
i

A

Major Project Report

On

Malicious URL Detection using Machine Learning

Submitted to CMREC, HYDERABAD

In Partial Fulfillment of the requirements for the Award of Degree of

BACHELOR OF TECHNOLOGY IN

COMPUTER SCIENCE AND ENGINEERING (DATA SCIENCE)

Submitted

By

K.Sai Shivaji (218R1A6733)

B.VenuMadhav (218R1A6717)

G.VaibhavKumar (218R1A6724)

L.Nikitha (218R1A6737)

Under the Esteemed guidance of

Mrs. A.Shravani

Assistant Professor, Department of CSE (Data Science)

Department of Computer Science & Engineering (Data Science)

CMR ENGINEERING COLLEGE
UGC AUTONOMOUS

(Approved by AICTE, NEW DELHI, Affiliated to JNTU, Hyderabad)

Kandlakoya, Medchal Road, R.R. Dist. Hyderabad-501 401.

2024-2025

ii

CMR ENGINEERING COLLEGE

UGC AUTONOMOUS

(Accredited by NBA,Approved by AICTE NEW DELHI, Affiliated to JNTU, Hyderabad)

Kandlakoya, Medchal Road, Hyderabad-501 401

Department of Computer Science & Engineering (Data Science)

CERTIFICATE

This is to certify that the project entitled “Malicious URL Detection using Machine Learning ” is a

Bonafide work carried out by

K.Sai Shivaji (218R1A6733)

B.VenuMadhav (218R1A6717)

G.VaibhavKumar (218R1A6724)

L.Nikitha (218R1A6737)

in partial fulfillment of the requirement for the award of the degree of BACHELOR OF

TECHNOLOGY in COMPUTER SCIENCE AND ENGINEERING (DATA SCIENCE) from

CMR Engineering College, affiliated to JNTU, Hyderabad, under our guidance and supervision.

The results presented in this Major project have been verified and are found to be satisfactory. The

results embodied in this Major project have not been submitted to any other university for the award

of any other degree or diploma.

Internal Guide Major Project
Coordinator

Head of the
Department

External Examiner

Mrs. A.Shravani Mrs. G. Shruthi Dr. M. Laxmaiah

Assistant Professor Assistant Professor Professor & HOD

CSE (Data Science), CMREC CSE (Data Science),
CMREC

CSE (Data Science),
CMREC

iii

DECLARATION

This is to certify that the work reported in the present Major project entitled "Malicious URL detection

using Machine Learning” is a record of Bonafide work done by us in the Department of Computer Science

and Engineering (Data Science), CMR Engineering College, JNTU Hyderabad. The reports are based on the

project work done entirely by us and not copied from any other source. We submit our project for further

development by any interested students who share similar interests to improve the project in the future.

The results embodied in this Major project report have not been submitted to any other University or

Institute for the award of any degree or diploma to the best of our knowledge and belief.

K.SaiShivaji 218R1A6733

B.Venu Madhav 218R1A6717

G.VaibhavKumar 218R1A6724

L.Nikitha 218R1A6737

iv

ACKNOWLEDGMENT

We are extremely grateful to Dr. A. Srinivasula Reddy, Principal and Dr. M. Laxmaiah, HOD, Professor

Department of CSE (Data Science), CMR Engineering College for their constant support.

We are extremely thankful to Mrs. A.Shravani, Assistant Professor, Internal Guide, Department of

CSE(DS), for her constant guidance, encouragement and moral support throughout the project.

We will be failing in duty if We do not acknowledge with grateful thanks to the authors of the references

and other literatures referred in this Project.

We thank Mrs. G. Shruthi, Assistant Professor ,CSE(DS) Department ,Major Project Coordinator for her

constant support in carrying out the project activities and reviews.

We express my thanks to all staff members and friends for all the help and co-ordination extended in

bringing out this project successfully in time.

Finally, We are very much thankful to our parents who guided me for every step.

K.SaiShivaji 218R1A6733

B.Venu Madhav 218R1A6717

G.VaibhavKumar 218R1A6724

L.Nikitha 218R1A6737

v

ABSTRACT

With the escalating risk of cyber fraud driven by sophisticated techniques like social

engineering and phishing, the detection of malicious Uniform Resource Locators (URLs) has

become imperative. This paper introduces a novel approach to detecting cyber fraud, specifically

focusing on malicious URLs and text by leveraging machine learning techniques and big data

analytics. Traditional methods such as signature-based detection suffer limitations in identifying

new threats, prompting the need for more advanced methodologies. The proposed system utilizes a

combination of machine learning algorithms, namely Support Vector Machine (SVM), Naive Bayes,

Logistic Regression, Decision Tree Classifier, SGD Classifier, to classify URLs and text

messages based on their behaviors and attributes. Unlike existing systems, this approach

incorporates both static and dynamic characteristics of URLs, leading to a more comprehensive

detection mechanism. The novelty lies in the introduction of new URL features specifically tailored

for malicious URL and text detection. Advantages of the proposed system include its ability to

harness the potential of these new features, enhancing the accuracy and efficiency of malicious URL

and text detection. While These are showcased in this research, the framework remains flexible,

allowing for the incorporation of other algorithms. Experimental results prove the efficiency of the

proposed method in significantly improving malicious URL detection and Text detection making it

a promising solution in combating cyber fraud.

vi

CONTENTS

TITLE PAGE NO

ABSTRACT i

LIST OF FIGURES ii

1. INTRODUCTION 1

1.1 Overview 2

1.2 Purpose of the project 2

1.3 Motivation 3

2. LITERATURE SURVEY 4

3. METHODOLOGY 6

3.1 System Architecture 7

3.2 Client Server 8

4. TECHNOLOGY DESCRIPTION 9

4.1 Hardware System Configuration 9

4.2 Software Requirements 9

5. SYSTEM ANALYSIS 10

5.1 Existing System 13

5.2 Proposed System 14

6. SYSTEM DESIGN 15

6.1 Data Flow Diagram 16

6.2 Uml Diagram 17

6.2.1 Use case Diagram 18

6.2.2 Class Diagram 19

6.3 Input and Output Design 20

6.3.1 Input Design 21

6.3.2 Output design 22

7. SOFTWARE REQUIREMENTS 23

7.1 Python 23

7.2 Machine Learning 34

vi

8. IMPLEMENTATION 42

8.1 Source Code 42

8.2 Results 47

9. TESTING 53

9.1 System Testing 53

9.2 Module testing 53

9.3 Intergration Testing 53

9.4 Acceptance Testing 53

9.5 Regression Testing 53

10. CONCLUSION AND FUTURE SCOPE 54

10.1 Conclusion 56

10.2 Future scope 56

11. REFERENCES 58

vi

LIST OF FIGURES

FIG.NO DESCRIPTION PAGE NO

3.1 System Architecture for Malicious URL detection 7

6.1 Flow chart of end user 17

6.2 Flow chart of end server 18

6.3 Class Diagram for Malicious URL detection 19

6.2.1 Use case diagram for Malicious URL detection 2

8.2.1 Home Page 53

8.2.2 View All remote Users Page 53

8.2.3 View URL Datasets Trained and Tested results Page 54

8.2.4 Pie Chart and Line Chart Page 54

8.2.5 View URL Datasets Trained and Tested results Page 55

1

LIST OF SCREENSHOTS

FIG.NO DESCRIPTION PAGE NO

8.2.1 Home Page 53

8.2.2 View All remote Users Page 53

8.2.3 View URL Datasets Trained and Tested results Page 54

8.2.4 Pie Chart and Line Chart Page 54

8.2.5 View URL Datasets Trained and Tested results Page 55

2

1. INTRODUCTION

Uniform Resource Locator (URL) is used to refer to resources on the Internet. In [1], Sahoo

et al. presented about the characteristics and two basic components of the URL as: protocol

identifier, which indicates what protocol to use, and resource name, which specifies the IP

address or the domain name where the resource is located. It can be seen that each URL has a

specific structure and format. Attackers often try to change one or more components of the

URL's structure to deceive users for spreading their malicious URL. Malicious URLs are

known as links that adversely affect users. These URLs will redirect users to resources or pages

on which attackers can execute codes on users' computers, redirect users to unwanted sites,

malicious website, or other phishing site, or malware download. Malicious URLs can also be

hidden in download links that are deemed safe and can spread quickly through file and message

sharing in shared networks. Some attack techniques that use malicious URLs include [2, 3, 4]:

Drive-by Download, Phishing and Social Engineering, and Spam.

According to statistics presented in [5], in 2019, the attacks using spreading malicious URL

technique are ranked first among the 10 most common attack techniques. Especially, according

to this statistic, the three main URL spreading techniques, which are malicious URLs, botnet

URLs, and phishing URLs, increase in number of attacks as well as danger level.

From the statistics of the increase in the number of malicious URL distributions over the

consecutive years, it is clear that there is a need to study and apply techniques or methods to

detect and prevent these malicious URLs.In our research, machine learning algorithms are

used to classify URLs based on the features and behaviors of URLs. The features are

extracted from static and dynamic behaviors of URLs and are new to the literature. Those

newly proposed features are the main contribution of the research. Machine learning

algorithms are a part of the whole malicious URL detection system. Two supervised machine

learning algorithms are used, Support vector machine (SVM) and Random forest (RF).

3

1.1 OVERVIEW

The project delves into the intricate world of malicious URLs, which serve as a

primary vector for cyber attacks. It begins by elucidating the fundamental structure of

Uniform Resource Locators (URLs), highlighting their two basic components: the

protocol identifier and the resource name. Emphasis is placed on how attackers exploit this

structure by tampering with various components to deceive users. By altering elements

such as the domain name or path, attackers can redirect users to nefarious destinations,

including websites harboring malware or phishing pages. The project draws attention to

the alarming statistics provided in various sources, particularly noting the prominence of

malicious URL attacks in 2019. It underscores the escalation in both the frequency and

severity of these attacks, with specific emphasis on three primary types of malicious

URLs: malicious URLs, botnet URLs, and phishing URLs. This statistical analysis serves

to underscore the pressing need for robust detection and prevention measures to counter

the escalating threat posed by malicious URLs.

1.2 PURPOSE OF THE PROJECT

The primary purpose of the project is to develop an effective system for detecting

malicious URLs using machine learning algorithms. It aims to address the limitations of

existing detection methods by proposing new features extracted from both static and

dynamic behaviors of URLs. By leveraging machine learning, specifically Support

Vector Machine (SVM) and Random Forest (RF) algorithms, the project seeks to

classify URLs based on their attributes and behaviors accurately. Ultimately,the goal is to

enhance cybersecurity measures and protect users from the detrimental effects of

malicious URL attacks

The motivation driving the project is rooted in the and user safety. With the

proliferation of internet- connected devices and the increasing reliance on online

platforms for various activities, the threat posed by malicious URLs has become more

pronounced than ever before. The exponential growth in the number of attacks utilizing

malicious URLs underscores the urgency of developing effective detection and

prevention mechanisms.

4

1.3 MOTIVATION

The motivation driving the project is rooted in the profound implications of malicious

URL attacks on cybersecurity and user safety. With the proliferation of internet-

connected devices and the increasing reliance on online platforms for various activities,

the threat posed by malicious URLs has become more pronounced than ever before. The

exponential growth in the number of attacks utilizing malicious URLs underscores the

urgency of developing effective detection and prevention mechanisms. Ultimately, the

project's motivation is deeply rooted in a dedication to enhancing cybersecurity

resilience and empowering users to navigate the online landscape with confidence. By

addressing the pervasive threat of malicious URLs, the project endeavors to foster a safer

and more secure digital environment for all stakeholders

The primary purpose of the project is to develop an effective system for detecting

malicious URLs using machine learning algorithms. It aims to address the limitations of

existing detection methods by proposing new features extracted from both static and

dynamic behaviors of URLs. By leveraging machine learning, specifically Support

Vector Machine (SVM) and Random Forest (RF) algorithms, the project seeks to

classify URLs based on their attributes and behaviors accurately. Ultimately,the goal is

to enhance cybersecurity measures and protect users from the detrimental effects of

malicious URL attacks

5

2. LITERATURE SURVEY

In this paper, we suggest a novel approach to malicious URL and text detection using

ML techniques. Our method involves classifying URLs based on a comprehensive set of

features and behaviors extracted from both static and dynamic analyses. These newly

proposed features contribute significantly to the field of malicious URL detection.

Signature-based Malicious URL Detection

Signature-based detection methods have been extensively studied in the realm of

malicious URL detection. These methods rely on predefined sets of signatures or patterns

associated with known malicious URLs. Whenever a user accesses a URL, the system

queries a database to check if the URL matches any of the known signatures. If a match is

found, the URL is flagged as malicious. However, the main drawback of this approach is

its inability to detect new and evolving threats that do not match any of the predefined

signatures [6, 7, 8].

Machine Learning-based Malicious URL Detection

Machine learning techniques offer a promising avenue for detecting malicious URLs by

analyzing URL behaviors. There are three main types of machine learning algorithms

employed in this context supervised learning, unsupervised learning, and semi-supervised

learning. Various studies have investigated the efficacy of these algorithms [1].

Dynamic URL analysis involves examining the actions performed by URLs in real-time,

whereas static analysis focuses on characteristics such as lexical, content, host, and

popularitybased features. These studies have utilized online learning algorithms to extract

URL attributes based on static and dynamic behaviors [9, 10, 11].

Additionally, [12, 13] presented methods for detecting malicious URLs based on

dynamic actions, extracting attributes such as character and semantic groups, abnormal

behaviors in websites, host-based groups, and correlated groups. Despite the advancements

in machine learning-based detection methods, there remain challenges related to algorithm

selection and URL attribute extraction [12, 13].

6

In this paper, we suggest a novel approach to malicious URL and text detection using

ML techniques. Our method involves classifying URLs based on a comprehensive set of

features and behaviors extracted from both static and dynamic analyses. These newly

proposed features contribute significantly to the field of malicious URL detection

Furthermore, our proposed system integrates big data technology to enhance detection

capabilities by identifying abnormal URL and Text behaviors. The system comprises

supervised machine learning algorithms, which have been chosen to demonstrate the

effectiveness of the overall detection system.

The proposed algorithms leverage the usefulness of our newly introduced features,

enhancing the accuracy of malicious URL detection. While these are showcased in our

work, the system remains flexible, allowing for the implementation of alternative

algorithms [1].

In conclusion, our proposed system offers an optimized and user-friendly solution for

detecting malicious URLs, addressing limitations present in existing approaches. The

experimental results demonstrate the efficacy of the proposed URL attributes and

behaviors in significantly improving the detection of malicious URLs.

7

\Author(s)

& Year
Title Methodology Key Findings Limitations

Ma et al.

(2023)

"Beyond

Blacklists:

Learning to Detect

Malicious Web

Sites"

Used lexical and host-

based features with

supervised learning

algorithms (SVM,

Logistic Regression)

Machine learning

significantly

improved detection

accuracy over

blacklist-based

approaches

Limited dataset size,

no deep learning

comparison

Zhang et al.

(2023)

"Detecting

Malicious

Websites by

Integrating Online

Sources"

Integrated multiple

online sources like

Google Safe Browsing

with machine learning

techniques

Improved precision

in detecting

malicious URLs

Dependency on

third-party sources

may cause latency

Sahoo et al.

(2022)

"Malicious URL

Detection using

Machine Learning:

A Survey"

Compared feature

extraction methods

(lexical, host-based,

content-based) and ML

models (Random

Forest, SVM)

Identified the most

effective features for

malicious URL

detection

High computational

cost for real-time

analysis

Marchal et

al. (2021)

"Off-the-Hook: An

Efficient and

Usable Client-Side

Phishing

Prevention

Solution"

Combined heuristic and

ML-based techniques

for phishing detection

Improved real-time

phishing detection

High false-positive

rates in some cases

Verma &

Das (2020)

"Malicious URL

Detection Using

Deep Learning"

Used LSTMs and CNNs

to analyze URL text

Achieved high

accuracy in URL

classification

Computationally

expensive, requires

large datasets

Aghila et

al. (2021)

"Hybrid Approach

for Malicious URL

Detection Using

Ensemble

Learning"

Combined Random

Forest, XGBoost, and

CNN for classification

Improved overall

accuracy and

robustness

Increased training

time and resource

consumption

Xu et al.

(2022)

"Real-time

Malicious URL

Detection with

Lightweight

Machine Learning

Models"

Used lightweight ML

models optimized for

real-time detection

Achieved faster

detection while

maintaining good

accuracy

Slight trade-off in

accuracy for speed

Table 1 Literature Survey

7

3. METHODOLOGY

3.1 System Architecture

Figure 3.1 illustrates the proposed system architecture. We evaluated our

algorithms using synthetic, measured and real topology. The framework

comprises of modules and risk modules.

Fig.3.1: System Architecture

9

3.2 Client Server

3.2.1 Overview

With the varied topic in existence in the fields of computers, Client Server is one,

which has generated more heat than light, and also more hype than reality. This

technology has acquired a certain critical mass attention with its dedication

conferences and magazines. Major computer vendors such as IBM and DEC, have

declared that Client Servers is their main future market. A survey of DBMS

magazine revealed that 76% of its readers were actively looking at the client server

solution. The growth in the client server development tools from $200 million in

1992 to more than $1.2 billion in 1996.

Client server implementations are complex but the underlying concept is simple

and powerful. A client is an application running with local resources but able to

request the database and relate the services from separate remote server. The

software mediating this client server interaction is often referred to as middleware.

The typical client either a PC or a Work Station connected through a network to a

more powerful PC, Workstation, Midrange or Main Frames server usually capable

of handling request from more than one client. However, with some configuration

server may also act as client. A server may need to access other server in order to

process the original client request.

The key client server idea is that client as user is essentially insulated from the

physical location and formats of the data needs for their application. With the

proper middleware, a client input from or report can transparently access and

manipulate both local database on the client machine and remote databases on one

or more servers. An added bonus is the client server opens the door to multi-vendor

database access indulging heterogeneous table joins.

10

3.3.2. What is a Client Server?

Two prominent systems in existence are client server and file server systems. It is

essential to distinguish between client servers and file server systems. Both provide

shared network access to data but the comparison dens there! The file server simply

provides a remote disk drive that can be accessed by LAN applications on a file by file

basis. The client server offers full relational database services such as SQL-Access,

Record modifying, Insert, Delete with full relational integrity backup/ restore

performance for high volume of transactions, etc. the client server middleware

provides a flexible interface between client and server, who does what, when and to

whom.

3.3.3. Why Client Server?

Client server has evolved to solve a problem that has been around since the

earliest days of computing: how best to distribute your computing, data generation

and data storage resources in order to obtain efficient, cost effective departmental

and enterprise wide data processing. During mainframe era choices were quite

limited. A central machine housed both the CPU and DATA (cards, tapes, drums and

later disks). Access to these resources was initially confined to batched runs that

produced departmental reports at the appropriate intervals. A strong central

information service department ruled the corporation. The role of the rest of the

corporation limited to requesting new or more frequent reports and to provide hand

written forms from which the central data banks were created and updated. The

earliest client server solutions therefore could best be characterized as “Slave-

Master”.

Time-sharing changed the picture. Remote terminal could view and even

change the central data, subject to access permissions. And, as the central data

banks evolved in to sophisticated relational database with non-programmer query

languages, online users could formulate ad-hoc queries and produce local reports

without adding to the MIS applications software backlog. However remote access

was through dumb terminals, and the client server remained subordinate to the

Slave\Master.

11

4. TECHNOLOGY DESCRIPTION

4.1 Hardware System Configuration

Processor - Intel i3 core

RAM - 4 GB (min)

Hard Disk - 500 GB

4.2 Software Requirements

Operating System - Windows 7 or above Coding

Language - Java/J2EE (JSP, Servlet)

Front End - HTML, CSS.

Back End - J2EE.

Database - My SQL

Tool - NetBeans

12

5. SYSTEM ANALYSIS

5.1 Existing System

The comparison between signature-based and machine learning-based

approaches to malicious URL and text detection underscores the nuanced

considerations involved in developing effective cybersecurity measures.

Signature-based detection, while efficient in identifying known threats by

matching against predefined lists of malicious entities, faces significant

limitations in adapting to emerging or evolving threats. This method's reliance on

static signatures renders it ineffective against novel attack vectors that deviate

from established patterns. Furthermore, the maintenance and upkeep of signature

databases incur substantial resource costs and may still result in false negatives if

malicious URLs or text do not align with existing signatures.

In contrast, machine learning-based detection offers greater adaptability and

flexibility by leveraging various algorithms to analyze URL attributes and

behaviors. This approach has the potential to learn from new data and adapt its

detection capabilities to emerging threats. However, without a structured approach

to algorithm selection and attribute extraction, the effectiveness of machine

learning-based detection may be compromised. Careful consideration must be

given to selecting algorithms that are wellsuited to the task and extracting relevant

features that capture the diverse aspects of malicious intent. Moreover, the

challenge of addressing new threats not present in the training data remains a

persistent concern.

Without adequate representation of emerging threats in the training data,

machine learning models may struggle to generalize and detect them effectively.

Therefore, ongoing monitoring and updating of the detection system are imperative

to ensure its continued effectiveness in the face of evolving cyber threats. To

mitigate these limitations, a structured approach to machine learning-based

detection is essential. This includes comprehensive training datasets that

encompass a wide range of potential threats, thoughtful algorithm selection based

on performance metrics and task suitability.

13

This method relies on predefined lists of known malicious URLs and text patterns. It

benefits from being able to quickly and accurately detect known threats, as it compares

URLs and text against a database of known malicious entities. However, its reliance on

predefined lists poses significant limitations. It struggles to detect new threats that do not

match any signatures in the database, rendering it ineffective against emerging or

evolving threats. Additionally, maintaining and updating the signature database can be

resource-intensive, and there is a risk of false negatives if the malicious URLs or text do

not match existing signatures.

Disadvantages of Existing System

Concisely summarizing the disadvantages of the above implementations:

• Relies solely on predefined lists of known malicious URLs and text

patterns, making it ineffective against new or emerging threats not

present in the signature database.

• Signature-based systems lack adaptability to evolving attack techniques, as

they cannot dynamically adjust to detect variations or mutations of known

threats.

• Maintaining and updating the signature database requires significant

resources and effort, as it must continuously incorporate new threat

signatures and remove outdated ones.

• There is a risk of false negatives if a malicious URL or text does not match

any existing signatures in the database, potentially leading to undetected

security breaches.

Without a structured approach, selecting appropriate machine learning algorithms

can be challenging, leading to suboptimal performance or inefficiency in detecting

malicious URLs and text..

14

5.2 Proposed System

Malicious URL and text detection using machine learning represents a cutting-edge

approach to cybersecurity, leveraging advanced algorithms to identify and mitigate online

threats. One of the key strengths of this methodology lies in its ability to incorporate novel URL

and text features extracted from both static and dynamic analyses, enhancing its detection

capabilities. Static analysis involves examining the structural attributes of URLs and the content

of text strings without executing them.

Support Vector Machine (SVM)

SVM is employed in the project for its robustness in classifying URLs and text

messages. It works by finding the optimal hyperplane that best separates different

classes in the feature space. In this context, SVM is utilized to discern patterns and

characteristics indicative of malicious URLs and text, aiding in the classification

process. By leveraging SVM, the system can effectively identify complex

relationships between features and classify URLs and text messages accurately.

Naive Bayes

Naive Bayes is utilized due to its simplicity and effectiveness, especially in text

classification tasks. Despite its assumption of feature independence, Naive Bayes

performs well in practice and is particularly suitable for processing large volumes

of text data. In this project, Naive Bayes is applied to classify URLs and text

based on their respective attributes and behaviors. By calculating the probability of

a URL or text message belonging to a certain class, Naive Bayes contributes to

the overall classification accuracy of the system.

Logistic Regression

Logistic Regression is employed as a linear classification algorithm capable of

estimating the probability of a URL or text message belonging to a particular

class. Its simplicity and interpretability make it a valuable component in the

classification pipeline.

15

Decision Tree Classifier

Decision Tree Classifier is utilized to create a tree-like structure that partitions

the feature space based on the characteristics of URLs and text messages. By

recursively splitting the data into subsets, decision trees effectively capture

complex decision boundaries and patterns within the dataset. In this project,

Decision Tree Classifier is employed to classify URLs and text messages by

evaluating various features and their importance in distinguishing between

malicious and benign entities.

SGD Classifier

Stochastic Gradient Descent (SGD) Classifier is chosen for its efficiency and

scalability, particularly in large-scale classification tasks. By iteratively

optimizing the classification model using gradient descent, SGD Classifier can

effectively handle high-dimensional feature spaces and large datasets. In the

context of this project, SGD Classifier is utilized to classify URLs and text

messages based on their behaviors and attributes, contributing to the overall

accuracy and efficiency of the detection system.

Support Vector Machine (SVM)

SVM is employed in the project for its robustness in classifying URLs and

text messages. It works by finding the optimal hyperplane that best separates

different classes in the feature space. In this context, SVM is utilized to discern

patterns and characteristics indicative of malicious URLs and text, aiding in the

classification process. By leveraging SVM, the system can effectively identify

complex relationships between features and classify URLs and text messages

accurately.

16

Advantages of Proposed System

The proposed system has the following advantages:

1. By incorporating novel URL and text features extracted from both static and

dynamic analyses, the system can achieve higher detection accuracy compared

to signature-based or rule-based methods.

2. Machine learning algorithms can analyze large volumes of data and identify

subtle patterns indicative of malicious intent, leading to fewer false positives

compared to rule- based systems.

3. This scalability ensures that the system can effectively protect against threats

across a wide range of use cases and network environments.

.

System Study

Feasibility Study

The feasibility of the project is analyzed in this phase and business proposal is

put forth with a very general plan for the project and some cost estimates. During

system analysis the feasibility study of the proposed system is to be carried out. This

is to ensure that the proposed system is not a burden to the company. For feasibility

analysis, some understanding of the major requirements for the system is essential.

Economic Feasibility

Economic Feasibility or Cost-benefit is an assessment of the economic

justification for a computer based project. As hardware was installed from the

beginning and for lots of purposes thus the cost on project of hardware is low. Since

the system is a network based, any number of employees connected to the LAN

within that organization can use this tool from at any time. The Virtual Private

Network is to be developed using the existing resources of the organization. So

the project is economically feasible.

17

Technical Feasibility is the assessment of the technical resources of the

organization. The organization needs compatible machines with a graphical web

browser connected to the Internet and Intranet. The system is developed for

platform Independent environment. Java Server Pages, JavaScript, Hypertext

Markup Language (HTML), Structured Query Language (SQL) server and Web

Logic Server are used to develop the system. The technical feasibility has been

carried out. The system is technically feasible for development and can be

developed with the existing facility.

Social Feasibility

The aspect of study is to check the level of acceptance of the system by the

user. This includes the process of training the user to use the system efficiently. The

user must not feel threatened by the system, instead must accept it as a necessity.

The level of acceptance by the users solely depends on the methods that are

employed to educate the user about the system and to make him familiar with it.

18

6. SYSTEM DESIGN

6.1 DATA FLOW DIAGRAM (DFD)

1. The DFD is also called as bubble chart. It is a simple graphical formalism that can

be used to represent a system in terms of input data to the system, various

processing carried out on this data, and the output data is generated by this system.

2. The Data Flow Diagram (DFD) is one of the most important modeling tools. It is

used to model the system components. These components are the system process,

the data used by the process, an external entity that interacts with the system and

the information flows in the system.

Fig 6.1 Data Flow Diagram

19

Flow Chart1: Remote User

The provided flowchart illustrates the process for a Remote User accessing a malicious

URL detection system. The process begins with the Start node, followed by a Login step.

The system then verifies the login credentials through the Status decision node. If the

credentials are incorrect, the user is prompted with a Username & Password Wrong message.

If correct, the user is granted access to the system, allowing them to Register and Login,

Predict URL Type, and View Profile. The flow concludes with the Logout option, ensuring a

structured navigation path for the user.

Fig. 6.2: Flow Chart of Remote User

20

Flow Chart2: Service provider

The flowchart represents the Service Provider process in a malicious URL detection system. The

process starts with the Login, and based on the Status decision, access is either granted or denied.

If the credentials are incorrect, the user is shown a Username & Password Wrong message. If

authenticated, the service provider can Browse URL Datasets, Train & Test Data Sets, and View

Accuracy Results in bar charts. Additionally, they can View URL Predictions, Check URL Type

Ratios, Download Predicted Data Sets, and View All Remote Users. The session ends with a

Logout option, ensuring a structured workflow for managing URL data and predictions.

Fig. 6.3: Flow Chart of Service Provider

21

6.2 UML DIAGRAMS

UML stands for Unified Modeling Language. UML is a standardized general-purpose

modeling language in the field of object-oriented software engineering. The standard

is managed, and was created by, the Object Management Group. The goal is for UML

to become a common language for creating models of object-oriented computer

software. In its current form UML is comprised of two major components: a Meta-

model and a notation.

The Unified Modeling Language is a standard language for specifying, Visualization,

Constructing and documenting the artifacts of software system, as well as for business

modeling and other non-software systems. The UML represents a collection of best

engineering practices that have proven successful in the modeling of large and complex

systems. The UML is a very important part of developing objects-oriented software

and the software development process. The UML uses mostly graphical notations to

express the design of software projects.

GOALS: The Primary goals in the design of the UML are as follows:

 Provide users a ready-to-use, expressive visual modeling Language so

that they can develop and exchange meaningful models.

 Provide extendibility and specialization mechanisms to extend the core

concepts.

 Be independent of particular programming languages and development

process.

 Provide a formal basis for understanding the modeling language.

 Encourage the growth of OO tools market.

 Support higher level development concepts such as collaborations,

frameworks, patterns and components.

 Integrate best practices.

22

6.2.1 Class diagram

The class diagram is used to refine the use case diagram and define a detailed design

of the system. The class diagram classifies the actors defined in the use case diagram

into a set of interrelated classes. The relationship or association between the classes

can be either an "is-a" or "has-a" relationship. Each class in the class diagram may be

capable of providing certain functionalities. These functionalities provided by the

class are termed "methods" of the class. Apart from this, each class may have certain

"attributes" that uniquely identify the class.

Fig 6.2.1 Class Diagram

23

6.2.2 Usecase Diagram

A use case diagram in the Unified Modeling Language (UML) is a type of behavioral

diagram defined by and created from a Use-case analysis. Its purpose is to present a

graphical overview of the functionality provided by a system in terms of actors, their

goals (represented as use cases), and any dependencies between those use cases. The

main purpose of a use case diagram is to show what system functions are performed

for which actor. Roles of the actors in the system can be depicted.

Fig. 6.2.2 : Use Case Diagram

24

6.3 INPUT AND OUTPUT DESIGN

6.3.1 Input Design

The input design is the link between the information system and the user. It comprises the

developing specification and procedures for data preparation and those steps are

necessary to put transaction data in to a usable form for processing can be achieved by

inspecting the computer to read data from a written or printed document or it can occur

by having people keying the data directly into the system. The design of input focuses on

controlling the amount of input required, controlling the errors, avoiding delay, avoiding

extra steps and keeping the process simple. The input is designed in such a way so that it

provides security and ease of use with retaining the privacy. Input Design considered the

following things:

 What data should be given as input?

 How the data should be arranged or coded?

 The dialog to guide the operating personnel in providing input.

 Methods for preparing input validations and steps to follow when error occur.

OBJECTIVES

1. Input Design is the process of converting a user-oriented description of the input

into a computer-based system. This design is important to avoid errors in the data

input process and show the correct direction to the management for getting correct

information from the computerized system.

2. It is achieved by creating user-friendly screens for the data entry to handle large

volume of data. The goal of designing input is to make data entry easier and to be

free from errors. The data entry screen is designed in such a way that all the data

manipulates can be performed. It also provides record viewing facilities.

3. When the data is entered it will check for its validity. Data can be entered with

the help of screens. Appropriate messages are provided as when needed so that the

user will not be in maize of instant. Thus the objective of input design is to create

an input layout that is easy to follow.

25

6.3.2 Output Design

The Output from the computer is required to mainly create an efficient method of

communication within the company primarily among the project leader and his team

members, in other words, the administrator and the clients. The output of VPN is

the system which allows the project leader to manage his clients in terms of

creating new clients and assigning new projects to them, maintaining a record of

the project validity and providing folder level access to each client on the user side

depending on the projects allotted to him. After completion of a project, a new

project may be assigned to the client. User authentication procedures are

maintained at the initial stages itself. A new user may be created by the

administrator himself or a user can himself register as a new user but the task of

assigning projects and validating a new user rests with the administrator only. The

application starts running when it is executed for the first time. The server has to be

started and then the internet explorer in used as the browser. The project will run on

the local area network so the server machine will serve as the administrator while

the other connected systems can act as the clients. The developed system is highly

user friendly and can be easily understood by anyone using it even for the first

time.

26

7. SOFTWARE REQUIREMENTS

7.1 What is Python?

Python is currently the most widely used multi-purpose, high-level programming

language. It supports both Object-Oriented and Procedural programming paradigms,

making it versatile and easy to use. Python programs are generally smaller compared to

those written in other languages like Java, as it requires less typing and enforces

indentation, which enhances code readability. Due to its simplicity and efficiency,

Python is widely adopted by major tech giants such as Google, Amazon, Facebook,

Instagram, Dropbox, and Uber. It is also extensively used in fields like data science,

artificial intelligence, and web development.

The biggest strength of Python is huge collection of standard libraries which can be

used for the following –

 Machine Learning

 GUI Applications (like Kivy, Tkinter, PyQt etc.)

 Web frameworks like Django (used by YouTube, Instagram, Dropbox)

 Image processing (like Opencv, Pillow)

 Web scraping (like Scrapy, BeautifulSoup, Selenium)

 Test frameworks

 Multimedia

Advantages of Python

Let’s see how Python dominates over other languages.

Extensive Libraries

Python downloads with an extensive library and it contain code for various

purposes like regular expressions, documentation-generation, unit-testing, web

browsers, threading, CGI, email, image manipulation, and more. So, we don’t have to

write the complete code for that manually.

27

Extensible

As we have seen earlier, Python can be extended to other languages. You can write

some of your code in languages like C++ or C. This comes in handy, especially in

projects.

Embeddable

Complimentary to extensibility, Python is embeddable as well. You can put your

Python code in your source code of a different language, like C++. This lets us add

scripting capabilities to our code in the other language.

Improved Productivity

The language’s simplicity and extensive libraries render programmers more

productive than languages like Java and C++ do. Also, the fact that you need to write

less and get more things done.

IOT Opportunities

Since Python forms the basis of new platforms like Raspberry Pi, it finds the future

bright for the Internet of Things. This is a way to connect the language with the real

world.

Simple and Easy

When working with Java, you may have to create a class to print ‘Hello World’. But in

Python, just a print statement will do. It is also quite easy to learn, understand, and

code. This is why when people pick up Python, they have a hard time adjusting to

other more verbose languages like Java.

Readable

Because it is not such a verbose language, reading Python is much like reading

English. This is the reason why it is so easy to learn, understand, and code. It also does

not need curly braces to define blocks, and indentation is mandatory.

Free and Open-Source

Like we said earlier, Python is freely available. But not only can you download Python

for free, but you can also download its source code, make changes to it, and even

distribute it. It downloads with an extensive collection of libraries to help you with

your tasks.

Portable

When you code your project in a language like C++, you may need to make some

28

changes to it if you want to run it on another platform. But it isn’t the same with

Python. Here, you need to code only once, and you can run it anywhere. This is called

Write Once Run Anywhere (WORA). However, you need to be careful enough not to

include any system-dependent features.

Interpreted

Lastly, we will say that it is an interpreted language. Since statements are executed

one by one, debugging is easier than in compiled languages.

Any doubts till now in the advantages of Python? Mention in the comment section.

Advantages of Python Over Other Languages

Less Coding

Almost all of the tasks done in Python requires less coding when the same task is done

in other languages. Python also has an awesome standard library support, so you don’t

have to search for any third-party libraries to get your job done. This is the reason that

many people suggest learning Python to beginners.

Affordable

Python is free therefore individuals, small companies or big organizations can leverage

the free available resources to build applications. Python is popular and widely used

so it gives you better community support.

The 2019 Github annual survey showed us that Python has overtaken Java in the most

popular programming language category.

Python is for Everyone

Python code can run on any machine whether it is Linux, Mac or Windows.

Programmers need to learn different languages for different jobs but with Python, you

can professionally build web apps, perform data analysis and machine learning,

automate things, do web scraping and also build games and powerful visualizations. It

is an all-rounder programming language.

Disadvantages of Python

So far, we’ve seen why Python is a great choice for your project. But if you choose it,

you should be aware of its consequences as well. Let’s now see the downsides of

choosing Python over another language.

1. Speed Limitations

29

We have seen that Python code is executed line by line. But since Python is interpreted,

it often results in slow execution.

In other words, unless high speed is a requirement, the benefits offered by Python are

enough to distract us from its speed limitations.

2. Weak in Mobile Computing and Browsers

While it serves as an excellent server-side language, Python is much rarely seen on the

client- side. Besides that, it is rarely ever used to implement smartphone-based

applications. One such application is called Carbonnelle.

The reason it is not so famous despite the existence of Brython is that it isn’t that secure.

3. Design Restrictions

As you know, Python is dynamically-typed. This means that you don’t need to declare

the type of variable while writing the code. It uses duck-typing. But wait, what’s that?

Well, it just means that if it looks like a duck, it must be a duck. While this is easy on

the programmers during coding, it can raise run-time errors.

4. Underdeveloped Database Access Layers

Compared to more widely used technologies like JDBC (Java DataBase

Connectivity) and ODBC (Open DataBase Connectivity), Python’s database access

layers are a bit underdeveloped. Consequently, it is less often applied in huge

enterprises.

5. Simple

No, we’re not kidding. Python’s simplicity can indeed be a problem. Take my example.

I don’t do Java, I’m more of a Python person. To me, its syntax is so simple that the

verbosity of Java code seems unnecessary.

History of Python

What do the alphabet and the programming language Python have in common?

Right, both start with ABC. If we are talking about ABC in the Python context, it's

clear that the programming language ABC is meant. ABC is a general-purpose

programming language and programming environment, which had been developed in

the Netherlands, Amsterdam, at the CWI (Centrum Wiskunde & Informatica). The

greatest achievement of ABC was to influence the design of Python. Python was

30

conceptualized in the late 1980s. Guido van Rossum worked that time in a project at the

CWI, called Amoeba, a distributed operating system. In an interview with Bill

Venners1, Guido van Rossum said: "In the early 1980s, I worked as an implementer

on a team building a language called ABC at Centrum voor Wiskunde en Informatica

(CWI). I don't know how well people know ABC's influence on Python. I try to

mention ABC's influence because I'm indebted to everything I learned during that

project and to the people who worked on it. "Later on in the same Interview, Guido

van Rossum continued: "I remembered all my experience and some of my frustration

with ABC. I decided to try to design a simple scripting language that possessed some

of ABC's better properties, but without its problems. So, I started typing. I created a

simple virtual machine, a simple parser, and a simple runtime. I made my own version

of the various ABC parts that I liked. I created a basic syntax, used indentation for

statement grouping instead of curly braces or begin-end blocks, and developed a small

number of powerful data types: a hash table (or dictionary, as we call it), a list, strings,

and numbers."

Python Development Steps

Guido Van Rossum published the first version of Python code (version 0.9.0) at

alt.sources in February 1991. This release included already exception handling,

functions, and the core data types of lists, dict, str and others. It was also object

oriented and had a module system. Python version 1.0 was released in January 1994.

The major new features included in this release were the functional programming

tools lambda, map, filter and reduce, which Guido Van Rossum never liked. Six and a

half years later in October 2000, Python 2.0 was introduced. This release included list

comprehensions, a full garbage collector and it was supporting unicode. Python 3

is not backwards compatible with Python 2.x. The emphasis in Python 3 had been on

the removal of duplicate programming constructs and modules, thus fulfilling or

coming close to fulfilling the 13th law of the Zen of Python: "There should be one --

and preferably only one -- obvious way to do it."Some changes in Python 7.3:

 Print is now a function.

 Views and iterators instead of lists

 The rules for ordering comparisons have been simplified. E.g., a

heterogeneous list cannot be sorted, because all the elements of a list must be

comparable to each other.

 There is only one integer type left, i.e.int. long is int as well.

31

Purpose

We demonstrated that our approach enables successful segmentation of intra-retinal

layers— even with low-quality images containing speckle noise, low contrast, and

different intensity ranges throughout—with the assistance of the ANIS feature.

Python

Python is an interpreted high-level programming language for general-purpose

programming. Created by Guido van Rossum and first released in 1991, Python has a

design philosophy that emphasizes code readability, notably using significant

whitespace.

Python features a dynamic type system and automatic memory management. It

supports multiple programming paradigms, including object-oriented, imperative,

functional and procedural, and has a large and comprehensive standard library.

 Python is Interpreted − Python is processed at runtime by the interpreter. You

do not need to compile your program before executing it. This is similar to

PERL and PHP.

 Python is Interactive − you can actually sit at a Python prompt and interact

with the interpreter directly to write your programs.

Python also acknowledges that speed of development is important. Readable and terse

code is part of this, and so is access to powerful constructs that avoid tedious

repetition of code. Maintainability also ties into this may be an all but useless metric,

but it does say something about how much code you have to scan, read and/or

understand to troubleshoot problems or tweak behaviors. This speed of development,

the ease with which a programmer of other languages can pick up basic Python skills

and the huge standard library is key to another area where Python excels. All its tools

have been quick to implement, saved a lot of time, and several of them have later been

patched and updated by people with no Python background - without breaking.

32

Modules Used in Project

TensorFlow

TensorFlow is a free and open-source software library for dataflow and

differentiable programming across a range of tasks. It is a symbolic math library and is

also used for machine learning applications such as neural networks. It is used for

both research and production at Google.

TensorFlow was developed by the Google Brain team for internal Google use. It was

released under the Apache 2.0 open-source license on November 9, 2015.

NumPy

NumPy is a general-purpose array-processing package. It provides a high-

performance multidimensional array object, and tools for working with these arrays.

It is the fundamental package for scientific computing with Python. It contains various

features including these important ones:

 A powerful N-dimensional array object

 Sophisticated (broadcasting) functions

 Tools for integrating C/C++ and Fortran code

 Useful linear algebra, Fourier transform, and random number capabilities

Besides its obvious scientific uses, NumPy can also be used as an efficient multi-

dimensional container of generic data. Arbitrary datatypes can be defined using

NumPy which allows NumPy to seamlessly and speedily integrate with a wide variety

of databases.

Pandas

Pandas is an open-source Python Library providing high-performance data

manipulation and analysis tool using its powerful data structures. Python was majorly

used for data munging and preparation. It had very little contribution towards data

analysis. Pandas solved this problem. Using Pandas, we can accomplish five typical

steps in the processing and analysis of data, regardless of the origin of data load,

prepare, manipulate, model, and analyze. Python with Pandas is used in a wide range

of fields including academic and commercial domains including finance, economics,

Statistics, analytics, etc.

Matplotlib

33

Matplotlib is a Python 2D plotting library which produces publication quality figures

in a variety of hardcopy formats and interactive environments across platforms.

Matplotlib can be used in Python scripts, the Python and IPython shells, the Jupyter

Notebook, web application servers, and four graphical user interface toolkits.

Matplotlib tries to make easy things easy and hard things possible. You can generate

plots,

histograms, power spectra, bar charts, error charts, scatter plots, etc., with just a

few lines of code. For examples, see the sample plots and thumbnail gallery.

For simple plotting the pyplot module provides a MATLAB-like interface,

particularly when combined with IPython. For the power user, you have full control of

line styles, font properties, axes properties, etc, via an object-oriented interface or via a

set of functions familiar to MATLAB users.

Scikit – learn

Scikit-learn provides a range of supervised and unsupervised learning algorithms via a

consistent interface in Python. It is licensed under a permissive simplified BSD

license and is distributed under many Linux distributions, encouraging academic and

commercial use. Python

Python is an interpreted high-level programming language for general-purpose

programming. Created by Guido van Rossum and first released in 1991, Python has a

design philosophy that emphasizes code readability, notably using significant

whitespace.

Python features a dynamic type system and automatic memory management. It

supports multiple programming paradigms, including object-oriented, imperative,

functional and procedural, and has a large and comprehensive standard library.

 Python is Interpreted − Python is processed at runtime by the interpreter. You

do not need to compile your program before executing it. This is similar to

PERL and PHP.

 Python is Interactive − you can actually sit at a Python prompt and interact

with the interpreter directly to write your programs.

Python also acknowledges that speed of development is important. Readable and terse

code is part of this, and so is access to powerful constructs that avoid tedious

34

repetition of code. This speed of development, the ease with which a programmer of

other languages can pick up basic Python skills and the huge standard library is key to

another area where Python excels. All its tools have been quick to implement, saved a

lot of time, and several of them have later been patched and updated by people with no

Python background.

Python a versatile programming language doesn’t come pre-installed on your

computer devices. Python was first released in the year 1991 and until today it is a

very popular high- level programming language. Its style philosophy emphasizes code

readability with its notable use of great whitespace.

The object-oriented approach and language construct provided by Python enables

programmers to write both clear and logical code for projects. This software does not

come pre-packaged with Windows.

Step 1: Go to the official site to download and install python using Google Chrome or

any other web browser. OR Click on the following link: https://www.python.org

Now, check for the latest and the correct version for your operating

system. Step 2: Click on the Download Tab.

http://www.python.org/

35

Step 3: You can either select the Download Python for windows 3.7.4 button in

Yellow Color or you can scroll further down and click on download with respective to

their version. Here, we are downloading the most recent python version for windows

3.7.4

Step 4: Scroll down the page until you find the Files option.

Step 5: Here you see a different version of python along with the operating system.

 To download Windows 32-bit python, you can select any one from the three

options: Windows x86 embeddable zip file, Windows x86 executable installer

or Windows x86 web-based installer.

 To download Windows 64-bit python, you can select any one from the three

options: Windows x86-64 embeddable zip file, Windows x86-64 executable

installer or Windows x86-64 web-based installer.

36

Here we will install Windows x86-64 web-based installer. Here your first part

regarding which version of python is to be downloaded is completed. Now we move

ahead with the second part in installing python i.e., Installation

Note: To know the changes or updates that are made in the version you can click on the

Release Note Option.

Installation of Python

Step 1: Go to Download and Open the downloaded python version to carry out the

installation process.

Step 2: Before you click on Install Now, make sure to put a tick on Add Python 3.7 to

PATH.

Step 3: Click on Install NOW After the installation is successful. Click on Close.

37

With these above three steps on python installation, you have successfully and

correctly installed Python. Now is the time to verify the installation.

Step 1: Click on Start

Step 2: In the Windows Run Command, type “cmd”.

38

Step 3: Open the Command prompt option.

Step 4: Let us test whether the python is correctly installed. Type python –V and press

Enter.

Step 5: You will get the answer as 3.7.4

Note: If you have any of the earlier versions of Python already installed. You

must first uninstall the earlier version and then install the new one.

Check how the Python IDLE

works Step 1: Click on Start

Step 2: In the Windows Run command, type “python idle”.

Step 3: Click on IDLE (Python 3.7 64-bit) and launch the program

Step 4: To go ahead with working in IDLE you must first save the file. Click on File >

Click on Save

39

Step 5: Name the file and save as type should be Python files. Click on SAVE. Here I

have named the files as Hey World.

Step 6: Now for e.g., enter print (“Hey World”) and Press Enter.

You will see that the command given is launched. With this, we end our tutorial on

how to install Python. You have learned how to download python for windows into

your respective operating system.

40

7.2 Machine Learning

Before we take a look at the details of various machine learning methods, let's start

by looking at what machine learning is, and what it isn't. Machine learning is often

categorized as a subfield of artificial intelligence, but I find that categorization can

often be misleading at first brush. The study of machine learning certainly arose from

research in this context, but in the data science application of machine learning

methods, it's more helpful to think of machine learning as a means of building models

of data.

Fundamentally, machine learning involves building mathematical models to help

understand data. "Learning" enters the fray when we give these models tunable

parameters that can be adapted to observed data; in this way the program can be

considered to be "learning" from the data. Once these models have been fit to

previously seen data, they can be used to predict and understand aspects of newly

observed data. I'll leave to the reader the more philosophical digression regarding the

extent to which this type of mathematical, model-based "learning" is similar to the

"learning" exhibited by the human brain. Understanding the problem setting in

machine learning is essential to using these tools effectively, and so we will start with

some broad categorizations of the types of approaches we'll discuss here.

Categories of Machine Learning:

At the most fundamental level, machine learning can be categorized into two main

types: supervised learning and unsupervised learning.

Supervised learning involves somehow modeling the relationship between measured

features of data and some label associated with the data; once this model is

determined, it can be used to apply labels to new, unknown data. This is further

subdivided into classification tasks and regression tasks: in classification, the labels

are discrete categories, while in regression, the labels are continuous quantities.

Unsupervised learning involves modeling the features of a dataset without

reference to any label, and is often described as "letting the dataset speak for itself."

These models include tasks such as clustering and dimensionality

reduction. Clustering algorithms identify distinct groups of data, while

dimensionality reduction algorithms search for more succinct representations of the

data.

41

Need for Machine Learning

Human beings, at this moment, are the most intelligent and advanced species on

earth because they can think, evaluate and solve complex problems. On the other

side, AI is still in its initial stage and haven’t surpassed human intelligence in many

aspects. Then the question is that what is the need to make machine learn? The most

suitable reason for doing this is, “to make decisions, based on data, with efficiency

and scale”.

Lately, organizations are investing heavily in newer technologies like Artificial

Intelligence, Machine Learning and Deep Learning to get the key information from

data to perform several real-world tasks and solve problems. We can call it data-

driven decisions taken by machines, particularly to automate the process. These

data-driven decisions can be used, instead of using programing logic, in the

problems that cannot be programmed inherently. The fact is that we can’t do

without human intelligence, but other aspect is that we all need to solve real-world

problems with efficiency at a huge scale. That is why the need for machine learning

arises.

Challenges in Machines Learning

While Machine Learning is rapidly evolving, making significant strides with

cybersecurity and autonomous cars, this segment of AI as whole still has a long way

to go. The reason behind is that ML has not been able to overcome number of

challenges. The challenges that ML is facing currently are

Quality of data − Having good-quality data for ML algorithms is one of the

biggest challenges. Use of low-quality data leads to the problems related to data

preprocessing and feature extraction.

Time-Consuming task − Another challenge faced by ML models is the

consumption of time especially for data acquisition, feature extraction and

retrieval.

Lack of specialist persons − As ML technology is still in its infancy stage,

availability of expert resources is a tough job.

No clear objective for formulating business problems − Having no clear objective

and well-defined goal for business problems is another key challenge for ML

42

because this technology is not that mature yet.

Issue of overfitting & underfitting − If the model is overfitting or underfitting, it

cannot be represented well for the problem.

Applications of Machines Learning

Machine Learning is the most rapidly growing technology and according to

researchers we are in the golden year of AI and ML. It is used to solve many real-

world complex problems which cannot be solved with traditional approach.

Following are some real-world applications of ML

 Emotion analysis

 Sentiment analysis

 Error detection and prevention

 Weather forecasting and prediction

 Stock market analysis and forecasting

 Speech synthesis

 Speech recognition

 Customer segmentation

 Object recognition

 Fraud detection

 Fraud prevention

 Recommendation of products to customer in online shopping

Advantages & Disadvantages of Machine learning

Advantages:

1. Easily identifies trends and patterns -

Machine Learning can review large volumes of data and discover specific trends and

patterns that would not be apparent to humans. For instance, for an e-commerce

website like Amazon, it serves to understand the browsing behaviors and purchase

histories of its users to help cater to the right products, deals, and reminders relevant

to them. It uses the results to reveal relevant advertisements to them.

2. No human intervention needed (automation)

With ML, you don’t need to babysit your project every step of the way. Since it

43

means giving machines the ability to learn, it lets them make predictions and also

improve the algorithms on their own.

3. Continuous Improvement

As ML algorithms gain experience, they keep improving in accuracy and efficiency.

This lets them make better decisions. Say you need to make a weather forecast

model. As the amount of data you have keeps growing, your algorithms learn to make

more accurate predictions faster.

4. Handling multi-dimensional and multi-variety data

Machine Learning algorithms are good at handling data that are multi-dimensional

and multi-variety, and they can do this in dynamic or uncertain environments.

5. Wide Applications

You could be an e-tailer or a healthcare provider and make ML work for you. Where

it does apply, it holds the capability to help deliver a much more personal experience

to customers while also targeting the right customers.

Disadvantages:

1. Data Acquisition

Machine Learning requires massive data sets to train on, and these should be

inclusive/unbiased, and of good quality. There can also be times where they must

wait for new data to be generated.

2. Time and Resources

ML needs enough time to let the algorithms learn and develop enough to fulfill their

purpose with a considerable amount of accuracy and relevancy. It also needs massive

resources to function. This can mean additional requirements of computer power for

you.

3. Interpretation of Results

Another major challenge is the ability to accurately interpret results generated by the

algorithms. You must also carefully choose the algorithms for your purpose.

44

Decision tree classifiers

Decision tree classifiers are used successfully in many diverse areas. Their most

important feature is the capability of capturing descriptive decision-making

knowledge from the supplied data. Decision tree can be generated from training sets.

The procedure for such generation based on the set of objects (S), each belonging to

one of the classes C1, C2, …, Ck is as follows:

Step 1. If all the objects in S belong to the same class, for example Ci, the decision

tree for S consists of a leaf labeled with this class

Step 2. Otherwise, let T be some test with possible outcomes O1, O2,…, On. Each

object in S has one outcome for T so the test partitions S into subsets S1, S2,… Sn

where each object in Si has outcome Oi for T. T becomes the root of the decision tree

and for each outcome Oi we build a subsidiary decision tree by invoking the same

procedure recursively on the set Si.

Gradient boosting

It gives a prediction model in the form of an ensemble of weak prediction models,

which are typically decision tree. When a decision tree is the weak learner, the

resulting algorithm is called gradient-boosted trees; it usually outperforms random

forest. A gradient-boosted trees model is built in a stage-wise fashion as in

other boosting methods, but it generalizes the other methods by allowing

optimization of an arbitrary differential loss function.

Logistic regression Classifiers

Logistic regression analysis examines the relationship between a categorical

dependent variable and a set of independent variables. The term "logistic regression"

is used when the dependent variable has only two possible values, such as 0 and 1 or

Yes and No. Logistic regression is often preferred over discriminant analysis for

analyzing categorical-response variables, as it does not assume a normal distribution

of independent variables. This makes it a more versatile and widely applicable

method. The logistic regression model computes both binary and multinomial logistic

regression on numerical and categorical independent variables. It provides insights

into the regression equation, goodness of fit, odds ratios, confidence limits,

likelihood, and deviance. Additionally, it includes comprehensive residual analysis

45

with diagnostic reports and plots. The model can perform an independent variable

subset selection search to identify the best regression model with the fewest

independent variables. It also offers confidence intervals for predicted values and

generates ROC curves to determine the optimal cutoff point for classification.

Furthermore, it supports validation by automatically classifying rows that were not

included in the analysis, ensuring robust and reliable results.

Naive Bayes

It is a supervised learning method based on a simplistic yet effective assumption:

it considers that the presence or absence of a particular feature in a class is

independent of other features. Despite this strong assumption, the Naïve Bayes

classifier remains robust and efficient, often performing competitively with other

supervised learning techniques. One explanation for its success is its representation

bias, as it functions as a linear classifier similar to logistic regression, linear

discriminant analysis, and support vector machines (SVM). However, it differs in its

method of estimating classifier parameters, known as learning bias. Although widely

used in research due to its simplicity, fast learning speed, and reasonable accuracy.

To address this limitation, a new way of presenting the learning process results is

introduced, making the classifier more understandable and easier to deploy. The

theoretical aspects of Naïve Bayes are first explored before implementing the

approach using the Tanagra dataset. The results are then compared with those from

other linear classifiers such as logistic regression, linear discriminant analysis, and

SVM, demonstrating consistency in performance.

Random Forest

It is, also known as random decision forests, are ensemble learning methods used

for classification, regression, and other tasks. They operate by constructing multiple

decision trees during training, where for classification tasks, the class selected by the

majority of trees is chosen, and for regression tasks, the average prediction of the

trees is returned. While they generally outperform individual decision trees, their

accuracy is often lower than gradient-boosted trees, although this can vary depending

on data characteristics. The first random forest algorithm was introduced by Tin Kam

Ho in 1995, utilizing the random subspace method, which was a way to implement

the stochastic discrimination approach proposed by Eugene Kleinberg. Further

46

developments were made by Leo Breiman and Adele Cutler, who registered

"Random Forests" as a trademark in 2006. Their extension combined Breiman's

"bagging" technique with random feature selection, first introduced by Ho and later

independently by Amit and Geman. Due to their ability to provide reliable predictions

with minimal configuration, random forests are widely used as "black-box" models in

businesses across various industries.

Support Vector Machine (SVM)

Classification tasks, discriminant machine learning techniques aim to find a

function that accurately predicts labels for new instances based on an independent

and identically distributed (iid) training dataset. Unlike generative machine learning

approaches, which compute conditional probability distributions, discriminant

classifiers assign data points to predefined classes without estimating underlying

distributions. Although generative approaches are more powerful for outlier

detection, discriminant methods require fewer computational resources and less

training data, especially when dealing with high-dimensional feature spaces. SVM is

a discriminant classification technique that solves convex optimization problems

analytically, ensuring it always returns the same optimal hyperplane parameters. This

characteristic differentiates SVM from genetic algorithms (GAs) and perceptrons,

both of which are commonly used for classification but depend heavily on

initialization and termination criteria. Unlike perceptrons and GA-based classifiers,

which yield different models with each training session, SVM produces uniquely

defined model parameters for a given training dataset when using a specific kernel

transformation from input space to feature space.

46

8. IMPLEMENTATION

8.1 SOURCE CODE

import os

from django.core.asgi import get_asgi_application

os.environ.setdefault('DJANGO_SETTINGS_MODULE',

'malicious_url_detection.settings') application = get_asgi_application()

from django.contrib

import admin from

django.apps import

AppConfig class

ResearchSiteConfig(App

Config):

name = 'Service_Provider'

from django.db.models import

Count, Avg from

django.shortcuts import render,

redirect from django.db.models

import Count

from django.db.models

import Q import

datetime

import xlwt

from django.http import HttpResponse

import pandas as pd

from sklearn.feature_extraction.text import CountVectorizer

from sklearn.metrics import accuracy_score, confusion_matrix,

classification_report from sklearn.metrics import accuracy_score

from sklearn.tree import DecisionTreeClassifier

Create your views here.

fromRemote_User.models import

ClientRegister_Model,malicious_url_detection,detection_ratio,detection_accuracy

47

return render(request,'SProvider/serviceproviderlogin.html')

def View_Drug_Response_Ratio(request):

detection_ratio.objects.all().delete()

ratio = ""

kword = 'Malicious URL'

print(kword)

obj = malicious_url_detection.objects.all().filter(Q(Prediction=kword))

obj1 = malicious_url_detection.objects.all()

count = obj.count();

count1 = obj1.count();

ratio = (count / count1) * 100

if ratio != 0:

detection_ratio.objects.create(names=kword, ratio=ratio)

ratio12 = ""

kword12 = 'Good URL'

print(kword12)

obj12 = malicious_url_detection.objects.all().filter(Q(Prediction=kword12))

obj112 = malicious_url_detection.objects.all()

count12 = obj12.count();

count112 = obj112.count();

ratio12 = (count12 / count112) * 100

if ratio12 != 0:

detection_ratio.objects.create(names=kword12, ratio=ratio12)

obj = detection_ratio.objects.all()

return render(request, 'SProvider/View_Drug_Response_Ratio.html', {'objs': obj})

def View_Remote_Users(request):

obj=ClientRegister_Model.objects.all()

return render(request,'SProvider/View_Remote_Users.html',{'objects':obj})

def charts(request,chart_type):

chart1 = detection_ratio.objects.values('names').annotate(dcount=Avg('ratio'))

return render(request,"SProvider/charts.html", {'form':chart1, 'chart_type':chart_type})

48

def charts1(request,chart_type):

chart1 = detection_accuracy.objects.values('names').annotate(dcount=Avg('ratio'))

return render(request,"SProvider/charts1.html", {'form':chart1, 'chart_type':chart_type})

def View_Prediction_Of_Drug_Response(request):

obj =malicious_url_detection.objects.all()

return render(request, 'SProvider/View_Prediction_Of_Drug_Response.html', {'list_objects':

obj})

def likeschart(request,like_chart):

charts =detection_accuracy.objects.values('names').annotate(dcount=Avg('ratio'))

return render(request,"SProvider/likeschart.html", {'form':charts, 'like_chart':like_chart})

def Download_Trained_DataSets(request):

response = HttpResponse(content_type='application/ms-excel')

decide file name

response['Content-Disposition'] = 'attachment; filename="Predicted_Datasets.xls"'

creating workbook

wb = xlwt.Workbook(encoding='utf-8')

adding sheet

ws = wb.add_sheet("sheet1")

Sheet header, first row

row_num = 0

font_style = xlwt.XFStyle()

headers are bold

font_style.font.bold = True

writer = csv.writer(response)

obj = malicious_url_detection.objects.all()

data = obj # dummy method to fetch data.

for my_row in data:

row_num = row_num + 1

ws.write(row_num, 0, my_row.urlname, font_style)

ws.write(row_num, 1, my_row.Prediction, font_style)

49

wb.save(response)

return response

def train_model(request):

detection_accuracy.objects.all().delete()

df = pd.read_csv('Malicious_URLs.csv')

mapping = {'good': 0, 'bad': 1}

df['Results'] = df['Class'].map(mapping)

cv = CountVectorizer()

X = df['URLs']

y = df['Results']

print("URLs")

print(X)

print("Results")

print(y)

X = cv.fit_transform(X)

models = []

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20)

X_train.shape, X_test.shape, y_train.shape

print(X_test)

print("Naive Bayes")

from sklearn.naive_bayes import MultinomialNB

NB = MultinomialNB()

NB.fit(X_train, y_train)

predict_nb = NB.predict(X_test)

naivebayes = accuracy_score(y_test, predict_nb) * 100

50

print(naivebayes)

print(confusion_matrix(y_test, predict_nb))

print(classification_report(y_test, predict_nb))

models.append(('naive_bayes', NB))

detection_accuracy.objects.create(names="Naive Bayes", ratio=naivebayes)

SVM Model

print("SVM")

from sklearn import svm

lin_clf = svm.LinearSVC()

lin_clf.fit(X_train, y_train)

predict_svm = lin_clf.predict(X_test)

svm_acc = accuracy_score(y_test, predict_svm) * 100

print(svm_acc)

print("CLASSIFICATION REPORT")

print(classification_report(y_test, predict_svm))

print("CONFUSION MATRIX")

print(confusion_matrix(y_test, predict_svm))

models.append(('svm', lin_clf))

detection_accuracy.objects.create(names="SVM", ratio=svm_acc)

print("Logistic Regression")

from sklearn.linear_model import LogisticRegression

reg = LogisticRegression(random_state=0, solver='lbfgs').fit(X_train, y_train)

y_pred = reg.predict(X_test)

print("ACCURACY")

print(accuracy_score(y_test, y_pred) * 100)

print("CLASSIFICATION REPORT")

print(classification_report(y_test, y_pred))

print("CONFUSION MATRIX")

print(confusion_matrix(y_test, y_pred))

models.append(('logistic', reg))

detection_accuracy.objects.create(names="Logistic Regression", ratio=accuracy_score(y_test,

y_pred) * 100)

print("Decision Tree Classifier")

Dtc=DecisionTeeC

lassifier()

dtc.fit(X_train,

y_train) dtcpredict

=

dtc.predict(X_test)

print("ACCURAC

Y")

print(accuracy_score(y_test, dtcpredict) * 100)

print("CLASSIFICATION REPORT")

print(classification_report(y_test, dtcpredict))

print("CONFUSION MATRIX")

print(confusion_matrix(y_test,

dtcpredict))

models.append(('DecisionTree

Classifier', dtc))

detection_accuracy.objects.create(names="DecisionTreeClassifier",

ratio=accuracy_score(y_test, dtcpredict) * 100)

print("SGD Classifier")

from sklearn.linear_model import SGDClassifier

sgd_clf = SGDClassifier(loss='hinge', penalty='l2',

random_state=0) sgd_clf.fit(X_train, y_train)

sgdpredict =

sgd_clf.predict(X_test)

print("ACCURACY")

print(accuracy_score(y_test, sgdpredict) * 100)

print("CLASSIFICATION REPORT")

print(classification_report(y_test, sgdpredict))

print("CONFUSION MATRIX")

print(confusion_matrix(y_test, sgdpredict))

models.append(('SGDClassifier', sgd_clf))

csv_format = 'Results.csv'

df.to_csv(csv_format,

index=False) df.to_markdown

51

52

8.2 Results

Fig.8.2.1: Home Page

Description: This is the Home page, in the Home page we have the faculty (data

owner), student (data user), trusted authority and cloud. The Home page even consists of

information related to project.

Fig.8.2.2 : View All remote Users Page

Description: In this the faculty (data owner) should register first to send the data to the

data user and then the faculty can login to share the data.

53

Fig.8.2.3 View URL Datasets Trained and Tested results Page

Description: In this the student (data user) should register first to receive the data from

the data user and then the student can login to receive the data.

Fig.8.2.4 Algorithm wise Graphs Page

Description: We also create a login for the trusted authority and once we logged in, we can

have various privileges like viewing the details.

54

Fig.8.2.5 : Pie Chart and Line Chart Page

Description: We do create one more login for cloud and once we logged in we do have certain
privileges of accessing files.

55

9. SYSTEM TESTING

Testing is the process where the test data is prepared and is used for testing the

modules individually and later the validation given for the fields. Then the system

testing takes place which makes sure that all components of the system property

function as a unit. The test data should be chosen such that it passed through all

possible condition.

9.1 System Testing

Testing has become an integral part of any system or project especially in the field

of information technology. The importance of testing is a method of justifying, if one

is ready to move further, be it to be check if one is capable to with stand the rigors of a

particular situation cannot be underplayed and that is why testing before development

is so critical. The program was tested logically and pattern of execution of the

program for a set of data are repeated.

9.2 Module Testing

To locate errors, each module is tested individually. This enables us to detect

error and correct it without affecting any other modules. This module is tested with

different job and its approximate execution time and the result of the test is compared

with the results that are prepared manually. Each module in the system is tested

separately. In this system the resource classification and job scheduling modules are

tested separately and their corresponding results are obtained which reduces the

process waiting time.

9.3 Integration Testing

After the module testing, the integration testing is applied. When linking the

modules there may be chance for errors to occur, these errors are corrected by using

this testing. In this system all modules are connected and tested. The testing results are

very correct. Thus the mapping of jobs with resources is done correctly by the system

56

9.4 Accepting Testing

When that user fined no major problems with its accuracy, the system passers

through a final acceptance test. This test confirms that the system needs the original

goals, objectives and requirements established during analysis without actual

execution which elimination wastage .

9.5 Regression Testing

Regression testing is performed to ensure that any modifications, enhancements, or

bug fixes in the system do not negatively impact the existing functionality. It involves

re-running previous test cases to confirm that the new changes do not introduce new

errors. This type of testing is crucial when updating or expanding a system to maintain

overall stability and performance.

57

10. CONCLUSION AND FUTURE SCOPE

10.1 CONCLUSION

In conclusion, the proposed malicious URL detection system, leveraging

machine learning algorithms and big data technology, offers a promising solution to

combat the increasing risk of cyber fraud. By analyzing both static and dynamic

behaviors of URLs, our system introduces novel features for more accurate

detection of malicious URLs. The experimental results demonstrate significant

improvements in detection capability, indicating the effectiveness of the proposed

approach. Moreover, the flexibility of incorporating various machine learning

algorithms underscores the adaptability and scalability of the system. With ongoing

advancements in cyber threats, the proposed system provides a robust and user-

friendly solution for enhancing network security and protecting users from

malicious online activities. Further research and development in this area hold the

potential to refine and extend the capabilities of the system, making it even more

resilient against evolving cyber threats.

10.2 FUTURE WORK

Future work will focus on several key areas to enhance the proposed malicious

URL detection system. Firstly, exploring additional machine learning algorithms

beyond could further improve detection accuracy and robustness. Additionally,

refining feature selection techniques and incorporating advanced deep learning

models may enhance the system's ability to detect emerging threats effectively.

Furthermore, integrating real-time data streams and leveraging cutting-edge big

data analytics technologies could enhance the system's scalability and

responsiveness. Finally, conducting extensive testing and validation in diverse

network environments and continuously updating the system with new threat

intelligence will be essential to ensure its effectiveness against evolving cyber

58

11. REFERENCES

[1] Thomas G. Dietterich. Ensemble Methods in Machine Learning. International

Workshop on Multiple Classifier Systems, pp 1-15, Cagliari, Italy, 2000.

[2] Leo Breiman.: Random Forests. Machine Learning 45 (1), pp. 5- 32,(2001).

[3] C. Seifert, I. Welch, and P. Komisarczuk, “Identification of malicious web pages

with static heuristics,” in Telecommunication Networks and Applications Conference,

2008. ATNAC 2008. Australasian. IEEE, 2008, pp. 91–96.

[4] S. Sinha, M. Bailey, and F. Jahanian, “Shades of grey: On the effectiveness of

reputation-based “blacklists”,” in Malicious and Unwanted Software, 2008. MALWARE

2008. 3rd International Conference on. IEEE, 2008, pp. 57–64.

[5] S. Sheng, B. Wardman, G. Warner, L. F. Cranor, J. Hong, and C. Zhang, “An

empirical analysis of phishing blacklists,” in Proceedings of Sixth Conference on Email

and Anti-Spam (CEAS), 2009.

[6] J. Ma, L. K. Saul, S. Savage, and G. M. Voelker, “Identifying suspicious urls: an

application of large-scale online learning,” in Proceedings of the 26th Annual International

Conference on Machine Learning. ACM,2009, pp. 81–688.

[7] M. Cova, C. Kruegel, and G. Vigna, “Detection and analysis of

drivebydownload attacks and malicious javascript code,” in Proceedings of the19th

international conference on World wide web. ACM, 2010, pp. 281– 290.

[8] S. Purkait, “Phishing counter measures and their effectiveness– literature

review,” Information Management & Computer Security, vol. 20, no. 5,pp. 382–420, 2012.

[9] M. Khonji, Y. Iraqi, and A. Jones, “Phishing detection: a literature survey,”

IEEE Communications Surveys & Tutorials, vol. 15, no. 4, pp. 2091–2121, 2013.

[10] B. Eshete, A. Villafiorita, and K. Weldemariam, “Binspect: Holistic analysis and

detection of malicious web pages,” in Security and Privacyin Communication Networks.

Springer, 2013, pp. 149–166.

[11] G. Canfora, E. Medvet, F. Mercaldo, and C. A. Visaggio, “Detection of

malicious web pages using system calls sequences,” in Availability, Reliability, and

Security in Information Systems. Springer, 2014, pp.226-23.[12] R. Heartfield and G.

59

Loukas, “A taxonomy of attacks and a survey of defence mechanisms for semantic social

engineering attacks,” ACM Computing Surveys (CSUR), vol. 48, no. 3, p. 37, 2015.

[13] D. Sahoo, C. Liu, S.C.H. Hoi, “Malicious URL Detection using Machine Learning: A

Survey”. CoRR, abs/1701.07179, 2017.

[14] Internet Security Threat Report (ISTR) 2019–Symantec.

https://www.symantec.com/content/dam/symantec/docs/reports/istr-24- 2019-en.pdf [Last

accessed 10/2019].

[15] Developer Information. https://www.phishtank.com/developer_info.php. [Last

accessed 11/2019].

[16] URL haust Database Dump. https://urlhaus.abuse.ch/downloads/csv/. [Ngày truy

nhập 11/2019].

[17] URLhaus Database Dump. https://urlhaus.abuse.ch/downloads/csv/. [Ngày truy

nhập 11/2019].

[18] Dataset URL. http://downloads.majestic.com/majestic_million.csv. [Last

accessed 10/2019].

[19] Malicious_n_Non-MaliciousURL. https://www.kaggle.com/antonyj453/

urldataset#data.csv. [Last accessed 11/2019].

http://www.symantec.com/content/dam/symantec/docs/reports/istr-24-
http://www.phishtank.com/developer_info.php
http://downloads.majestic.com/majestic_million.csv
http://www.kaggle.com/antonyj453/

	BACHELOR OF TECHNOLOGY IN
	K.Sai Shivaji (218R1A6733) B.VenuMadhav (218R1A6717) G.VaibhavKumar (218R1A6724) L.Nikitha (218R1A6737)

	Mrs. A.Shravani
	Department of Computer Science & Engineering (Data Science)
	UGC AUTONOMOUS
	CERTIFICATE
	K.Sai Shivaji (218R1A6733) B.VenuMadhav (218R1A6717) G.VaibhavKumar (218R1A6724) L.Nikitha (218R1A6737)
	TECHNOLOGY in COMPUTER SCIENCE AND ENGINEERING (DATA SCIENCE) from

	DECLARATION
	ABSTRACT
	1.1 OVERVIEW
	1.2 PURPOSE OF THE PROJECT
	1.3 MOTIVATION

	2. LITERATURE SURVEY
	Signature-based Malicious URL Detection
	Machine Learning-based Malicious URL Detection

	3. METHODOLOGY
	3.1 System Architecture
	3.2 Client Server
	3.2.1 Overview
	3.3.2. What is a Client Server?
	3.3.3. Why Client Server?

	4. TECHNOLOGY DESCRIPTION
	4.1 Hardware System Configuration
	4.2 Software Requirements

	5. SYSTEM ANALYSIS
	5.1 Existing System
	Disadvantages of Existing System
	5.2 Proposed System
	Support Vector Machine (SVM)
	Naive Bayes
	Logistic Regression
	Decision Tree Classifier
	SGD Classifier
	Support Vector Machine (SVM) (1)

	Advantages of Proposed System
	System Study
	Feasibility Study
	Economic Feasibility
	Social Feasibility

	6. SYSTEM DESIGN
	6.1 DATA FLOW DIAGRAM (DFD)
	Flow Chart1: Remote User
	Flow Chart2: Service provider

	6.2 UML DIAGRAMS
	6.2.1 Class diagram
	6.2.2 Usecase Diagram

	6.3 INPUT AND OUTPUT DESIGN
	6.3.1 Input Design
	OBJECTIVES
	6.3.2 Output Design

	7. SOFTWARE REQUIREMENTS
	7.1 What is Python?
	Advantages of Python
	Advantages of Python Over Other Languages
	Disadvantages of Python
	History of Python
	Python Development Steps
	Purpose
	Python
	Modules Used in Project
	TensorFlow
	NumPy
	Pandas
	Matplotlib
	Scikit – learn

	7.2 Machine Learning
	Categories of Machine Learning:
	Need for Machine Learning
	Challenges in Machines Learning
	Applications of Machines Learning
	Advantages & Disadvantages of Machine learning
	Advantages:
	Disadvantages:

	Decision tree classifiers
	Gradient boosting
	Logistic regression Classifiers
	Naive Bayes
	Random Forest
	Support Vector Machine (SVM)

	8. IMPLEMENTATION
	8.1 SOURCE CODE
	8.2 Results
	9. SYSTEM TESTING
	9.1 System Testing
	9.2 Module Testing
	9.3 Integration Testing
	9.4 Accepting Testing
	9.5 Regression Testing

	10. CONCLUSION AND FUTURE SCOPE
	10.1 CONCLUSION
	10.2 FUTURE WORK

	11. REFERENCES

