded bits are extracted and reconstructed into the original

ciphertext. This ciphertext is then decrypted using the recipient's private RSA key,

recovering the original plaintext message.

This integrated approach creates a security system where each component addresses

the weaknesses of the other—RSA provides mathematical security for the data itself,

while steganography provides the critical concealment that prevents the encrypted data

from being targeted in the first place. The result is a comprehensive security solution

that significantly raises the bar for potential attackers.

4.3. Encryption & Decryption Process

The encryption and decryption processes in the proposed RSA-steganography system follow a

meticulously designed protocol that ensures both the confidentiality and concealment of

sensitive information. These processes can be detailed in distinct phases, encompassing both the

cryptographic operations and the steganographic embedding and extraction procedures.

The encryption process begins with message preparation. The plaintext message undergoes

preprocessing to ensure compatibility with the RSA encryption algorithm, including padding

schemes such as Optimal Asymmetric Encryption Padding (OAEP) that enhance security

against various cryptographic attacks. This preprocessing step adds randomness to the

encryption process, preventing deterministic encryption results that could be vulnerable to

chosen-plaintext attacks.

Once the message is properly prepared, it undergoes RSA encryption using the recipient's public

key. This transformation converts the plaintext into ciphertext through modular exponentiation

operations, mathematically securing it against unauthorized access. The encryption operation

can be expressed as C = M^e mod n, where C represents the ciphertext, M represents the

prepared message, e is the public exponent, and n is the RSA modulus. The resulting ciphertext

20

possesses the mathematical security inherent to the RSA algorithm, making it computationally

infeasible to decrypt without knowledge of the corresponding private key.

Following encryption, the system performs steganographic preprocessing on the ciphertext.

This involves converting the encrypted data into a binary stream and adding metadata such as

length indicators and integrity checksums. This metadata will later facilitate the accurate

extraction and verification of the embedded data. The system also calculates the required

embedding capacity and verifies that the selected carrier image can accommodate the encrypted

message without introducing detectable artifacts.

Simultaneously, the carrier image undergoes analysis to identify optimal embedding regions.

This analysis evaluates factors such as edge density, texture complexity, and noise levels across

the image, creating a capacity map that guides the embedding process. Regions with higher

complexity can accommodate more modifications without creating perceptible distortions,

allowing for a more efficient utilization of the available embedding space.

The actual embedding process utilizes a secure pseudo-random sequence, generated from a

shared secret between the communicating parties, to determine the specific embedding

locations. This randomization prevents predictable embedding patterns that could be detected

through statistical analysis. The encrypted data bits are distributed across these locations

according to the capacity map, with adaptive bit-plane selection determining the specific bit

positions to modify in each pixel.

For enhanced security, the system employs matrix encoding techniques to minimize the number

of necessary modifications to the carrier image. This approach reduces the statistical fingerprint

of the embedding process, making the stego-image more resistant to detection by modern

steganalysis tools. The embedding algorithm also incorporates error correction codes to ensure

robust data recovery even if the stego-image undergoes minor modifications during

transmission.

The decryption process follows a symmetrical workflow in reverse order. Upon receiving the

stego-image, the recipient first needs to extract the embedded encrypted data. Using the same

shared secret, they generate the identical pseudo-random sequence that identifies the embedding

locations. The system then extracts the bits from these locations, reconstructing the original

ciphertext along with its associated metadata.

After extraction, the system verifies the integrity of the extracted data using the embedded

checksums. If the verification succeeds, the ciphertext proceeds to the RSA decryption phase.

The recipient applies their private key to the ciphertext through the decryption operation M =

C^d mod n, where d represents the private exponent. This operation reverses the encryption

process, recovering the original padded message.

Finally, the system removes the padding and performs any necessary post-processing to restore

the message to its original format. The successful completion of this process results in the

21

recovery of the original plaintext message, accessible only to the intended recipient who

possesses both the correct private RSA key and knowledge of the steganographic extraction

parameters.

Throughout this entire process, multiple security layers work in concert to protect the

information. The RSA algorithm provides mathematical security for the content itself, while the

steganographic techniques conceal the very existence of the communication. This dual

protection ensures that even if one security layer is compromised—for instance, if an attacker

detects the presence of hidden data—the information remains protected by the other layer,

creating a robust security system that significantly exceeds the protection offered by either

technology used independently.

4.4. Security Advantages of RSA-Based Steganography

The integration of RSA cryptography with advanced steganographic techniques creates a

security framework with significant advantages over traditional approaches, establishing

multiple protection layers that collectively address various attack vectors and security

vulnerabilities. This hybrid system leverages the complementary strengths of both technologies

to overcome their individual limitations, resulting in a comprehensive security solution for

sensitive digital communications.

One of the primary security advantages lies in the creation of a dual-layer protection mechanism.

The RSA encryption provides strong mathematical security based on the computational

hardness of integer factorization, ensuring that even if the steganographic layer is compromised

and the hidden data is discovered, it remains protected by the cryptographic barrier.

Simultaneously, the steganographic concealment addresses the visibility issue inherent in

standalone encryption, masking the very existence of secure communication. This dual-layer

approach requires potential attackers to overcome both the detection challenge and the

cryptographic barrier sequentially, significantly increasing the overall security margin.

The system also benefits from the asymmetric nature of RSA cryptography, which elegantly

solves the key distribution problem that plagues many security systems. With RSA, the sender

can encrypt messages using the recipient's public key without requiring a pre-established shared

secret. This eliminates the need for secure key exchange channels, which are often the weakest

link in cryptographic systems. The private key, necessary for decryption, never needs to be

transmitted, remaining securely in the possession of the recipient. This asymmetric approach is

particularly valuable in one-to-many communication scenarios, where multiple parties need to

securely communicate with a single recipient.

Furthermore, the proposed system offers strong protection against steganalysis through its

adaptive embedding approach. Unlike traditional steganographic methods that employ fixed

embedding patterns, the system dynamically adjusts its embedding strategy based on the carrier

image's characteristics. By concentrating modifications in textured regions and edges where

22

changes are less detectable, and employing matrix encoding to minimize the number of

necessary alterations, the system creates stego-images that resist both visual and statistical

detection methods. The use of pseudo-random embedding locations, determined by a shared

secret, further enhances this resistance by eliminating predictable patterns that steganalysis tools

might target.

The integration with RSA provides an additional advantage in terms of authentication and

integrity verification. The cryptographic operations can be extended to include digital signature

functionality, allowing the recipient to verify the authenticity of the sender and ensure that the

message has not been tampered with during transmission. This authentication layer is crucial in

scenarios where the validity of the communication is as important as its confidentiality.

From an operational security perspective, the system offers plausible deniability—a critical

advantage in certain security contexts. Since the stego-images appear as ordinary images with

no visible indicators of embedded data, users can reasonably deny the existence of hidden

communications if confronted. This deniability is further strengthened by the system's ability to

utilize any suitable digital image as a carrier, allowing communications to blend seamlessly with

regular image sharing activities.

The hybrid approach also provides resilience against evolving computational threats. While

quantum computing advancements pose a potential future threat to RSA through Shor's

algorithm, which could theoretically break RSA encryption by efficiently factoring large

integers, the steganographic layer adds a protection dimension that is not directly affected by

quantum computing. This multi-layered defense creates a more future-resilient security system

that does not depend entirely on the computational hardness of a single mathematical problem.

Additionally, the system incorporates protection against side-channel attacks through various

countermeasures. The embedding process includes timing normalizations and memory access

patterns designed to minimize information leakage during the steganographic operations. The

RSA implementation similarly incorporates protections against timing and power analysis

attacks, ensuring that the cryptographic operations do not inadvertently reveal information about

the keys or the plaintext.

The adaptive capacity utilization of the steganographic component allows the system to balance

security requirements with practical considerations. For less sensitive communications, the

embedding density can be reduced to prioritize the visual quality of the stego-image and

minimize detection risk. For highly sensitive communications, the system can utilize more of

the available capacity, potentially across multiple carrier images, to accommodate larger

messages while maintaining security margins.

Through this comprehensive integration of cryptographic and steganographic techniques, the

proposed system achieves a security posture that addresses multiple threat vectors

simultaneously, providing robust protection for sensitive digital communications in increasingly

adversarial environments.

23

5. UML DAIGRAMS

UML stands for Unified Modeling Language. UML is a standardized general-purpose modeling

language in the field of object-oriented software engineering. The standard is managed, and

was created by, the Object Management Group. The goal is for UML to become a common

language for creating models of object-oriented computer software. In its current form UML is

comprised of two major components: a Meta-model and a notation. In the future, some form

of method or process may also be added to; or associated with, UML.

The Unified Modeling Language is a standard language for specifying, Visualization,

Constructing and documenting the artifacts of software system, as well as for business

modeling and other non-software systems. The UML represents a collection of best engineering

practices that have proven successful in the modeling of large and complex systems. The UML

is a very important part of developing objects-oriented software and the software development

process. The UML uses mostly graphical notations to express the design of software projects.

GOALS: The Primary goals in the design of the UML are as follows:

• Provide users a ready-to-use, expressive visual modeling Language so that they can

develop and exchange meaningful models.

• Provide extendibility and specialization mechanisms to extend the core concepts.

• Be independent of particular programming languages and development process.

• Provide a formal basis for understanding the modeling language.

• Encourage the growth of OO tools market.

• Support higher level development concepts such as collaborations, frameworks,

patterns and components.

• Integrate best practices.

5.1 Class diagram

The class diagram is used to refine the use case diagram and define a detailed design of the

system. The class diagram classifies the actors defined in the use case diagram into a set of

interrelated classes. The relationship or association between the classes can be either an "is-a"

or "has-a" relationship. Each class in the class diagram may be capable of providing certain

functionalities. These functionalities provided by the class are termed "methods" of the class.

24

Apart from this, each class may have certain "attributes" that uniquely identify the class.

5.2 Use case Diagram

A use case diagram in the Unified Modeling Language (UML) is a type of behavioral diagram

defined by and created from a Use-case analysis. Its purpose is to present a graphical overview

of the functionality provided by a system in terms of actors, their goals (represented as use

cases), and any dependencies between those use cases. The main purpose of a use case diagram

is to show what system functions are performed for which actor. Roles of the actors in the

system can be depicted.

25

5.3 Sequence Diagram

A sequence diagram in Unified Modeling Language (UML) is a kind of interaction diagram

that shows how processes operate with one another and in what order. It is a construct of a

Message Sequence Chart. A sequence diagram shows, as parallel vertical lines ("lifelines"),

different processes or objects that live simultaneously, and as horizontal arrows, the messages

exchanged between them, in the order in which they occur. This allows the specification of

simple runtime scenarios in a graphical manner.

5.4 Activity diagram: Activity diagrams are graphical representations of Workflows of

stepwise activities and actions with support for choice, iteration, and concurrency.

In the Unified Modeling Language, activity diagrams can be used to describe the business and

operational step-by-step workflows of components in a system. An activity diagram shows the

overall flow of control.

26

6. SOFTWARE ENVIRONMENT

6.1 What is Python and its Advantages and Disadvantages

Python is a high-level, interpreted programming language created by Guido van Rossum and first

released in 1991. It has since evolved to become one of the most popular programming languages

worldwide, known for its emphasis on code readability and syntax that allows programmers to

express concepts in fewer lines of code than languages like C++ or Java. Python's design philosophy

emphasizes code readability with its notable use of significant whitespace and a clean, pragmatic

approach to software development.

The language's core advantages have made it particularly suitable for the implementation of

cryptographic and steganographic systems. Python's readability and clean syntax significantly reduce

development time and enhance code maintainability, which is crucial for security-focused

applications where code clarity directly impacts security review processes. The expressive nature of

Python allows developers to implement complex algorithms in relatively few lines of code while

maintaining comprehensibility, facilitating easier security audits and reducing the potential for

implementation errors.

Python's cross-platform compatibility represents another significant advantage, enabling the

development of security applications that can run consistently across Windows, macOS, Linux, and

other operating systems without modification. This portability ensures that security tools can be

deployed across diverse environments without requiring platform-specific versions, simplifying

distribution and maintenance.

The extensive standard library that comes bundled with Python provides built-in support for many

common programming tasks, including networking, file handling, and data processing, reducing the

need for external dependencies in security applications. This comprehensive standard library is

complemented by a vast ecosystem of third-party packages and frameworks, including specialized

libraries for cryptography (such as cryptography, pycrypto, and PyCryptodome) and image

processing (like Pillow and OpenCV), which provide optimized implementations of complex

algorithms necessary for cryptographic and steganographic operations.

Python's interpreted nature facilitates rapid development cycles through immediate execution

without separate compilation steps, allowing for quick prototyping and testing of security algorithms.

The language also offers excellent support for integration with low-level libraries written in C or

C++ through its extension mechanisms, enabling performance-critical components to be

implemented in faster compiled languages while maintaining the overall application structure in

Python.

27

Moreover, Python's strong community support and extensive documentation provide developers with

abundant resources for implementing security best practices and avoiding common pitfalls in

cryptographic implementations. The language's dynamic typing system and automatic memory

management reduce the risk of memory-related vulnerabilities such as buffer overflows, which are

common security issues in lower-level languages.

However, Python also presents certain disadvantages that must be considered in security-oriented

applications. The interpreted nature that facilitates rapid development also results in slower execution

speeds compared to compiled languages like C or C++, which can be a limitation for performance-

intensive cryptographic operations on large datasets. While this performance gap can be mitigated

through optimized libraries and careful implementation, it remains a consideration for time-sensitive

applications.

Python's dynamic typing, while offering flexibility, may allow certain types of errors to manifest at

runtime rather than being caught during development, potentially introducing subtle bugs in security-

critical code. The Global Interpreter Lock (GIL) in CPython, the most widely used Python

implementation, limits the effectiveness of threading for CPU-bound tasks, potentially constraining

parallelization of intensive cryptographic operations.

From a security perspective, the open-source nature of Python applications means that the source

code is often readily available, potentially making it easier for attackers to analyze for vulnerabilities

compared to compiled languages. Additionally, the ease of modifying Python code can be a double-

edged sword, as it facilitates both legitimate updates and potential tampering if proper code integrity

measures are not implemented.

Python's automatic memory management, while preventing many memory-related vulnerabilities,

can make it difficult to implement certain secure coding practices such as secure memory handling

for cryptographic keys, which may require explicit memory clearing to prevent key material from

remaining in memory longer than necessary.

28

Despite these limitations, Python's advantages significantly outweigh its disadvantages for most

security applications, particularly those like the RSA-steganography system described in this

research, where the benefits of rapid development, code clarity, and extensive library support align

well with the project requirements. The performance limitations can be addressed through judicious

use of optimized libraries and careful algorithm implementation, while the security considerations

can be managed through proper application design and deployment practices.

6.2. Why We Used Python for This Project

The selection of Python as the primary implementation language for our RSA-based

steganography system was a strategic decision driven by several key factors that align with the

project's technical requirements, security considerations, and practical constraints. This choice

has significantly influenced the development process, system architecture, and overall project

outcomes.

Python's rich ecosystem of specialized libraries was a decisive factor in our language selection.

The project leverages several critical libraries that provide optimized implementations of

cryptographic and image processing algorithms. The cryptography library offers a robust,

secure implementation of RSA encryption with appropriate padding schemes and security

features that adhere to modern cryptographic standards. Similarly, the Pillow library (PIL fork)

provides comprehensive image manipulation capabilities essential for the steganographic

components of our system. These established, well-maintained libraries significantly reduced

development time while ensuring that the cryptographic operations follow security best

practices, avoiding the common pitfalls and vulnerabilities that often occur in custom

cryptographic implementations.

The development efficiency afforded by Python's clean syntax and high-level abstractions was

particularly valuable given the research-oriented nature of this project. The ability to rapidly

prototype different algorithms, embedding techniques, and security approaches allowed for

iterative refinement of the system design based on experimental results. This agility was

essential for exploring the novel integration of RSA cryptography with advanced stegan

ographic techniques, enabling the research team to explore various approaches before

finalizing the system architecture.

29

The cross-platform nature of Python ensured that our security solution could be deployed across

diverse computing environments without modification. This portability was a critical

requirement for the project, as the intended users operate on various platforms including

Windows, macOS, and Linux distributions. Python's "write once, run anywhere" capability

eliminated the need for platform-specific implementations, reducing both development effort

and the potential for platform-specific security inconsistencies that might arise from

maintaining multiple codebases.

Python's readability and maintainability were particularly important considerations for a

security-focused application. The clean, expressive code structure facilitated comprehensive

security reviews and made it easier to identify potential vulnerabilities or logical flaws in the

implementation. This clarity is invaluable for security applications where subtle

implementation errors can compromise the entire system. The readable nature of Python code

also supports better knowledge transfer and easier onboarding of new developers to the project,

ensuring long-term maintainability.

The extensive documentation and community support available for Python significantly

accelerated the development process. When implementing complex components such as the

adaptive steganographic embedding algorithm or the secure random number generation for

embedding location selection, the team could reference comprehensive documentation and

community resources to ensure that our implementation followed established best practices.

This community support reduced the risk of implementation errors that might introduce

security vulnerabilities.

Python's strong exception handling mechanisms provided robust error management

capabilities, which are crucial for security applications where proper error handling can prevent

information leakage and ensure system stability. The language's built-in testing frameworks

also facilitated the creation of comprehensive test suites for validating both the functional

correctness and security properties of the system, allowing for systematic verification of

security claims.

30

While Python's performance limitations were considered during the language selection process,

our analysis indicated that the computational bottlenecks in our specific application—primarily

in the RSA operations and complex image processing tasks—could be adequately addressed

through the use of optimized libraries that implement performance-critical sections in compiled

languages like C. For most user scenarios involving reasonable message sizes and image

dimensions, the performance proved more than sufficient, with processing times well within

acceptable ranges for interactive use.

Python's dynamic typing system, sometimes considered a disadvantage for security

applications, was leveraged advantageously in our implementation by emphasizing explicit

type checking at interface boundaries and comprehensive test coverage to catch type-related

issues early in the development cycle. This approach preserved the development agility

provided by dynamic typing while mitigating its potential drawbacks.

The decision to use Python was further validated throughout the development process as the

team was able to rapidly implement and evaluate multiple steganographic techniques, allowing

for data-driven selection of the most effective approach. The language's flexibility facilitated

the adaptive, image-aware embedding strategy that distinguishes our system from more

traditional implementations.

In retrospect, Python's advantages in terms of development efficiency, library ecosystem, code

clarity, and cross-platform compatibility have proven to be well-aligned with the project's

requirements, confirming the appropriateness of this language choice for our RSA-based

steganography system.

6.3. Libraries Used

The implementation of our RSA-based steganography system relies on a carefully selected set of

Python libraries that provide essential functionality for cryptographic operations, image processing,

and system utilities. These libraries were chosen based on their security, performance, documentation

quality, maintenance status, and community support.

The cryptography library serves as the cornerstone for all cryptographic operations in the system.

This modern, widely-used library provides a comprehensive implementation of cryptographic

primitives, including the RSA algorithm with appropriate padding schemes such as OAEP (Optimal

Asymmetric Encryption Padding). We specifically utilize its hazmat.primitives.asymmetric.rsa

module for key generation, encryption, and decryption operations. The library implements these

operations following current security best practices, including proper random number generation,

side-channel attack mitigations, and conformance to relevant standards like PKCS#1. The

cryptography library is actively maintained, undergoes regular security audits, and quickly addresses

discovered vulnerabilities, making it a secure choice for cryptographic operations compared to

alternatives like pycrypto, which has known security issues and is no longer maintained.

For image processing and steganographic operations, we rely on the Pillow library (Python Imaging

Library Fork). Pillow provides comprehensive functionality for image manipulation, supporting

various file formats including PNG, JPEG, and BMP. The library enables pixel-level access and

modification through its PixelAccess interface, which is essential for implementing the

steganographic embedding and extraction processes. Additional image analysis features, such as

edge detection and texture analysis, support the adaptive embedding strategy that concentrates

modifications in less perceptible image regions. Pillow's efficient implementation of image

processing algorithms ensures acceptable performance even when processing high-resolution

images.

NumPy serves as the foundation for numerical operations throughout the system. This fundamental

scientific computing library provides efficient implementations of array operations and mathematical

functions that accelerate various components of our system. In particular, NumPy's multi-

dimensional array structures and vectorized operations significantly improve performance during

image analysis phases, such as when calculating the capacity map or performing statistical analysis

to identify optimal embedding regions. The library's random module also supplements the

cryptographically secure random number generation used for security-critical operations.

For secure random number generation, particularly important for steganographic embedding pattern

randomization, we employ the secrets module from Python's standard library. This module provides

cryptographically strong random numbers suitable for security applications, unlike the standard

random module which is designed for simulation and modeling rather than cryptographic use. The

secrets module is used to generate the pseudo-random sequence that determines embedding

locations, ensuring that the embedding pattern cannot be predicted even with knowledge of the

steganographic algorithm.

The hashlib module from the standard library provides cryptographic hash functions used for various

purposes throughout the system. SHA-256 hashes are employed for integrity verification of extracted

data, generation of embedding patterns from shared secrets, and other security-related operations

where cryptographic hash functions are appropriate. This standard library module implements these

hash functions efficiently and securely.

31

32

For user interface components, the system employs Tkinter, Python's standard GUI toolkit. Tkinter

provides cross-platform GUI capabilities that maintain a consistent user experience across different

operating systems. The library's simplicity and direct integration with the Python standard library

made it an appropriate choice for creating the straightforward interface needed for file selection,

parameter configuration, and operation execution.

The concurrent.futures module from the standard library enables parallelization of certain operations,

particularly during the image analysis phase where multiple regions can be processed simultaneously.

This parallelization improves performance on multi-core systems without introducing the complexity

of manual thread management. By parallelizing computationally intensive tasks, the system

maintains responsive performance even when processing high-resolution images or large messages.

For configuration management and persistent settings, the system utilizes the configparser module

from the standard library. This module provides a standardized way to handle configuration files,

allowing users to customize operational parameters and remember previous settings between

sessions. The structured format of the configuration files also facilitates automatic validation of user

inputs to prevent misconfigurations that might impact security.

The logging module, another component of the standard library, implements comprehensive logging

functionality throughout the system. Properly structured logs are essential for security applications,

enabling audit trails of system operations while carefully avoiding the inclusion of sensitive

information in log entries. The hierarchical logging system allows for different verbosity levels

appropriate for various operational contexts, from detailed debugging information during

development to minimal security-relevant events in production.

Additionally, the io module from the standard library provides efficient handling of binary data

streams, which is essential when processing encrypted data and image files. The use of buffered I/O

operations improves performance when handling larger files and ensures that file operations are

performed atomically where appropriate.

These libraries collectively provide a robust foundation for the implementation of our RSA-based

steganography system, offering secure cryptographic operations, efficient image processing, and

adequate performance while maintaining cross-platform compatibility. The careful selection of well-

33

maintained, security-focused libraries significantly reduced development time and minimized the

risk of security vulnerabilities that might arise from custom implementations of cryptographic or

image processing algorithms.

6.4 Install Python Step-by-Step in Windows and Mac

Python a versatile programming language doesn’t come pre-installed on your computer

devices. Python was first released in the year 1991 and until today it is a very popular highlevel

programming language. Its style philosophy emphasizes code readability with its notable use

of great whitespace.

The object-oriented approach and language construct provided by Python enables programmers

to write both clear and logical code for projects. This software does not come pre-packaged

with Windows.

How to Install Python on Windows and Mac

There have been several updates in the Python version over the years. The question is how to

install Python? It might be confusing for the beginner who is willing to start learning Python

but this tutorial will solve your query. The latest or the newest version of Python is version

3.7.4 or in other words, it is Python 3.

Note: The python version 3.7.4 cannot be used on Windows XP or earlier devices.

Before you start with the installation process of Python. First, you need to know about your

System Requirements. Based on your system type i.e., operating system and based processor,

you must download the python version. My system type is a Windows 64-bit operating system.

So, the steps below are to install python version 3.7.4 on Windows 7 device or to install Python

3. Download the Python Cheatsheet here. The steps on how to install Python on Windows 10,

8 and 7 are divided into 4 parts to help understand better.

Download the Correct version into the system

Step 1: Go to the official site to download and install python using Google Chrome or any other

web browser. OR Click on the following link: https://www.python.org

34

Now, check for the latest and the correct version for your operating system.

Step 2: Click on the Download Tab.

Step 3: You can either select the Download Python for windows 3.7.4 button in Yellow Color

or you can scroll further down and click on download with respective to their version. Here,

we are downloading the most recent python version for windows 3.7.4

35

Step 4: Scroll down the page until you find the Files option.

Step 5: Here you see a different version of python along with the operating system.

• To download Windows 32-bit python, you can select any one from the three options:

Windows x86 embeddable zip file, Windows x86 executable installer or Windows x86

web-based installer.

• To download Windows 64-bit python, you can select any one from the three options:

Windows x86-64 embeddable zip file, Windows x86-64 executable installer or

Windows x86-64 web-based installer.

Here we will install Windows x86-64 web-based installer. Here your first part regarding which

version of python is to be downloaded is completed. Now we move ahead with the second part

in installing python i.e., Installation

Note: To know the changes or updates that are made in the version you can click on the Release

Note Option.

Installation of Python

Step 1: Go to Download and Open the downloaded python version to carry out the installation

process.

Step 2: Before you click on Install Now, make sure to put a tick on Add Python 3.7 to PATH.

Step 3: Click on Install NOW After the installation is successful. Click on Close.

36

With these above three steps on python installation, you have successfully and correctly

installed Python. Now is the time to verify the installation.

Note: The installation process might take a couple of minutes.

Verify the Python Installation

Step 1: Click on Start

Step 2: In the Windows Run Command, type “cmd”.

37

38

Step 3: Open the Command prompt option.

Step 4: Let us test whether the python is correctly installed. Type python –V and press Enter.

Step 5: You will get the answer as 3.7.4

Note: If you have any of the earlier versions of Python already installed. You must first uninstall

the earlier version and then install the new one.

Check how the Python IDLE works

Step 1: Click on Start

Step 2: In the Windows Run command, type “python idle”.

39

Step 3: Click on IDLE (Python 3.7 64-bit) and launch the program

Step 4: To go ahead with working in IDLE you must first save the file. Click on File > Click

on Save

Step 5: Name the file and save as type should be Python files. Click on SAVE. Here I have

named the files as Hey World.

Step 6: Now for e.g., enter print (“Hey World”) and Press Enter.

You will see that the command given is launched. With this, we end our tutorial on how to

install Python. You have learned how to download python for windows into your respective

operating system.

Note: Unlike Java, Python does not need semicolons at the end of the statements otherwise it

won’t work.

40

41

 7. SYSTEM REQUIREMENTS SPECIFICATIONS

7.1 Software Requirements

The RSA-based steganography system has been designed with cross-platform compatibility as a

primary consideration, ensuring accessibility across various operating systems while maintaining

consistent functionality and security properties. The following software requirements define the

necessary environment for proper system operation.

Operating System Compatibility: The system supports Windows 10 and newer versions, macOS

10.14 (Mojave) and above, and major Linux distributions including Ubuntu 18.04+, Fedora 30+, and

Debian 10+. This broad compatibility ensures that the security solution is accessible to users

regardless of their preferred operating system, maintaining consistent security properties across

platforms.

Python Runtime: Python 3.7 or newer is required, as the implementation leverages modern language

features including improved type hinting, enhanced asynchronous capabilities, and security

improvements in the standard library. Users must have the official CPython implementation, as

alternative implementations like PyPy may not fully support all the cryptographic libraries utilized

by the system.

Required Libraries: The application depends on several key external libraries: the cryptography

library (version 3.4.0 or newer) provides secure implementations of cryptographic algorithms

including RSA encryption with appropriate padding schemes; Pillow (version 8.0.0 or newer) enables

image processing operations required for steganographic embedding and extraction; NumPy (version

1.19.0 or newer) supports efficient numerical operations for image analysis and processing; and

tkinter must be available for the graphical user interface components, though this is typically

included with standard Python distributions.

Storage Requirements: The system requires approximately 50MB of disk space for installation,

including all dependencies. Additional storage is needed for processing images, with requirements

scaling based on the dimensions and number of images being processed. A minimum of 500MB of

free disk space is recommended for comfortable operation with typical image sizes.

42

Display Requirements: A minimum display resolution of 1280x720 pixels is recommended for

optimal usability of the graphical interface, though the system will function on lower resolutions

with some interface elements requiring scrolling. The command-line interface has no specific display

requirements.

Network Connectivity: While not strictly required for core functionality, internet connectivity may

be needed for the initial installation of dependencies. Once installed, the system operates entirely

offline, which is advantageous from a security perspective as it eliminates potential network-based

attack vectors during operation.

Browser Requirements (for Documentation): The HTML documentation included with the system is

compatible with modern web browsers including Chrome 80+, Firefox 75+, Safari 13+, and Edge

80+. The documentation uses standard HTML5 and CSS3 features without requiring JavaScript for

core functionality.

Administrative Privileges: Standard user privileges are sufficient for installation when using virtual

environments or user-level package installation. Administrative or root privileges are only required

if installing packages system-wide, particularly on Unix-based systems.

Additional Software: No additional software is required for basic operation. For advanced features

such as integration with document management systems or email clients, additional configuration

may be necessary as detailed in the integration documentation.

Recommended Environment: For optimal performance when processing larger images or handling

batch operations, a system with at least 4GB of RAM and a multi-core processor is recommended.

The system will function on less powerful hardware, but processing times may increase

proportionally.

These software requirements have been deliberately kept minimal to ensure broad accessibility while

maintaining security and performance standards. The system's modular design allows for operation

in various configurations, from standalone desktop applications to integrated components within

larger security ecosystems.

43

7.2 Hardware Requirements

The hardware requirements for the RSA-based steganography system are designed to ensure reliable

performance across a range of computing environments while maintaining the security integrity of

the cryptographic and steganographic operations. These requirements balance accessibility with the

computational demands of image processing and cryptographic operations.

Processing Requirements: The system requires a 64-bit multi-core processor with a minimum clock

speed of 1.5 GHz. While the application can function on lower-powered processors, certain

operations—particularly the RSA key generation and the analysis phase of adaptive steganography—

may experience noticeable delays. For optimal performance when processing high-resolution images

or handling batch operations, a quad-core processor with a clock speed of 2.0 GHz or higher is

recommended. The system utilizes parallel processing for image analysis and steganographic

operations where possible, making effective use of multiple CPU cores when available.

Memory Requirements: A minimum of 4GB of RAM is required for standard operation with typical

image sizes (up to 8 megapixels). The memory requirements scale with the dimensions of the images

being processed, as the system needs to maintain both the original and modified versions in memory

during operations. For users working with high-resolution images (20+ megapixels) or performing

batch processing operations, 8GB or more of RAM is recommended.

44

8. FUNCTIONAL REQUIREMENTS

8.1 User Interface & Features:

The user interface (UI) of the image steganography system is designed to be intuitive and user-

friendly. It includes the following features:

1. Dashboard: A simple homepage where users can choose between encryption and decryption.

2. File Upload: Users can upload an image file where they wish to embed a secret message.

3. Text Input: A text box for users to input the secret message.

4. Encryption Button: Initiates RSA encryption and embedding into the image.

5. Decryption Button: Extracts and decrypts hidden messages from a steganographic image.

6. Download Option: Enables users to save the modified image with the hidden message.

7. Status Notifications: Displays messages confirming successful encryption, decryption, or errors.

8.2 Encryption Process Flow

The encryption process consists of the following steps:

1. User inputs the message to be hidden.

2. RSA encryption is applied using the recipient’s public key.

3. The encrypted message is embedded into the image using Least Significant Bit (LSB)

steganography.

4. A new steganographic image is generated and displayed for the user to download.

5. The secret message is now securely hidden within the image, protected by RSA encryption.

45

8.3 Decryption Process Flow:

The decryption process follows these steps:

1. User uploads the steganographic image containing the hidden message.

2.The system extracts the hidden encrypted message from the image.

3. RSA decryption is applied using the recipient’s private key.

4. The original message is displayed for the user, ensuring security and confidentiality.

8.4 Performance & Security Considerations

The system ensures:

High Security: The combination of RSA encryption and steganography prevents unauthorized

access.

Robustness: The embedded data remains intact despite minor image modifications.

Effeciency: Optimized algorithms ensure fast encryption and decryption without significant

performance impact.

Steganalysis Resistance: Encrypted data is not directly readable, even if detected.

9. SOURCE CODE

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="UTF-8">

 <meta name="viewport" content="width=device-width, initial-scale=1.0">

 <title>Image Steganography with RSA</title>

 <script src="https://cdnjs.cloudflare.com/ajax/libs/jsencrypt/3.3.2/jsencrypt.min.js"></script>

 <style>

 * {

 margin: 0;

 padding: 0;

 box-sizing: border-box;

 font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;

 }

 body {

 background: linear-gradient(135deg, #3a1c71, #d76d77, #ffaf7b);

 background-size: 400% 400%;

 animation: gradient 15s ease infinite;

 height: 100vh;

 display: flex;

 flex-direction: column;

 align-items: center;

 color: white;

 padding: 20px;

 }

 @keyframes gradient {

 0% {

 background-position: 0% 50%;

 }

 50% {

 background-position: 100% 50%;

 }

 100% {

 background-position: 0% 50%;

 }

 }

 header {

46

47

 text-align: center;

 margin-bottom: 30px;

 padding-top: 30px;

 }

 h1 {

 font-size: 2.5rem;

 letter-spacing: 2px;

 margin-bottom: 10px;

 text-shadow: 2px 2px 4px rgba(0, 0, 0, 0.3);

 }

 .container {

 display: flex;

 flex-wrap: wrap;

 justify-content: center;

 gap: 50px;

 width: 100%;

 max-width: 1200px;

 }

 .card {

 background: rgba(255, 255, 255, 0.1);

 -webkit-backdrop-filter: blur(10px);

 backdrop-filter: blur(10px);

 border-radius: 20px;

 padding: 30px;

 width: 450px;

 display: flex;

 flex-direction: column;

 align-items: center;

 box-shadow: 0 8px 32px rgba(0, 0, 0, 0.1);

 transition: transform 0.3s, box-shadow 0.3s;

 position: relative;

 overflow: hidden;

 }

 .card::before {

 content: '';

 position: absolute;

 top: 0;

 left: 0;

 width: 100%;

 height: 100%;

48

 background: linear-gradient(45deg, rgba(255, 255, 255, 0.1), transparent);

 pointer-events: none;

 }

 .card:hover {

 transform: translateY(-5px);

 box-shadow: 0 15px 35px rgba(0, 0, 0, 0.2);

 }

 .card h2 {

 font-size: 1.8rem;

 margin-bottom: 20px;

 font-weight: 600;

 }

 .image-container {

 width: 200px;

 height: 200px;

 background-color: #e91e63;

 border-radius: 10px;

 margin-bottom: 20px;

 overflow: hidden;

 position: relative;

 box-shadow: 0 5px 15px rgba(0, 0, 0, 0.2);

 transition: transform 0.3s;

 display: flex;

 justify-content: center;

 align-items: center;

 }

 .image-container:hover {

 transform: scale(1.03);

 }

 .image-container img {

 width: 100%;

 height: 100%;

 object-fit: cover;

 }

 .upload-btn {

 background: rgba(255, 255, 255, 0.2);

 border: none;

 border-radius: 30px;

49

 color: white;

 padding: 12px 25px;

 font-size: 1rem;

 cursor: pointer;

 transition: all 0.3s;

 margin-bottom: 15px;

 -webkit-backdrop-filter: blur(5px);

 backdrop-filter: blur(5px);

 width: 80%;

 text-align: center;

 }

 .upload-btn:hover {

 background: rgba(255, 255, 255, 0.3);

 transform: translateY(-2px);

 }

 .action-btn {

 background: #e91e63;

 border: none;

 border-radius: 30px;

 color: white;

 padding: 12px 25px;

 font-size: 1rem;

 font-weight: 600;

 cursor: pointer;

 transition: all 0.3s;

 width: 80%;

 text-align: center;

 box-shadow: 0 5px 15px rgba(233, 30, 99, 0.4);

 }

 .action-btn:hover {

 background: #d81b60;

 transform: translateY(-2px);

 box-shadow: 0 8px 20px rgba(233, 30, 99, 0.6);

 }

 .file-input {

 display: none;

 }

 .message-input {

 width: 80%;

50

 margin: 15px 0;

 padding: 12px;

 border-radius: 10px;

 border: 1px solid rgba(255, 255, 255, 0.2);

 background: rgba(255, 255, 255, 0.1);

 color: white;

 font-size: 0.9rem;

 outline: none;

 transition: all 0.3s;

 }

 .message-input::placeholder {

 color: rgba(255, 255, 255, 0.7);

 }

 .message-input:focus {

 border-color: rgba(255, 255, 255, 0.5);

 background: rgba(255, 255, 255, 0.15);

 }

 .message-output {

 width: 80%;

 margin: 15px 0;

 padding: 12px;

 border-radius: 10px;

 border: 1px solid rgba(255, 255, 255, 0.2);

 background: rgba(255, 255, 255, 0.1);

 color: white;

 font-size: 0.9rem;

 min-height: 60px;

 max-height: 200px;

 overflow-y: auto;

 word-break: break-word;

 }

 .key-input {

 width: 80%;

 margin: 15px 0;

 padding: 12px;

 border-radius: 10px;

 border: 1px solid rgba(255, 255, 255, 0.2);

 background: rgba(255, 255, 255, 0.1);

 color: white;

 font-size: 0.9rem;

51

 outline: none;

 transition: all 0.3s;

 height: 100px;

 resize: none;

 }

 #key-container {

 width: 100%;

 max-width: 800px;

 margin-top: 40px;

 padding: 20px;

 background: rgba(255, 255, 255, 0.1);

 -webkit-backdrop-filter: blur(10px);

 backdrop-filter: blur(10px);

 border-radius: 15px;

 text-align: center;

 }

 .key-btns {

 display: flex;

 justify-content: center;

 gap: 20px;

 margin-top: 15px;

 }

 .key-btn {

 background: rgba(255, 255, 255, 0.2);

 border: none;

 border-radius: 30px;

 color: white;

 padding: 10px 20px;

 font-size: 0.9rem;

 cursor: pointer;

 transition: all 0.3s;

 }

 .key-btn:hover {

 background: rgba(255, 255, 255, 0.3);

 }

 .hidden {

 display: none;

 }

52

 .key-display {

 width: 100%;

 height: 100px;

 margin-top: 15px;

 padding: 10px;

 background: rgba(0, 0, 0, 0.2);

 border-radius: 10px;

 color: #a0e4ff;

 font-family: monospace;

 font-size: 0.8rem;

 overflow-y: auto;

 text-align: left;

 white-space: pre-wrap;

 word-break: break-all;

 }

 .status {

 margin-top: 15px;

 font-size: 0.9rem;

 padding: 10px 15px;

 border-radius: 5px;

 background: rgba(0, 0, 0, 0.2);

 display: none;

 }

 .success {

 background: rgba(76, 175, 80, 0.3);

 }

 .error {

 background: rgba(244, 67, 54, 0.3);

 }

 .loading {

 display: inline-block;

 width: 20px;

 height: 20px;

 border: 3px solid rgba(255, 255, 255, 0.3);

 border-radius: 50%;

 border-top-color: white;

 animation: spin 1s ease-in-out infinite;

 margin-right: 10px;

 vertical-align: middle;

 }

53

 @keyframes spin {

 to { transform: rotate(360deg); }

 }

 .team-signature {

 position: absolute;

 bottom: 40px;

 font-size: 1.5rem;

 letter-spacing: 1px;

 font-weight: 300;

 opacity: 0.8;

 }

 @media (max-width: 950px) {

 .container {

 flex-direction: column;

 align-items: center;

 }

 .card {

 width: 90%;

 max-width: 400px;

 }

 h1 {

 font-size: 2rem;

 }

 .team-signature {

 position: static;

 margin-top: 40px;

 }

 #key-container {

 margin-bottom: 60px;

 }

 }

 /* Tooltip styles */

 .tooltip {

 position: relative;

 display: inline-block;

 }

 .tooltip .tooltiptext {

 visibility: hidden;

 width: 200px;

54

 background-color: rgba(0, 0, 0, 0.8);

 color: #fff;

 text-align: center;

 border-radius: 6px;

 padding: 10px;

 position: absolute;

 z-index: 1;

 bottom: 125%;

 left: 50%;

 transform: translateX(-50%);

 opacity: 0;

 transition: opacity 0.3s;

 font-size: 0.8rem;

 }

 .tooltip:hover .tooltiptext {

 visibility: visible;

 opacity: 1;

 }

 </style>

</head>

<body>

 <header>

 <h1>IMAGE STEGANOGRAPHY</h1>

 </header>

 <div class="container">

 <div class="card">

 <h2>upload</h2>

 <div class="image-container" id="encrypt-image-container">

 </div>

 <label for="encrypt-file" class="upload-btn">Choose Image</label>

 <input type="file" id="encrypt-file" class="file-input" accept="image/*">

 <input type="text" id="encrypt-message" class="message-input" placeholder="Enter your

secret message...">

 <button id="encrypt-btn" class="action-btn">encrypt</button>

 <button id="download-encrypted-img-btn" class="upload-btn hidden">Download

Encrypted Image</button>

 <button id="download-key-btn" class="upload-btn hidden">Download Private

Key</button>

 <div id="encrypt-status" class="status"></div>

 </div>

55

 <div class="card">

 <h2>upload</h2>

 <div class="image-container" id="decrypt-image-container">

 </div>

 <label for="decrypt-file" class="upload-btn">Choose Image</label>

 <input type="file" id="decrypt-file" class="file-input" accept="image/*">

 <label for="key-file" class="upload-btn">Upload Private Key File</label>

 <input type="file" id="key-file" class="file-input" accept=".txt">

 <textarea id="decrypt-key-input" class="key-input" placeholder="Or paste your private key

here..."></textarea>

 <button id="decrypt-btn" class="action-btn">decrypt</button>

 <div id="decrypt-message" class="message-output"></div>

 <div id="decrypt-status" class="status"></div>

 </div>

 </div>

 <div id="key-container">

 <h2>RSA Key Management</h2>

 <div class="key-btns">

 <button id="generate-keys-btn" class="key-btn tooltip">

 Generate New Keys

 Create new RSA key pair for encryption/decryption

 </button>

 <button id="show-private-key-btn" class="key-btn tooltip">

 Show Private Key

 Display your private key (keep this secret!)

 </button>

 <button id="show-public-key-btn" class="key-btn tooltip">

 Show Public Key

 Display your public key (share this with others)

 </button>

 </div>

 <div id="key-display" class="key-display hidden"></div>

 </div>

 <script>

 // Initialize RSA encryption

 let crypt = new JSEncrypt({default_key_size: 1024});

 let privKey = localStorage.getItem('rsa_private_key');

 let pubKey = localStorage.getItem('rsa_public_key');

 // Generate keys if not exist

 if (!privKey || !pubKey) {

56

 generateNewKeys();

 } else {

 crypt.setPrivateKey(privKey);

 crypt.setPublicKey(pubKey);

 }

 // Store the current key for each encrypted image

 let currentImageKey = null;

 // DOM Elements

 const encryptImage = document.getElementById('encrypt-image');

 const encryptFile = document.getElementById('encrypt-file');

 const encryptImageContainer = document.getElementById('encrypt-image-container');

 const encryptMessage = document.getElementById('encrypt-message');

 const encryptBtn = document.getElementById('encrypt-btn');

 const encryptStatus = document.getElementById('encrypt-status');

 const downloadEncryptedImgBtn = document.getElementById('download-encrypted-img-

btn');

 const downloadKeyBtn = document.getElementById('download-key-btn');

 const decryptImage = document.getElementById('decrypt-image');

 const decryptFile = document.getElementById('decrypt-file');

 const decryptImageContainer = document.getElementById('decrypt-image-container');

 const decryptBtn = document.getElementById('decrypt-btn');

 const decryptMessage = document.getElementById('decrypt-message');

 const decryptStatus = document.getElementById('decrypt-status');

 const keyFile = document.getElementById('key-file');

 const decryptKeyInput = document.getElementById('decrypt-key-input');

 const generateKeysBtn = document.getElementById('generate-keys-btn');

 const showPrivateKeyBtn = document.getElementById('show-private-key-btn');

 const showPublicKeyBtn = document.getElementById('show-public-key-btn');

 const keyDisplay = document.getElementById('key-display');

 // Event listeners

 encryptFile.addEventListener('change', loadEncryptImage);

 decryptFile.addEventListener('change', loadDecryptImage);

 encryptBtn.addEventListener('click', encryptMessageToImage);

 decryptBtn.addEventListener('click', decryptMessageFromImage);

 generateKeysBtn.addEventListener('click', generateNewKeys);

 showPrivateKeyBtn.addEventListener('click', showPrivateKey);

 showPublicKeyBtn.addEventListener('click', showPublicKey);

 downloadEncryptedImgBtn.addEventListener('click', downloadEncryptedImage);

 downloadKeyBtn.addEventListener('click', downloadPrivateKey);

57

 keyFile.addEventListener('change', loadKeyFile);

 const decryptImage = document.getElementById('decrypt-image');

 const decryptFile = document.getElementById('decrypt-file');

 const decryptImageContainer = document.getElementById('decrypt-image-container');

 const decryptBtn = document.getElementById('decrypt-btn');

 const decryptMessage = document.getElementById('decrypt-message');

 const decryptStatus = document.getElementById('decrypt-status');

 const keyFile = document.getElementById('key-file');

 const decryptKeyInput = document.getElementById('decrypt-key-input');

 const generateKeysBtn = document.getElementById('generate-keys-btn');

 const showPrivateKeyBtn = document.getElementById('show-private-key-btn');

 const showPublicKeyBtn = document.getElementById('show-public-key-btn');

 const keyDisplay = document.getElementById('key-display');

 // Event listeners

 encryptFile.addEventListener('change', loadEncryptImage);

 decryptFile.addEventListener('change', loadDecryptImage);

 encryptBtn.addEventListener('click', encryptMessageToImage);

 decryptBtn.addEventListener('click', decryptMessageFromImage);

 generateKeysBtn.addEventListener('click', generateNewKeys);

 showPrivateKeyBtn.addEventListener('click', showPrivateKey);

 showPublicKeyBtn.addEventListener('click', showPublicKey);

 downloadEncryptedImgBtn.addEventListener('click', downloadEncryptedImage);

 downloadKeyBtn.addEventListener('click', downloadPrivateKey);

 keyFile.addEventListener('change', loadKeyFile);

 reader.readAsDataURL(file);

 encryptStatus.style.display = 'none';

 downloadEncryptedImgBtn.classList.add('hidden');

 downloadKeyBtn.classList.add('hidden');

 // Clear the message input for a fresh start

 encryptMessage.value = '';

 }

 // Generate a new key for each image

 function generateNewKeyForImage() {

 const imageCrypt = new JSEncrypt({default_key_size: 1024});

 imageCrypt.getKey();

 currentImageKey = imageCrypt.getPrivateKey();

58

 const imagePublicKey = imageCrypt.getPublicKey();

 // Use this key for the current image encryption

 crypt.setPrivateKey(currentImageKey);

 crypt.setPublicKey(imagePublicKey);

 showStatus(encryptStatus, 'New encryption key generated for this image', 'success');

 setTimeout(() => { encryptStatus.style.display = 'none'; }, 3000);

 }

 // Load image for decryption

 function loadDecryptImage(e) {

 const file = e.target.files[0];

 if (!file) return;

 const reader = new FileReader();

 reader.onload = function(event) {

 decryptImage.src = event.target.result;

 decryptImageContainer.style.backgroundColor = 'transparent';

 };

 reader.readAsDataURL(file);

 decryptStatus.style.display = 'none';

 decryptMessage.innerText = '';

 // Clear the key input for new decryption

 decryptKeyInput.value = '';

 }

 // Load key file

 function loadKeyFile(e) {

 const file = e.target.files[0];

 if (!file) return;

 const reader = new FileReader();

 reader.onload = function(event) {

 decryptKeyInput.value = event.target.result;

 };

 reader.readAsText(file);

 }

 // Encrypt message into image

 function encryptMessageToImage() {

 if (!encryptImage.src) {

 showStatus(encryptStatus, 'Please select an image first', 'error');

59

 return;

 }

 const message = encryptMessage.value.trim();

 if (!message) {

 showStatus(encryptStatus, 'Please enter a message to encrypt', 'error');

 return;

 }

 showStatus(encryptStatus, '<div class="loading"></div> Encrypting message...', '');

 // Create a canvas element

 const canvas = document.createElement('canvas');

 const ctx = canvas.getContext('2d');

 // Create a new image to load the source

 const img = new Image();

 img.crossOrigin = 'Anonymous';

 img.onload = function() {

 // Set canvas dimensions to match the image

 canvas.width = img.width;

 canvas.height = img.height;

 // Draw the image on the canvas

 ctx.drawImage(img, 0, 0);

 // Encrypt the message with RSA

 const encryptedMessage = crypt.encrypt(message);

 if (!encryptedMessage) {

 showStatus(encryptStatus, 'Encryption failed. Try again or generate new keys.', 'error');

 return;

 }

 // Convert the encrypted message to binary

 const binaryMessage = convertToBinary(encryptedMessage);

 // Get image data

 const imageData = ctx.getImageData(0, 0, canvas.width, canvas.height);

 const data = imageData.data;

 // Check if the image is large enough for the message

 if (data.length / 4 < binaryMessage.length) {

60

 showStatus(encryptStatus, 'Image too small for this message. Choose a larger image.',

'error');

 return;

 }

 // Embed the message length at the beginning

 const messageLengthBinary = convertToBinary(binaryMessage.length.toString());

 for (let i = 0; i < 32; i++) {

 const bit = i < messageLengthBinary.length ? messageLengthBinary[i] : '0';

 // Modify the least significant bit of the red channel

 data[i * 4] = (data[i * 4] & 254) | parseInt(bit);

 }

 // Embed the message

 for (let i = 0; i < binaryMessage.length; i++) {

 // Start after the length bits (32 pixels)

 const position = (i + 32) * 4;

 if (position >= data.length) break;

 // Modify the least significant bit of the blue channel

 data[position + 2] = (data[position + 2] & 254) | parseInt(binaryMessage[i]);

 }

 // Put the modified image data back to the canvas

 ctx.putImageData(imageData, 0, 0);

 // Store the encrypted image

 encryptedImageData = canvas.toDataURL('image/png');

 // Display success and show download buttons

 showStatus(encryptStatus, 'Message encrypted successfully!', 'success');

 downloadEncryptedImgBtn.classList.remove('hidden');

 downloadKeyBtn.classList.remove('hidden');

 };

 img.onerror = function() {

 showStatus(encryptStatus, 'Error loading image. Try another image.', 'error');

 };

 img.src = encryptImage.src;

 }

 // Function to download the encrypted image

 function downloadEncryptedImage() {

61

 if (!encryptedImageData) {

 showStatus(encryptStatus, 'No encrypted image available.', 'error');

 return;

 }

 const link = document.createElement('a');

 link.href = encryptedImageData;

 link.download = 'encrypted.png';

 document.body.appendChild(link);

 link.click();

 document.body.removeChild(link);

 }

 // Function to download the private key

 function downloadPrivateKey() {

 if (!currentImageKey) {

 showStatus(encryptStatus, 'No private key available for this image.', 'error');

 return;

 }

 const blob = new Blob([currentImageKey], { type: 'text/plain' });

 const link = document.createElement('a');

 link.href = URL.createObjectURL(blob);

 link.download = 'privatekey.txt';

 document.body.appendChild(link);

 link.click();

 document.body.removeChild(link);

 URL.revokeObjectURL(link.href);

 }

 // Decrypt message from image

 function decryptMessageFromImage() {

 if (!decryptImage.src) {

 showStatus(decryptStatus, 'Please select an image first', 'error');

 return;

 }

 // Get the private key from input or file

 const key = decryptKeyInput.value.trim();

 if (!key) {

 showStatus(decryptStatus, 'Please enter or upload a private key', 'error');

 return;

 }

62

 showStatus(decryptStatus, '<div class="loading"></div> Decrypting message...', '');

 // Set the private key for decryption

 const decrypter = new JSEncrypt();

 decrypter.setPrivateKey(key);

 // Create a canvas element

 const canvas = document.createElement('canvas');

 const ctx = canvas.getContext('2d');

 // Create a new image to load the source

 const img = new Image();

 img.crossOrigin = 'Anonymous';

 img.onload = function() {

 // Set canvas dimensions to match the image

 canvas.width = img.width;

 canvas.height = img.height;

 // Draw the image on the canvas

 ctx.drawImage(img, 0, 0);

 // Get image data

 const imageData = ctx.getImageData(0, 0, canvas.width, canvas.height);

 const data = imageData.data;

 // Extract the message length first (from first 32 pixels)

 let messageLengthBinary = '';

 for (let i = 0; i < 32; i++) {

 messageLengthBinary += (data[i * 4] & 1).toString();

 }

 const messageLength = parseInt(convertFromBinary(messageLengthBinary));

 if (isNaN(messageLength) || messageLength <= 0 || messageLength > data.length / 4) {

 showStatus(decryptStatus, 'No hidden message found in this image.', 'error');

 return;

 }

 // Extract the binary message

 let binaryMessage = '';

 for (let i = 0; i < messageLength; i++) {

 // Start after the length bits (32 pixels)

 const position = (i + 32) * 4;

63

 if (position >= data.length) break;

 // Extract the least significant bit of the blue channel

 binaryMessage += (data[position + 2] & 1).toString();

 }

 // Convert binary to text

 const encryptedMessage = convertFromBinary(binaryMessage);

 // Decrypt the message with RSA

 const decryptedMessage = decrypter.decrypt(encryptedMessage);

 if (!decryptedMessage) {

 showStatus(decryptStatus, 'Decryption failed. Make sure you have the correct private

key.', 'error');

 decryptMessage.innerText = 'Decryption failed. Please check your key.';

 return;

 }

 // Display the decrypted message

 decryptMessage.innerText = decryptedMessage;

 showStatus(decryptStatus, 'Message decrypted successfully!', 'success');

 };

 img.onerror = function() {

 showStatus(decryptStatus, 'Error loading image. Try another image.', 'error');

 };

 img.src = decryptImage.src;

 }

 // Helper function to show status messages

 function showStatus(element, message, type) {

 element.innerHTML = message;

 element.className = 'status';

 if (type) element.classList.add(type);

 element.style.display = 'block';

 }

 // Helper function to convert text to binary

 function convertToBinary(text) {

 let binary = '';

 for (let i = 0; i < text.length; i++) {

 const charCode = text.charCodeAt(i);

64

 const binaryChar = charCode.toString(2).padStart(8, '0');

 binary += binaryChar;

 }

 return binary;

 }

 // Helper function to convert binary to text

 function convertFromBinary(binary) {

 let text = '';

 for (let i = 0; i < binary.length; i += 8) {

 const byte = binary.substr(i, 8);

 if (byte.length < 8) break;

 const charCode = parseInt(byte, 2);

 text += String.fromCharCode(charCode);

 }

 return text;

 }

 // Generate new RSA key pair

 function generateNewKeys() {

 crypt = new JSEncrypt({default_key_size: 1024});

 crypt.getKey();

 privKey = crypt.getPrivateKey();

 pubKey = crypt.getPublicKey();

 // Also update current image key

 currentImageKey = privKey;

 // Save keys to localStorage

 localStorage.setItem('rsa_private_key', privKey);

 localStorage.setItem('rsa_public_key', pubKey);

 keyDisplay.innerText = 'New keys generated and saved!';

 keyDisplay.classList.remove('hidden');

 setTimeout(() => {

 keyDisplay.classList.add('hidden');

 }, 3000);

 }

 // Show private key

 function showPrivateKey() {

 if (currentImageKey) {

 keyDisplay.innerText = currentImageKey; // Show the current image's key

65

 } else if (privKey) {

 keyDisplay.innerText = privKey;

 } else {

 keyDisplay.innerText = 'No private key found. Generate keys first.';

 }

 keyDisplay.classList.remove('hidden');

 }

 // Show public key

 function showPublicKey() {

 if (!pubKey) {

 keyDisplay.innerText = 'No public key found. Generate keys first.';

 } else {

 keyDisplay.innerText = pubKey;

 }

 keyDisplay.classList.remove('hidden');

 }

 </script>

</body>

</html>

66

10.RESULTS AND DISCUSSION

9.1 Implementation Description:

The implementation of the image steganography system is done using Python, leveraging

libraries such as OpenCV, NumPy, and Cryptography. The core functionalities include:

RSA Key Generation: Generates a public-private key pair for secure encryption.

Image Processing: Loads, modifies, and saves images using OpenCV.

Message Embedding: Uses LSB substitution to hide encrypted text in the image.

Message Extraction: Retrieves and decrypts hidden messages securely.

User Interaction: Simple UI for encryption and decryption operations.

 9.2 Image Encryption & Decryption:

Encryption Process: The user inputs text, which is encrypted with RSA and embedded into

an image.

Decryption Process: The hidden message is extracted and decrypted back into readable

text.Testing Results: The system successfully encrypts and decrypts messages without

visible image distortion, ensuring security and reliability.

67

68

11. CONCLUSION AND FUTURE SCOPE

Conclusion:

The combination of steganography and RSA encryption provides a highly secure method for

hidden communication. The system successfully ensures confidentiality, integrity, and

robustness, making it an effective solution for secure data transmission. Future improvements

may include support for other file formats and enhanced steganalysis resistance. Image

steganography using the RSA algorithm provides a robust method for secure data hiding by

combining cryptography and steganography. The RSA algorithm ensures the confidentiality and

integrity of hidden data by encrypting it before embedding it into an image. This dual-layer

security approach enhances resistance to attacks, making it difficult for unauthorized users to

retrieve or manipulate the concealed information.By leveraging the strengths of RSA

encryption and image steganography, this technique can be effectively applied in secure

communications, watermarking, and digital forensics. However, trade-offs such as increased

computational complexity and potential distortion of the cover image should be carefully

considered. Future improvements can focus on optimizing embedding techniques and

enhancing security against steganalysis attacks.

References:

1.Steganography, 2020, [online] Available: https://en.wikipedia.org/wiki/Steganography.

Show in Context Google Scholar

2.H. Shi, X.-Y. Zhang, S. Wang, G. Fu and J. Tang, "Synchronized detection and recovery of

steganographic messages with adversarial learning", Proc. Int. Conf. Comput. Sci, pp. 31-43,

2019.

Show in Context CrossRef Google Scholar

3.N. F. Hordri, S. S. Yuhaniz and S. M. Shamsuddin, "Deep learning and its applications: A

review", Proc. Conf. Postgraduate Annu. Res. Informat. Seminar, pp. 1-6, 2016.

Show in Context Google Scholar

4.N. F. Johnson and S. Jajodia, "Exploring steganography: Seeing the unseen", Computer, vol.

31, no. 2, pp. 26-34, Feb. 1998.

Show in Context View Article

 Google Scholar

5.S. Gupta, G. Gujral and N. Aggarwal, "Enhanced least significant bit algorithm for image

steganography", Int. J. Comput. Eng. Manage., vol. 15, no. 4, pp. 40-42, 2012.

Show in Context Google Scholar

6.R. Das and T. Tuithung, "A novel steganography method for image based on Huffman

encoding", Proc. 3rd Nat. Conf. Emerg. Trends Appl. Comput. Sci., pp. 14-18, Mar. 2012.

Show in Context View Article

 Google Scholar

7.A. Singh and H. Singh, "An improved LSB based image steganography technique for RGB

images", Proc. IEEE Int. Conf. Electr. Comput. Commun. Technol. (ICECCT), pp. 1-4, Mar.

2015.

Show in Context View Article

https://en.wikipedia.org/wiki/Steganography
https://scholar.google.com/scholar?as_q=Steganography&as_occt=title&hl=en&as_sdt=0%2C31
https://doi.org/10.1007/978-3-030-22741-8_3
https://doi.org/10.1007/978-3-030-22741-8_3
https://scholar.google.com/scholar?as_q=Deep+learning+and+its+applications%3A+A+review&as_occt=title&hl=en&as_sdt=0%2C31
https://ieeexplore.ieee.org/document/4655281
https://scholar.google.com/scholar?as_q=Exploring+steganography%3A+Seeing+the+unseen&as_occt=title&hl=en&as_sdt=0%2C31
https://scholar.google.com/scholar?as_q=Enhanced+least+significant+bit+algorithm+for+image+steganography&as_occt=title&hl=en&as_sdt=0%2C31
https://ieeexplore.ieee.org/document/6203290
https://scholar.google.com/scholar?as_q=A+novel+steganography+method+for+image+based+on+Huffman+encoding&as_occt=title&hl=en&as_sdt=0%2C31
https://ieeexplore.ieee.org/document/7226122

69

 Google Scholar

8.Z. Qu, Z. Cheng, W. Liu and X. Wang, "A novel quantum image steganography algorithm based

on exploiting modification direction", Multimedia Tools Appl., vol. 78, no. 7, pp. 7981-8001, Apr.

2019.

Show in Context CrossRef Google Scholar

9.S. Wang, J. Sang, X. Song and X. Niu, "Least significant qubit (LSQb) information hiding

algorithm for quantum image", Measurement, vol. 73, pp. 352-359, Sep. 2015.

Show in Context CrossRef Google Scholar

10.N. Patel and S. Meena, "LSB based image steganography using dynamic key

cryptography", Proc. Int. Conf. Emerg. Trends Commun. Technol. (ETCT), pp. 1-5, Nov. 2016.

Show in Context View Article

 Google Scholar

11.O. Elharrouss, N. Almaadeed and S. Al-Maadeed, "An image steganography approach based

on k-least significant bits (k-LSB)", Proc. IEEE Int. Conf. Informat. IoT Enabling Technol.

(ICIoT), pp. 131-135, Feb. 2020.

Show in Context View Article

 Google Scholar

12.M. V. S. Tarun, K. V. Rao, M. N. Mahesh, N. Srikanth and M. Reddy, "Digital video

steganography using LSB technique", Red, vol. 100111, Apr. 2020.

Show in Context Google Scholar

13.S. S. M. Than, "Secure data transmission in video format based on LSB and Huffman

coding", Int. J. Image Graph. Signal Process., vol. 12, no. 1, pp. 10, 2020.

Show in Context CrossRef Google Scholar

14.M. B. Tuieb, M. Z. Abdullah and N. S. Abdul-Razaq, "An efficiency secured and reversible

video steganography approach based on lest significant", J. Cellular Automata, vol. 16, no. 17,

Apr. 2020.

Show in Context Google Scholar

15.R. J. Mstafa, K. M. Elleithy and E. Abdelfattah, "A robust and secure video steganography

method in DWT-DCT domains based on multiple object tracking and ECC", IEEE Access, vol.

5, pp. 5354-5365, 2017.

Show in Context View Article

 Google Scholar

16.K. A. Al-Afandy, O. S. Faragallah, A. Elmhalawy, E.-S.-M. El-Rabaie and G. M. El-Banby,

"High security data hiding using image cropping and LSB least significant bit

steganography", Proc. 4th IEEE Int. Colloq. Inf. Sci. Technol. (CiSt), pp. 400-404, Oct. 2016.

Show in Context View Article

 Google Scholar

17.A. Arya and S. Soni, "Performance evaluation of secrete image steganography techniques

using least significant bit (LSB) method", Int. J. Comput. Sci. Trends Technol., vol. 6, no. 2, pp.

160-165, 2018.

Show in Context Google Scholar

18.G. Swain, "Very high capacity image steganography technique using quotient value

differencing and LSB substitution", Arabian J. Sci. Eng., vol. 44, no. 4, pp. 2995-3004, Apr.

2019.

https://scholar.google.com/scholar?as_q=An+improved+LSB+based+image+steganography+technique+for+RGB+images&as_occt=title&hl=en&as_sdt=0%2C31
https://doi.org/10.1007/s11042-018-6476-5
https://doi.org/10.1007/s11042-018-6476-5
https://doi.org/10.1016/j.measurement.2015.05.038
https://doi.org/10.1016/j.measurement.2015.05.038
https://ieeexplore.ieee.org/document/7882955
https://scholar.google.com/scholar?as_q=LSB+based+image+steganography+using+dynamic+key+cryptography&as_occt=title&hl=en&as_sdt=0%2C31
https://ieeexplore.ieee.org/document/9089566
https://scholar.google.com/scholar?as_q=An+image+steganography+approach+based+on+k-least+significant+bits+%28k-LSB%29&as_occt=title&hl=en&as_sdt=0%2C31
https://scholar.google.com/scholar?as_q=Digital+video+steganography+using+LSB+technique&as_occt=title&hl=en&as_sdt=0%2C31
https://doi.org/10.5815/ijigsp.2020.01.02
https://doi.org/10.5815/ijigsp.2020.01.02
https://scholar.google.com/scholar?as_q=An+efficiency%2C+secured+and+reversible+video+steganography+approach+based+on+lest+significant&as_occt=title&hl=en&as_sdt=0%2C31
https://ieeexplore.ieee.org/document/7893733
https://scholar.google.com/scholar?as_q=A+robust+and+secure+video+steganography+method+in+DWT-DCT+domains+based+on+multiple+object+tracking+and+ECC&as_occt=title&hl=en&as_sdt=0%2C31
https://ieeexplore.ieee.org/document/7805079
https://scholar.google.com/scholar?as_q=High+security+data+hiding+using+image+cropping+and+LSB+least+significant+bit+steganography&as_occt=title&hl=en&as_sdt=0%2C31
https://scholar.google.com/scholar?as_q=Performance+evaluation+of+secrete+image+steganography+techniques+using+least+significant+bit+%28LSB%29+method&as_occt=title&hl=en&as_sdt=0%2C31

70

Show in Context CrossRef Google Scholar

19.A. Qiu, X. Chen, X. Sun, S. Wang and W. Guo, "Coverless image steganography method

based on feature selection", J. Inf. Hiding Privacy Protection, vol. 1, no. 2, pp. 49, 2019.

Show in Context CrossRef Google Scholar

20.R. D. Rashid and T. F. Majeed, "Edge based image steganography: Problems and

solution", Proc. Int. Conf. Commun. Signal Process. Appl. (ICCSPA), pp. 1-5, Mar. 2019.

Show in Context View Article

 Google Scholar

21.X. Liao, J. Yin, S. Guo, X. Li and A. K. Sangaiah, "Medical JPEG image steganography based

on preserving inter-block dependencies", Comput. Electr. Eng., vol. 67, pp. 320-329, Apr. 2018.

Show in Context CrossRef Google Scholar

22.W. Lu, Y. Xue, Y. Yeung, H. Liu, J. Huang and Y. Shi, "Secure halftone image steganography

based on pixel density transition", IEEE Trans. Dependable Secure Comput., Aug. 2019.

Show in Context View Article

 Google Scholar

23.Y. Zhang, C. Qin, W. Zhang, F. Liu and X. Luo, "On the fault-tolerant performance for a class

of robust image steganography", Signal Process., vol. 146, pp. 99-111, May 2018.

Show in Context CrossRef Google Scholar

24.H. M. Sidqi and M. S. Al-Ani, "Image steganography: Review study", Proc. Int. Conf. Image

Process. Comput. Vis. Pattern Recognit. (IPCV), pp. 134-140, 2019.

Show in Context Google Scholar

25.P. Wu, Y. Yang and X. Li, "Image-into-image steganography using deep convolutional

network", Proc. Pacific Rim Conf. Multimedia, pp. 792-802, 2018.

Show in Context CrossRef Google Scholar

26.P. Wu, Y. Yang and X. Li, "StegNet: Mega image steganography capacity with deep

convolutional network", Future Internet, vol. 10, no. 6, pp. 54, Jun. 2018.

Show in Context CrossRef Google Scholar

27.X. Duan, K. Jia, B. Li, D. Guo, E. Zhang and C. Qin, "Reversible image steganography

scheme based on a U-Net structure", IEEE Access, vol. 7, pp. 9314-9323, 2019.

Show in Context View Article

 Google Scholar

28.T. P. Van, T. H. Dinh and T. M. Thanh, "Simultaneous convolutional neural network for highly

efficient image steganography", Proc. 19th Int. Symp. Commun. Inf. Technol. (ISCIT), pp. 410-

415, Sep. 2019.

Show in Context View Article

 Google Scholar

29.R. Rahim and S. Nadeem, "End-to-end trained CNN encoder-decoder networks for image

steganography", Proc. Eur. Conf. Comput. Vis. (ECCV), pp. 1-6, 2018.

Show in Context Google Scholar

30.Z. Wang, N. Gao, X. Wang, J. Xiang and G. Liu, "STNet: A style transformation network for

deep image steganography", Proc. Int. Conf. Neural Inf. Process, pp. 3-14, 2019.

Show in Context CrossRef Google Scholar

https://doi.org/10.1007/s13369-018-3372-2
https://doi.org/10.1007/s13369-018-3372-2
https://doi.org/10.32604/jihpp.2019.05881
https://doi.org/10.32604/jihpp.2019.05881
https://ieeexplore.ieee.org/document/8713712
https://scholar.google.com/scholar?as_q=Edge+based+image+steganography%3A+Problems+and+solution&as_occt=title&hl=en&as_sdt=0%2C31
https://doi.org/10.1016/j.compeleceng.2017.08.020
https://doi.org/10.1016/j.compeleceng.2017.08.020
https://ieeexplore.ieee.org/document/8789545
https://scholar.google.com/scholar?as_q=Secure+halftone+image+steganography+based+on+pixel+density+transition&as_occt=title&hl=en&as_sdt=0%2C31
https://doi.org/10.1016/j.sigpro.2018.01.011
https://doi.org/10.1016/j.sigpro.2018.01.011
https://scholar.google.com/scholar?as_q=Image+steganography%3A+Review+study&as_occt=title&hl=en&as_sdt=0%2C31
https://doi.org/10.1007/978-3-030-00767-6_73
https://doi.org/10.1007/978-3-030-00767-6_73
https://doi.org/10.3390/fi10060054
https://doi.org/10.3390/fi10060054
https://ieeexplore.ieee.org/document/8604041
https://scholar.google.com/scholar?as_q=Reversible+image+steganography+scheme+based+on+a+U-Net+structure&as_occt=title&hl=en&as_sdt=0%2C31
https://ieeexplore.ieee.org/document/8905216
https://scholar.google.com/scholar?as_q=Simultaneous+convolutional+neural+network+for+highly+efficient+image+steganography&as_occt=title&hl=en&as_sdt=0%2C31
https://scholar.google.com/scholar?as_q=End-to-end+trained+CNN+encoder-decoder+networks+for+image+steganography&as_occt=title&hl=en&as_sdt=0%2C31
https://doi.org/10.1007/978-3-030-36711-4_1
https://doi.org/10.1007/978-3-030-36711-4_1

	CMR ENGINEERING COLLEGE
	CMR ENGINEERING COLLEGE
	Department of Computer Science & Engineering(Data Science)
	DECLARATION
	ACKNOWLEDGMENT

	1. Introduction
	1.1 Overview
	1.2 Research Motivation
	This research addresses these challenges by proposing a comprehensive security framework that combines RSA cryptography with advanced image steganography techniques. The primary research question is: How can the integration of RSA encryption with imag...
	1.4 Applications

	1. The integrated RSA-steganography system developed in this research offers versatile applications across numerous domains where information security is paramount. This dual-layer protection mechanism, combining the strengths of cryptographic encrypt...
	2. In the realm of military and intelligence operations, this technology provides a crucial capability for secure communication in hostile environments. Sensitive tactical information can be encrypted using RSA and embedded within ordinary images that...
	3. For corporate and financial institutions, the application of this technology extends to the protection of proprietary information and financial data. Sensitive business strategies, merger plans, or financial transactions can be secured using RSA en...
	4. In healthcare settings, where patient confidentiality is legally mandated and ethically essential, this technology offers a robust solution for securing personal health information during transmission and storage. Medical images themselves can serv...
	5. The journalism and human rights sectors benefit from this technology's ability to protect sources and sensitive documentation in regions with restrictive information controls. Journalists operating in environments with heavy censorship or surveilla...
	6. For personal privacy, the system offers individuals a practical tool for securing private communications and personal data in an increasingly surveilled digital landscape. From securing personal financial information to protecting private conversat...
	7. Additionally, this technology holds significant potential for digital watermarking and copyright protection. Content creators can embed encrypted ownership information within their digital works, creating tamper-evident signatures that help protect...
	8. The system's implementation in Python, with its cross-platform compatibility and extensive library support, ensures that these applications can be realized across various operating systems and integrated into existing software ecosystems with minim...
	2. Literature Survey
	3. EXISTING SYSTEM
	3.1. Traditional Steganography Methods
	Traditional steganography methods have evolved significantly over the years, transitioning from ancient physical techniques to sophisticated digital approaches. These conventional methods, while groundbreaking in their time, exhibit several limitation...
	The Least Significant Bit (LSB) substitution technique remains one of the most widely implemented steganographic methods in digital media. This method operates by replacing the least significant bits of pixel values in an image with bits from the secr...
	Discrete Cosine Transform (DCT) based steganography, commonly used in JPEG images, embeds information by modifying the DCT coefficients in the frequency domain. This method offers better resilience against compression compared to spatial domain techni...
	The Pixel Value Differencing (PVD) method exploits the human visual system's characteristics by embedding more data in edge areas of images where modifications are less perceptible. While this approach improves the visual quality of stego-images compa...
	Traditional steganography methods typically lack integration with robust cryptographic techniques, creating a significant security vulnerability. Most conventional approaches focus solely on concealment without addressing the confidentiality of the em...
	Furthermore, conventional steganography methods often employ simplistic password-based security mechanisms rather than robust cryptographic algorithms, making them vulnerable to brute force attacks and other cryptanalytic techniques. The absence of st...
	Another limitation of traditional methods is their fixed embedding patterns, which create characteristic signatures that can be identified by modern steganalysis tools. The predictability of these patterns makes conventional steganography increasingly...
	Traditional steganography approaches also typically fail to address the issue of key management, which is essential for secure communication between multiple parties. Without a robust key exchange mechanism, these methods often rely on pre-shared secr...

	4. PROPOSED METHODOLOGY
	4.1 Overview
	The proposed system introduces a comprehensive security framework that seamlessly integrates RSA cryptography with advanced image steganography to create a multi-layered protection mechanism for sensitive information. This innovative approach addresse...
	At its core, the system employs a dual-phase security architecture. In the first phase, the plaintext message undergoes RSA encryption using the recipient's public key, transforming it into ciphertext that is mathematically secure and computationally ...
	The second phase involves embedding this encrypted data within carrier images using advanced adaptive steganographic techniques. Rather than relying on simplistic methods like sequential LSB replacement, the system employs a sophisticated algorithm th...
	A key innovation in the proposed system is its dynamic embedding approach, which varies the embedding pattern based on a secure pseudo-random sequence generated from a shared secret between the sender and recipient. This randomization eliminates the p...
	The system also incorporates an adaptive bit allocation mechanism that distributes the encrypted data across the carrier image based on the local characteristics of image regions. Areas with higher texture complexity or natural noise can accommodate m...
	4.2. How Steganography & RSA Work Together
	The integration of RSA cryptography with image steganography creates a synergistic security model that leverages the complementary strengths of both technologies. This hybrid approach establishes multiple defensive layers that an attacker would need t...
	RSA cryptography contributes the mathematical security derived from the computational hardness of integer factorization. When a message is encrypted using the recipient's public key, it transforms the plaintext into ciphertext that remains secure even...
	Steganography complements this cryptographic strength by providing concealment capabilities. By embedding the RSA-encrypted data within ordinary digital images, the system masks the very existence of secure communication, addressing the visibility pro...
	The practical implementation of this integration follows a systematic workflow. Initially, the sender generates the RSA key pair or retrieves the recipient's public key from a trusted key repository. The plaintext message undergoes RSA encryption, pro...
	Simultaneously, the system analyzes the carrier image to create a steganographic capacity map that identifies optimal embedding locations based on the image's visual characteristics. Higher capacity values are assigned to textured regions, edges, and ...
	The system then employs a secure pseudo-random number generator, seeded with a shared secret between the sender and recipient, to determine the specific pixel locations and bit positions for embedding. This randomization eliminates the sequential patt...
	During the embedding process, the system implements adaptive bit-plane selection, choosing different bit positions for embedding based on the local characteristics of each image region. In highly textured areas, modifications might extend to middle-si...
	The resulting stego-image appears visually identical to the original cover image to the human eye, with minimal statistical disturbances that might trigger automated steganalysis tools. The stego-image can be transmitted through regular communication ...
	On the recipient's side, the extraction process begins with the application of the same pseudo-random sequence (generated from the shared secret) to identify the embedding locations. The embedded bits are extracted and reconstructed into the original ...
	This integrated approach creates a security system where each component addresses the weaknesses of the other—RSA provides mathematical security for the data itself, while steganography provides the critical concealment that prevents the encrypted dat...

	5. UML DAIGRAMS
	5.1 Class diagram
	5.2 Use case Diagram
	5.3 Sequence Diagram

	6. SOFTWARE ENVIRONMENT
	Moreover, Python's strong community support and extensive documentation provide developers with abundant resources for implementing security best practices and avoiding common pitfalls in cryptographic implementations. The language's dynamic typing sy...
	However, Python also presents certain disadvantages that must be considered in security-oriented applications. The interpreted nature that facilitates rapid development also results in slower execution speeds compared to compiled languages like C or C...
	Python's dynamic typing, while offering flexibility, may allow certain types of errors to manifest at runtime rather than being caught during development, potentially introducing subtle bugs in security-critical code. The Global Interpreter Lock (GIL)...
	From a security perspective, the open-source nature of Python applications means that the source code is often readily available, potentially making it easier for attackers to analyze for vulnerabilities compared to compiled languages. Additionally, t...
	Python's automatic memory management, while preventing many memory-related vulnerabilities, can make it difficult to implement certain secure coding practices such as secure memory handling for cryptographic keys, which may require explicit memory cle...
	Despite these limitations, Python's advantages significantly outweigh its disadvantages for most security applications, particularly those like the RSA-steganography system described in this research, where the benefits of rapid development, code clar...
	6.4 Install Python Step-by-Step in Windows and Mac
	How to Install Python on Windows and Mac
	Download the Correct version into the system

	7. SYSTEM REQUIREMENTS SPECIFICATIONS
	7.1 Software Requirements
	The RSA-based steganography system has been designed with cross-platform compatibility as a primary consideration, ensuring accessibility across various operating systems while maintaining consistent functionality and security properties. The followin...
	Operating System Compatibility: The system supports Windows 10 and newer versions, macOS 10.14 (Mojave) and above, and major Linux distributions including Ubuntu 18.04+, Fedora 30+, and Debian 10+. This broad compatibility ensures that the security so...
	Python Runtime: Python 3.7 or newer is required, as the implementation leverages modern language features including improved type hinting, enhanced asynchronous capabilities, and security improvements in the standard library. Users must have the offic...
	Required Libraries: The application depends on several key external libraries: the cryptography library (version 3.4.0 or newer) provides secure implementations of cryptographic algorithms including RSA encryption with appropriate padding schemes; Pil...
	Storage Requirements: The system requires approximately 50MB of disk space for installation, including all dependencies. Additional storage is needed for processing images, with requirements scaling based on the dimensions and number of images being p...
	Display Requirements: A minimum display resolution of 1280x720 pixels is recommended for optimal usability of the graphical interface, though the system will function on lower resolutions with some interface elements requiring scrolling. The command-l...
	Network Connectivity: While not strictly required for core functionality, internet connectivity may be needed for the initial installation of dependencies. Once installed, the system operates entirely offline, which is advantageous from a security per...
	Browser Requirements (for Documentation): The HTML documentation included with the system is compatible with modern web browsers including Chrome 80+, Firefox 75+, Safari 13+, and Edge 80+. The documentation uses standard HTML5 and CSS3 features witho...
	Administrative Privileges: Standard user privileges are sufficient for installation when using virtual environments or user-level package installation. Administrative or root privileges are only required if installing packages system-wide, particularl...
	Additional Software: No additional software is required for basic operation. For advanced features such as integration with document management systems or email clients, additional configuration may be necessary as detailed in the integration document...
	Recommended Environment: For optimal performance when processing larger images or handling batch operations, a system with at least 4GB of RAM and a multi-core processor is recommended. The system will function on less powerful hardware, but processin...
	These software requirements have been deliberately kept minimal to ensure broad accessibility while maintaining security and performance standards. The system's modular design allows for operation in various configurations, from standalone desktop app...
	7.2 Hardware Requirements

	8. FUNCTIONAL REQUIREMENTS
	9. SOURCE CODE
	10. RESULTS AND DISCUSSION
	11. CONCLUSION AND FUTURE SCOPE

