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ABSTRACT 

 

Plants health detection is essential in maintaining agricultural output and sustainable 

environment. This study examines the utilization of Artificial Intelligence (AI) algorithms 

in automating plant health analysis. the system scans plant images in search of diseases, 

nutrients, and stress levels. The proposed solution integrates computer vision and machine 

learning models, which are trained across different datasets and include both samples of 

healthy and ill plants. The AI detection system enhances early diagnosis such that 

intervention is done on time and crops are not lost. The research shows the accuracy of AI 

in measuring plant health, providing a valuable and scalable procedure for both scientists 

and farmers. Our system makes use of Convolutional Neural Networks and deep learning 

techniques trained on huge sets of images of plants with both healthy and sick examples. 

By analyzing leaf shapes, color patterns, and distorted shapes, the AI model can accurately 

classify plant conditions, including diseases such as bacterial infections, fungal infestation, 

and starvation for nutrients. The system is designed for early plant disease detection, 

allowing farmers to intervene in time and minimize financial losses. Future developments 

involve the integration of Internet of Things (IoT) sensors for real-time sensing and a 

broader range of plant species for the model. 
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1. INTRODUCTION 

 
1.1.Overview 

 

     Agriculture is a crucial sector of India's economy, as it employs more than 50% of 

the population and contributes about 18-20% to the nation's GDP. But the agricultural 

sector has various problems, including inefficient agricultural practices, poor fertilizer 

application, water shortages, and plant pathologies. Plant pathogens are the primary 

contributors of crop losses, which reach as much as 30% of crops. Plant disease manual 

identification is time-consuming and not accurate, and there is a pressing need for 

breakthrough solutions. we utilized drones and high-definition cameras for image 

capturing of different plant species in natural agricultural settings. Utilizing drones 

offers superior advantages, with large-scale fields monitored from various angles and 

heights, guaranteeing complete coverage and taking pictures that otherwise may be 

difficult to observe through manual inspection. 

     Herein, we suggest an AI-enabled method for the detection of plant species health 

using image data with a specific focus on the diagnosis and classification of plant 

health based on plant images. The system intended has the aim to offer a clever, 

expandable, and budget-friendly system for early illness recognition and crop 

wellbeing monitoring in environmental and farming scenarios. Technological 

advancements have created opportunities for precise detection and identification of 

plant diseases, paving the way for improved treatment. This system identifies 14 types 

of plant diseases, such as apple, blueberry, cherry, corn, grape, orange, peach, pepper, 

potato, raspberry, soybean, squash, strawberry, and tomato, through the use of deep 

learning methods, specifically convolutional neural networks (CNN). The system uses 

a statistical model that takes input images and classifies output tags through 

processing, giving a sound solution for plant disease detection. 
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             1.2.Research Motivation 
 

         Agriculture is one of the most critical sectors for ensuring global food security 

and supporting economic development. However, plant diseases and declining crop 

health pose significant threats, leading to reduced agricultural productivity, financial 

losses for farmers, and even risks of food scarcity. The early and accurate detection of 

plant health issues is essential to prevent large-scale damage and promote sustainable 

agricultural practices. Traditionally, plant health monitoring relies on manual 

inspection and expert intervention, which can be time-consuming, costly, and often 

inaccessible in rural or underdeveloped areas.  

     With the rapid advancement of Artificial Intelligence (AI), especially in the fields 

of computer vision and machine learning, there is a growing opportunity to transform 

plant health monitoring systems. AI-based solutions have the potential to provide fast, 

accurate, and scalable diagnostics that can assist farmers in making timely decisions 

and improving crop management. Automated detection not only reduces human 

dependency but also enables large-scale monitoring across different terrains and 

climatic conditions. 

     Despite these technological advancements, existing research is often focused on 

specific plant species or isolated diseases. Many current models lack adaptability and 

fail to perform effectively across diverse species and environmental variations. This 

gap highlights the urgent need for robust and generalized AI models capable of 

accurately detecting plant health conditions across multiple species and geographic 

locations. Addressing this challenge can significantly reduce crop losses, enhance 

agricultural efficiency, and contribute to long-term global food security.  
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            1.3.Problem Statement 
  

     Plant diseases and declining crop health are major challenges in agriculture, 

leading to significant reductions in yield, quality, and farmer income. Traditional 

methods of plant health monitoring are heavily reliant on manual observation and 

expert analysis, which are time-consuming, labor-intensive, and often inaccessible to 

farmers in remote or resource-limited areas. Furthermore, the increasing diversity of 

plant species and environmental conditions complicates the early detection and 

classification of plant health issues. 

     Although recent advancements in artificial intelligence (AI) and computer vision 

have demonstrated potential in automating plant disease detection, many existing AI 

models are limited in scope, focusing on specific crops or isolated diseases. These 

models often struggle to generalize across multiple plant species and varying field 

conditions, leading to reduced accuracy and reliability in real-world applications. 

     Therefore, there is an urgent need for a robust, scalable, and accurate AI-based 

plant health detection system that can identify and classify plant health conditions 

across a wide range of species and environments. The absence of such an intelligent, 

accessible system continues to hinder farmers’ ability to take timely corrective actions, 

ultimately affecting food security and sustainable agricultural growth. 

     Plant health monitoring remains a significant challenge in modern agriculture, 

especially with the increasing demand for higher crop yields and sustainable farming 

practices. Traditional plant disease detection methods rely heavily on human expertise 

and manual field inspections, which are not only time-consuming and labor-intensive 

but also prone to human error and subjectivity. In many rural and developing regions, 

farmers lack access to timely expert advice, leaving crops vulnerable to undiagnosed 

diseases and untimely intervention. 
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 1.4.Applications 

 

1.Early Disease Detection and Prevention: 

AI models can detect symptoms of plant stress or disease at an early stage, allowing 

farmers to take timely actions to prevent the spread of infections and minimize crop 

damage. 

2.Precision Agriculture: 

AI-powered plant health detection systems can integrate with drones and sensors to 

help monitor large fields, enabling site-specific treatment instead of blanket pesticide 

or fertilizer application, reducing costs and environmental impact. 

3.Real-Time Decision Support for Farmers: 

Smartphone apps or AI-based platforms can provide farmers with instant disease 

diagnosis and recommended solutions, reducing dependency on field experts. 

4.Yield Optimization: 

By maintaining healthier crops through timely detection and intervention, farmers can 

achieve better yield quantity and quality. 

5.Pest and Disease Surveillance at Scale: 

Governments, agricultural departments, and research institutions can use AI tools for 

large-scale monitoring and mapping of pest or disease outbreaks, supporting national 

food security efforts. 

6.Reduction in Pesticide Overuse: 

Accurate disease detection ensures pesticides are only used when necessary, promoting 

sustainable and eco-friendly farming practices. 

7.Support for Agricultural Research and Breeding: 

Researchers can use AI models to monitor plant health and growth patterns in 

controlled environments, aiding in the development of disease-resistant plant varieties. 

8.Crop Insurance and Claim Validation: 
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AI-based health detection systems can assist insurance companies in verifying crop 

health and damage, ensuring fair and data-driven claim settlements. 

9.Market Forecasting and Supply Chain Planning: 

Early detection of crop diseases can help predict future yield availability, aiding food 

distributors, exporters, and policymakers in planning and reducing waste. 

10.Educational Tools for Farmers and Students: 

AI-based detection systems can be used as learning platforms to educate farmers, 

agricultural students, and agronomists on disease identification and management 

practices. 

11.Integration with Autonomous Farming Equipment: 

Future agricultural robots or autonomous machines can integrate AI-based plant health 

detection for automated spraying, weeding, and harvesting based on crop conditions. 

12.Climate Impact Monitoring: 

AI-based plant health detection systems can help track how changing weather patterns 

and climate conditions affect crop health, providing valuable data for climate-resilient 

farming strategies. 

13.Integration with IoT-based Smart Farming Systems: 

By combining AI plant health detection with IoT sensors (soil moisture, temperature, 

humidity), farmers can get a holistic view of crop health and environmental factors, 

enabling fully automated smart farm management. 

 

 

 

 

 

 

 

 



6  

2. LITERATURE SURVEY 

 
 

     The detection and classification of plant diseases using Artificial Intelligence(AI) 

have gained significant attention in recent years due to the growing need for early 

disease detection and precision agriculture. Researchers have applied a variety of AI 

techniques, including machine learning and deep learning, to address the challenges 

of plant health monitoring. 

 

1.Machine Learning Approaches: 

      Early studies focused on traditional machine learning techniques such as Support 

Vector Machines (SVM), k-Nearest Neighbors (k-NN), and Random Forest classifiers 

for plant disease detection. For instance, Phadikar et al. (2013) developed an SVM-

based model to classify rice diseases using color and texture features. Although these 

approaches showed promise, they heavily depended on handcrafted feature extraction, 

which limited accuracy and adaptability across species and varying conditions. 

 

2.Deep Learning Approaches: 

      The introduction of Convolutional Neural Networks (CNNs) revolutionized plant 

disease detection. Mohanty et al. (2016) demonstrated the use of CNNs to identify 26 

diseases across 14 crop species with high accuracy using the PlantVillage dataset. 

Further studies explored more advanced architectures like AlexNet, VGGNet, ResNet, 

and Inception models for improved classification accuracy. These models automated 

feature extraction and achieved better performance than traditional methods, although 

many models were trained under controlled conditions. 

 

3. Transfer Learning and Fine-tuning: 

     Transfer learning techniques have been widely adopted to enhance model 

performance on small or imbalanced datasets. Pre-trained models like ResNet, 

DenseNet, and MobileNet have been fine-tuned for plant disease detection tasks. For 

example, Ferentinos (2018) applied deep CNNs with transfer learning and      achieved 

over 99% accuracy in plant disease classification. However, most of these models still 

lack robustness when applied in real-world conditions with variable lighting, complex 

backgrounds, and occlusions. 
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4. Object Detection and Segmentation Models: 

     Recent advancements include using object detection models like YOLO (You Only 

Look Once), SSD (Single Shot Detector), and Faster R-CNN to not only classify but 

also localize disease-affected areas on plant leaves. Additionally, segmentation models 

like U-Net and Mask R-CNN are being used to identify disease severity levels by 

segmenting infected regions. These approaches improve precision in real-time field 

applications. 

5. Limitations in Current Research: 

     Despite notable progress, most studies have been limited to single species or a 

narrow range of diseases. Models trained on laboratory-based datasets often fail to 

generalize to field conditions. Challenges such as disease symptom similarity. 
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                              3.EXISTING SYSTEM 
 

3.1. Overview 

     One of the most widely recognized and impactful existing systems for plant species 

health detection is the PlantVillage system, developed using deep learning techniques 

by Mohanty et al. (2016). This system is based on Convolutional Neural Networks 

(CNNs) and was trained using the PlantVillage dataset, which contains over 54,000 

images of healthy and diseased leaves covering 14 different crop species and 26 

distinct diseases. The system achieved a classification accuracy of approximately 90% 

on test data. It automatically extracts features such as color, texture, and leaf patterns, 

eliminating manual feature engineering. The PlantVillage system has been the 

foundation for many research works and has even been deployed in mobile 

applications for farmer use. The PlantVillage system uses powerful deep learning 

architectures (including AlexNet and GoogleNet) that automatically learn image 

features such as texture, color patterns, and leaf structures, eliminating the need for 

manual feature extraction. The model predicts the disease class of a plant leaf image, 

helping farmers and researchers quickly identify crop health issues. The system has 

since been adapted into smartphone-based applications like PlantVillage Nuru, which 

farmers can use for real-time disease detection in the field. 

     The PlantVillage system begins with the farmer or user capturing a clear photo of 

the plant leaf, stem, or fruit using the PlantVillage mobile app, commonly known as 

Nuru. Once the image is taken, the app processes it by automatically adjusting factors 

like brightness, cropping, and enhancing the quality to ensure accurate analysis. The 

image is then analyzed by a deep learning model, specifically a Convolutional Neural 

Network (CNN), which has been trained on thousands of labeled images from diverse 

crops and diseases. The AI compares the captured image with known disease patterns 

to determine if the plant is healthy or diseased. If diseased, it identifies the specific 

disease and assesses the severity level. Instantly, the app provides a diagnosis on-

screen, showing the disease name, a confidence score, and recommended treatment 

options, including organic and sustainable solutions where possible. The app is 

designed to work even in areas with poor internet connectivity by running its AI 

models offline and syncing the data when connectivity is restored.  
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Additionally, with user permission, the system collects these images and diagnosis 

results to continually update and improve the AI models, making them more accurate 

over time.  

     However, despite its high accuracy on laboratory datasets, this existing system has 

limitations in field deployment, including reduced performance under natural lighting 

conditions, complex backgrounds, and with species or diseases not included in the 

training dataset. Additionally, the system struggles with generalization across diverse 

geographic regions and uncontrolled environments. These challenges highlight the 

need for further research on more robust, scalable, and adaptable AI systems capable 

of handling multiple species, real-time conditions, and variable field scenarios. 

     After processing, the app quickly identifies whether the plant is healthy or affected 

by a disease and determines the type of disease, along with its severity (mild, moderate, 

or severe). The system then provides instant feedback to the user in the form of a 

diagnosis report, which includes the disease name, a confidence score showing how 

sure the system is about its prediction, and practical treatment or management 

suggestions. These recommendations often prioritize eco-friendly, low-cost, and 

sustainable solutions tailored for smallholder farmers. 

     What makes PlantVillage especially valuable is its offline functionality. The app is 

capable of working without internet connectivity by storing the AI model directly on 

the user’s phone, making it ideal for remote and rural areas. Once the device is 

reconnected to the internet, all collected images and results are synced back to the 

PlantVillage database. This continuous data collection helps improve the model by 

retraining it with new, real-world examples, making future diagnoses even more 

accurate. Furthermore, the system connects users to agricultural extension services, 

expert advice, and a community of other farmers, enabling them to share experiences 

and receive additional guidance. Through this combination of cutting-edge AI, offline 

usability, continuous learning, and expert support, PlantVillage empowers farmers to 

detect problems early, make informed decisions, and protect their crops efficiently. 
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3.2. Challenges Of Existing System 
 

1. Limited Dataset Availability and Quality 

AI models rely heavily on large, diverse, and high-quality datasets to function 

effectively. In the context of plant species and health detection, such datasets are often 

limited, especially for rare species or less-studied plant diseases.  

2. Variability in Environmental Conditions 

Environmental factors such as lighting, background noise, and weather conditions 

significantly affect the performance of image-based AI systems. A leaf image captured 

under bright sunlight might be processed very differently than one taken in low light, 

even if both are of the same species and health condition. This variability can confuse 

the model and reduce accuracy in real-world deployments. 

3. Difficulty in Differentiating Similar Symptoms 

Many plant diseases present with similar visual symptoms like yellowing, spots, or 

wilting. AI systems may struggle to distinguish between these unless they are trained 

on very specific and detailed images. This challenge becomes more complex when 

different diseases affect the same species or the same disease manifests differently in 

different species. 

4. Generalization Across Plant Species 

AI models trained on specific crops or regions often fail to generalize well to other 

species or geographical areas. For example, a model trained on tomato plant diseases 

in India might not perform well on tomato crops in South America due to differences 

in disease strains, climate, and local agricultural practices. 

5. High Computational Requirements 

Many AI algorithms, especially deep learning models, require substantial 

computational resources for both training and inference. This makes it difficult to 

deploy such systems in remote or rural farming areas where access to high-

performance computing or stable internet connections is limited. 
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6. Lack of Explainability and Trust 

AI models, particularly those based on neural networks, often act as "black boxes" 

where it's hard to understand the decision-making process. Farmers and agricultural 

experts may find it difficult to trust a system that cannot explain why it diagnosed a 

plant as unhealthy or suggested a certain treatment. 

7. Integration with Traditional Farming Practices 

Many farmers rely on traditional knowledge and practices passed down over 

generations. Integrating AI-based systems into these workflows requires not only 

technological infrastructure but also cultural and educational adaptation, which can be 

a slow and challenging process. 
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4.PROPOSED METHODOLOGY 

 

         4.1 Overview 

     In the present study, an AI-based disease detection model for rice plants has been 

developed utilizing Convolutional Neural Networks (CNN) with the VGG16 

architecture. The model is designed to automatically analyze plant images, extract 

significant features, and classify them into healthy or diseased categories. 

The process begins with image acquisition using drones and high-resolution cameras, 

which capture diverse images from multiple angles and under various field conditions. 

After acquisition, these images undergo preprocessing steps such as noise reduction, 

size normalization, and quality enhancement to optimize them for model training. 

 

 

Fig.4.1.1 Block diagram of proposed system for plant species health detection 

 

     Feature extraction through the convolutional layers enables the model to learn 

distinct patterns that differentiate healthy rice plants from those affected by diseases. 

The final classification is performed by the fully connected layers of the network, 

resulting in accurate health status predictions. 

     This approach significantly enhances the speed and reliability of disease detection 

and presents a scalable, efficient solution for smart agriculture and real-time crop 

monitoring. 
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4.2. Advantages of the Proposed System 
 

 1. High Accuracy and Precision 

The use of Convolutional Neural Networks (CNN), particularly the VGG16 

architecture, allows the system to detect minute differences in plant features, leading 

to highly accurate and precise classification between healthy and diseased plants. 

 

2. Automated and Real-Time Monitoring 

The system enables continuous monitoring of plant health through automation. Once 

deployed, it can analyze incoming images in real time, reducing the need for manual 

inspection and allowing for faster response to disease outbreaks. 

 

3. Scalability for Large-Scale Farming 

Due to the integration of drone-based image collection and automated image 

processing, the system can easily scale to monitor large agricultural fields, making it 

suitable for both small and commercial farming operations. 

 

4. Cost-Effective in the Long Run 

Though the initial setup may require investment, the system significantly reduces the 

need for constant human labor and frequent expert consultations. Over time, this leads 

to cost savings in disease management and crop maintenance. 

 

5. Early Disease Detection 

By identifying diseases at an early stage—even before visible symptoms become 

apparent to the human eye—the system enables early intervention, which can prevent 

widespread crop loss and improve overall yield. 

 

6. Environmentally Friendly 

Accurate disease detection ensures targeted use of pesticides and fertilizers, which 

minimizes environmental impact. This supports sustainable farming practices by 

reducing the overuse of chemicals. 
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7. Data-Driven Decision Making 

The system generates a wealth of data on plant health over time, which can be used by 

farmers and agricultural experts to make informed decisions about crop management, 

irrigation, and resource allocation. 

 

8. Adaptability to Diverse Conditions 

Through training on varied image data collected from different environments and 

lighting conditions, the model becomes robust and adaptable to real-world agricultural 

settings. 
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5. REQUIREMENT SPECIFICATIONS 

 
5.1. Requirement Analysis 

 

5.1.1.Software Requirements 

 
The software requirements specify the use of all required software products like data 

management system. The required software product specifies the numbers and version. 

Each interface specifies the purpose of the interfacing software as related to this 

software product. 

For developing the application the following are the Software Requirements: 

Operating System: 

            

      Windows 

  

       Linux 

 

       Python idel 3.7 version or Anaconda 3.7 or Google colab 

           5.1.2. Hardware Requirements 

 The hardware requirement specifies each interface of the software elements and the 

hardware elements of the system. These hardware requirements include configuration 

characteristics necessary for the smooth functioning of the AI-based plant species 

health detection system. 

 

           Processor: Intel Core i5 

 

           Memory (RAM): 8 GB 

 

           Hard Disk: 250 G 
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 5.2.Specification Principles 

 
What is Python? 

 

     Python is a widely used, high-level programming language known for its simplicity 

and versatility. It supports multiple programming paradigms, including Object- 

Oriented and Procedural approaches, making it accessible to both beginners and 

experienced developers. Python programs are generally shorter and more readable due 

to its minimal syntax and strict indentation rules. This feature reduces the effort needed 

for coding while improving code clarity. Many tech giants like Google, Amazon, 

Facebook, and Uber rely on Python for various applications. 

     One of Python's biggest strengths is its extensive collection of standard libraries, 

enabling a wide range of functionalities. It is commonly used in Machine Learning, 

Web Development (Django, Flask), GUI applications (Tkinter, PyQt), and Image 

Processing (OpenCV, Pillow). Python also plays a crucial role in web scraping 

(Scrapy, BeautifulSoup), automation, and testing frameworks. Its simplicity and rich 

ecosystem make it ideal for developing everything from small scripts to large-scale 

applications. With its growing community and continuous development, Python 

remains a top choice for programmers worldwide. 

     It provides a vast ecosystem of libraries such as NumPy and Pandas for data 

analysis, TensorFlow and Scikit-learn for AI and ML, and Django and Flask for web 

development. Python’s cross-platform compatibility enables it to run on Windows, 

macOS, and Linux without modifications. Additionally, its ability to automate 

repetitive tasks makes it popular for scripting and automation in various industries. 

Python also plays a crucial role in emerging technologies like cybersecurity, Internet 

of Things (IoT), and blockchain. Due to its large community support, extensive 

documentation, and continuous updates, Python remains one of the most in-demand 

programming languages, driving innovation across multiple domains. 

     One of Python’s key strengths is its extensive standard library, which includes 

modules for file handling, networking, regular expressions, database management, and 

cryptography. Additionally, Python can interact with databases such as MySQL, 

PostgreSQL, and SQLite, making it ideal for backend development. 
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Advantages of Python 

 

Let’s see how Python dominates over other languages. 

1.Extensive Libraries 

Python downloads with an extensive library and it contain code for various purposes 

like regular expressions, documentation generation, unit-testing, web browsers, 

threading, 

databases, CGI, email, image manipulation, and more. So, we don’t have to write the 

complete code for that manually. 

2.Extensible 

As we have seen earlier, Python can be extended to other languages. You can write 

some of your code in languages like C++ or C. This comes in handy, especially in 

projects. 

3.Embeddable 

Complimentary to extensibility, Python is embeddable as well. You can put your 

Python code in your source code of a different language, like C++. This lets us add 

scripting capabilities to our code in the other language. 

4.Improved Productivity 

The language’s simplicity and extensive libraries render programmers more 

productive than languages like Java and C++ do. Also, the fact that you need to write 

less and get more things done. 

5.IOT Opportunities 

Since Python forms the basis of new platforms like RaspberryPi, it finds the future 

bright for the Internet of Things. This is a way to connect the language with the real 

world. 

6.Simple and Easy 

When working with Java, you may have to create a class to print ‘HelloWorld’. But in 

Python, just a print statement will do. It is also quite easy to learn, understand, and 

code. This is why when people pickup Python, they have a hard time adjusting to other 

moreover base languages like Java. 
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7.Improved Productivity 

            The language’s simplicity and extensive libraries render programmers more 

productive than languages like Java and C++ do. Also, the fact that you need to write 

less and get more things done. 

  8.Readable 

Because it is not such a verbose language, reading Python is much like reading English. 

This is the reason why it is so easy to learn, understand, and code. It also does not need 

curly braces to define blocks, and indentation is mandatory. These further aids the 

readability of the code. 

Disadvantages of Python 

 

So far, we’ve seen why Python is a great choice for your project. But if you choose it, 

you should be aware of its consequences as well. Let’s now see the downsides of 

choosing Python over another language. 

1.Speed Limitations 

We have seen that Python code is executed line by line. But since Python is interpreted, 

it often results in slow execution. This, however, isn’t a problem un less speed is a 

focal point for the project. In other words, unless highspeed is a requirement, the 

benefits offered by Python are enough to distract us from its speed limitations. 

2.Weak in Mobile Computing and Browsers 

While it serves as an excellent server-side language, Python is much rarely seen on the 

client side. Besides that, it is rarely ever used to implement smart phone based 

applications. One such application is called Carbonnelle. 

3.Design Restrictions 

As you know, Python is dynamically typed. This means that you don’t need to declare 

the type of variable while writing the code. It uses duck-typing. But wait, what’s that? 

Well, it just means that if it looks like a duck, it must be a duck. While this is easy on 

the programmers during coding, it can raise run-time errors. 

4.Under developed Database Access Layers 

Compared to more widely used technologies like JDBC (Java Data Base Connectivity) 

and ODBC (Open Data Base Connectivity), Python’s database access layers are a bit 

underdeveloped. Consequently, it is less often applied in huge enterprises. 
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 History of Python 

 

      What do the alphabet and the programming language Python have in common? 

Right, both start with ABC. If we are talking about ABC in the Python context, it's 

clear that the programming language ABC is meant. ABC isa general-purpose 

programming language and programming environment, which had been developed in 

the Netherlands, Amsterdam, at the CWI (Centrum Wickenden & Informatica). The 

greatest achievement of ABC was to influence the design of Python. Python was 

conceptualized in the late 1980s. Guid ovan Rossum worked that time in a project at 

the CWI, called Amoeba, a distributed operating system. In an interview with Bill 

Venners1, Guido van Rossum said: "In the early1980s, I worked as an implementer on 

a teambuilding a language called ABC at Centrum voor Wickenden Informatica 

(CWI).  

      I try to mention ABC's influence because I'm indebted to everything I learned 

during that project and to the people who worked on it. "Later on in the same Interview, 

Guido van Rossum continued: "I remembered all my experience and some of my 

frustration with A BC. I decided to try to design a simple scripting language that 

possessed some of ABC's better properties, but without its problems. So, I started 

typing. I created a simple virtual machine, as impel parser, and a simple runtime. I 

made my own version of the various ABC parts that I liked. I created a basic syntax, 

used indentation for statement grouping instead of curly braces or begin-end blocks, 

and developed a small number of powerful data types: a hash table (or dictionary, as 

we call it), a list, strings, and numbers." 

Python Development Steps 

 

     Guido Van Rossum published the first version of Python code (version 0.9.0) at alt 

sources in February1991. This release included already exception handling, functions, 

and the core data types of lists, dict, str and others. It was also object oriented and had 

a module system. Python version 1.0 was released in January 1994. The major new 

features included in this release were the functional programming tools lambda, map, 

filter and reduce, which Guido Van Rossum ever liked. Six and a half years later in 

October 2000, Python2.0 was introduced. 
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The rules for ordering comparisons have been simplified. E.g., a heterogeneous list 

cannot be sorted, because all the elements of a list must be comparable to each other. 

There is only one integer type left, i.e., int. long is int as well. 

 

Purpose 

 

     We demonstrated that our approach enables successful segmentation of intra-retinal 

layers even with low-quality images containing speckle noise, low contrast, and 

different intensity ranges throughout with the assistance of the ANIS feature. 

 

Python 

 

     Python is an interpreted high-level programming language for general purpose 

programming. Created by Guido van Rossomando first released in 1991, Python has 

a design philosophy that emphasizes code readability, notably using significant 

whitespace. 

Python features a dynamic type system and automatic memory management. It 

supports multiple programming paradigms, including object-oriented, imperative, 

functional and procedural, and has a large and comprehensive standard library. 

     Python is Interpreted: Python is processed at runtime by the interpreter. You do not 

need to compile your program before executing it. This is similar to PERL and PHP. 

Python is Interactive: you can actually sit at a Python prompt and interact with the 

interpreter directly to write your programs. 

     Python also acknowledges that speed of development is important. Readable and 

terse code is part of this, and so is access to powerful constructs that avoid tedious 

repetition of code. Maintainability also ties into this may be an all but useless metric, 

but it does say something about how much code you have to scan, read and/or 

understand to troubleshoot problems or tweak behaviors.  

     This speed of development, the ease with which a programmer of other languages 

can pick up basic Python skills and the huge standard library is key to another area 

where Python excels. All its tools have been quick to implement, saved a lot of time, 

and several of them have later been patched and updated by people with no Python 

background - without breaking. 
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Modules Used in Project Tensor Flow 

NumPy 

 

     NumPy is a powerful Python library for numerical computing, providing efficient 

handling of large multi-dimensional arrays and matrices. It offers a high-performance 

and array object, enabling fast computations with vectorized operations and 

broadcasting, which eliminates the need for explicit loops. NumPy supports various 

mathematical functions, including linear algebra, statistical operations, and random 

number generation. It seamlessly integrates with libraries like SciPy, Pandas, and 

TensorFlow, making it essential for data science and machine learning. 

Pandas 

 

     Pandas is an open-source Python Library providing high-performance data 

manipulation and analysis tool using its powerful data structures. Python was majorly 

used for data munging and preparation. It had very little contribution towards data 

analysis. Pandas solved this problem. Using Pandas, we can accomplish five typical 

steps in the processing and analysis of data, regardless of the origin of data load, 

prepare, manipulate, model, and analyze. Python with Pandas is used in a wide range 

of fields including academic and commercial domains including finance, economics, 

Statistics, analytics, etc. 

               Matplotlib 

 

     Matplotlib is a Python 2D plotting library which produces publication quality 

figures in a variety of hardcopy formats and interactive environments across platforms. 

Matplotlib can be used in Python scripts, the Python and IPython shells, the Jupiter 

Notebook, web application servers, and four graphical user interface tool kits. 

Matplotlib tries to make easy things easy and hard things possible. You can generate 

plots, histograms, power spectra, bar charts, error charts, scatterplots, etc., with just a 

few lines of code. For examples, see the sample plots and thumbnail gallery. 

     For simple plotting the pilot module provides a MATLAB-like interface, 

particularly when combined with Python. For the power user, you have full control of 

line styles, font properties, axes properties, etc., via an object-oriented interface or via 

a set of functions familiar to MATLAB users. 
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Scikit– learn 

 

     Scikit-learn provides a range of supervised and unsupervised learning algorithms 

via a consistent interface in Python. It is licensed under a permissive simplified BSD 

license and is distributed under many Linux distributions, encouraging academic and 

commercial use.  

     Python is an interpreted high level programming language for general-purpose 

programming. Created by Guido van Rossomando first released in 1991, Python has 

a design philosophy hat emphasizes code readability, notably using significant 

whitespace. 

     Python features a dynamic type system and automatic memory management. It 

supports multiple programming paradigms, including object-oriented, imperative, 

functional and procedural, and has a large and comprehensive standard library. 

      Python is Interpreted − Python is processed at runtime by the interpreter. You do 

not need to compile your program before executing it. This is similar to PERL and 

PHP. Python is Interactive − you can actually sit at a Python prompt and interact. 

     Python also acknowledges that speed of development is important. Readable and 

terse code is part of this, and so is access to powerful constructs that avoid tedious 

repetition of code. Maintainability also ties into this may be an all but useless metric, 

but it does say something about how much code you have to scan, read and/or 

understand to troubleshoot problems or tweak behaviors. This speed of development, 

the ease with which a programmer of other languages can pick up basic Pythons kills 

and the huge standard library is key to another area where Python excels. All its tools 

have been quick to implement, saved a lot of time, and several of them have later been 

patched and updated by people with no Python background - without breaking. 

 

Install Python Step-by-Step in Windows and Mac 

 

     Python a versatile programming language doesn’t come pre-installed on your 

computer devices. Python was first released in the year 1991 and until today it is a 

very popular high- level programming language. Its style philosophy emphasizes code 

readability with its notable use of great whitespace. 
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How to Install Python on Windows and Mac 

 

     There have been several updates in the Python version over the years. The question 

is how to install Python? It might be confusing for the beginner who is willing to start 

learning Python but this tutorial will solve your query. The latest or the newest version 

of Python is version 3.7.4 or in other words, it is Python 3. 

     Before you start with the installation process of Python. First, you need to know 

about your System Requirements. Based on your system type i.e., operating system 

and based processor, you must download the python version. My system type is a 

Windows 64-bit operating system. 

     So, the steps below are to install python version3.7.4 on Windows7 device or to 

install Python 3. Download the Python Cheat sheet here. The steps on how to install 

Python on Windows 10, 8 and 7 are divided into 4parts to help understand better. 

 Download the Correct version into the system 

 

 Step1: Go to the official site to download and install python using Google Chrome or 

any other web browser. OR Click on the following link: https://www.python.org 

 

 

 

 

 

 

 

 

http://www.python.org/
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Now, check for the latest and the correct version for your operating system. Step 2: 

Click on the Download Tab. 

 

 

 

Step3: You can either select the Download Python for windows 3.7.4 button in Yellow 

Color or you can scroll further down and click on download with respective to their 

version. Here, we are downloading the most recent python version for windows 3.7.4 
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Step4: Scroll down the page until you find the Files option. 

 

Step5: Here you see a different version of python along with the operating system. 

 

 
● To download Windows 32-bit python, you can select any one from the three options: 

Windowsx86 embeddable zip file, Windowsx86 executable installer or Windowsx86 

web-based installer. 

● To download Windows 64-bit python, you can select any one from the three options: 

Windows x86-64 embeddable zip file, Windows x86-64 executable installer or Windows 

x86-64 web-based installer. 
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Here we will install Windowsx86-64 web-based installer. Here your first part 

regarding which version of python is to be downloaded is completed. Now we move a 

head with the second part in installing python i.e., Installation 

Note: To know the changes or updates that are made in the version you can click on 

the Release Note Option. 

Installation of Python 

 

Step1:Go to Download and Open the downloaded python version to carry out the 

installation process. 

 

 
Step2: Before you click on Install Now, make sure to put a tick on Add Python3.7 to 

PATH. 

  Step3: Click on Install NOW After the installation is successful. 
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With these above three steps on python installation, you have successfully and 

correctly installed Python. Now is the time to verify the installation. 

Note: The installation process might take a couple of minutes. Verify the Python 

Installation 

Step1: Click on Start 

 

Step2: In the Windows Run Command, type “cmd”. 
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Step3: Open the Command prompt option. 

 

Step4: Let us test whether the python is correctly installed. Type python–V and press 

Enter. 

 

 
Step5: You will get the answer as 3.7.4 

 

Note: If you have any of the earlier versions of Python already installed. You must 

first uninstall the earlier version and then install the new one. 

Check how the Python IDLE works Step 1: Click on Start 

Step2: In the Windows Run command, type “python idle”. 

 

 
Step3: Click on IDLE (Python3.7 64-bit) and launch the program 

 

Step 4: To go ahead with working in IDLE you must first save the file. Click on File 

> Click on Save 
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Step 5: Name the file and save as type should be Python files. Click on SAVE. Here I 

have named the files as Hey World. 

Step6: Now for e.g., enter print (“Hey World”) and Press Enter. 

 

 
You will see that the command given is launched. With this, we end our tutorial on 

how to install Python. You have learned how to download python for windows into 

your respective operating system. 

Note: Unlike Java, Python does not need semicolons at the end of the statements 

otherwise it won’t work.
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6.SYSTEM DESIGN 
 

6.1.Architecture Design 

 

     The process begins with importing essential libraries that are necessary for 

executing various machine learning tasks. These libraries may include NumPy for 

numerical computations, Pandas for data manipulation, Matplotlib for visualization, 

and frameworks like TensorFlow or Scikit-learn for model building. Importing these 

libraries sets up the environment by providing access to all required functions and tools 

needed throughout the model development lifecycle. 

     After setting up the environment, the next step is to load the dataset that contains 

the input data for the machine learning model. This dataset can be in the form of 

structured data, images, or any other relevant format, depending on the problem being 

addressed. For applications like plant health detection, the dataset may consist of 

categorized images of healthy and diseased plants, which serve as the foundation for 

training and evaluating the model. 

     Preprocessing the data is a critical step that ensures the quality and suitability of the 

data for the learning process. This phase may involve removing inconsistencies, 

handling missing values, normalizing features, and converting raw inputs into formats 

suitable for model consumption. In the case of image data, preprocessing often includes 

resizing, enhancing, and augmenting the images to improve the model’s ability to 

generalize across diverse conditions. 

     Once the data is ready, the next phase involves designing a machine learning model. 

This includes choosing the appropriate algorithm and structuring the model 

architecture, such as the number of layers and activation functions. The model is then 

compiled with chosen parameters like the optimizer and loss function and trained on 

the preprocessed data. Through this process, the model learns to recognize patterns that 

distinguish between healthy and diseased plants. 
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 In the final step, the trained model is used to predict results on new or unseen data. 

This involves feeding the input data into the model and interpreting the output, which 

typically classifies the input as healthy or diseased. The results are then analyzed to 

assess the model’s performance and reliability. This predictive capability is valuable 

for real-world applications like automated agricultural monitoring and smart farming 

systems. 

 

                                      Fig 6.1 Architecture Diagram 
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        6.2.UML Diagrams 

UML stands for Unified Modeling Language. UML is a standardized general purpose 

modeling language in the field of object-oriented software engineering. The standard 

is managed, and was created by, the Object Management Group. The Unified Modeling 

Language is a standard language for specifying, Visualization, Constructing and 

documenting the artifacts of software system, as well as for business modeling and 

other non-software systems. The UML represents a collection of best engineering 

practices that have proven successful in the modeling of large and complex systems. 

 

GOALS: The Primary goals in the design of the UML are as follows: 1. Provide users a 

ready- to-use, expressive visual modeling Language so that they can develop and 

exchange meaningful models. 2. Provide extendibility and specialization mechanisms 

to extend the core concepts. 3. Be independent of particular programming languages 

and development process. 4. Provide a formal basis for understanding the modeling 

language. 5. Encourage the growth of OO tools market. 6. Support higher level 

development concepts such as collaborations, frameworks, patterns and components. 

7. Integrate best practices. 

 The Unified Modeling Language (UML) was designed with several primary goals in 

mind to serve as an effective visual modeling tool. First and foremost, UML aims to 

provide users with a ready-to-use, expressive visual modeling language that enables 

them to develop and exchange meaningful models efficiently. It offers extensibility and 

specialization mechanisms that allow for the expansion of core concepts to 

accommodate various modeling needs. Another key objective is maintaining 

independence from specific programming languages and development processes, 

ensuring versatility across different technical environments. UML also strives to 

establish a formal basis for understanding modeling concepts, promoting consistency. 
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Use case diagram 

      A use case diagram in the Unified Modeling Language (UML) is a type of 

behavioral diagram defined by and created from a Use-case analysis. Its purpose is to 

present a graphical overview of the functionality provided by a system in terms of 

actors, their goals (represented as use cases), and any dependencies between those use 

cases. The main purpose of a use case diagram is to show what system functions are 

performed for which actor. Roles of the actors in the system can be depicted. 

 

        

 

                         Fig 6.2.1 Use case diagram 
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Class diagram 

In software engineering, a class diagram in the Unified Modeling Language (UML) is 

a type of static structure diagram that describes the structure of a system by showing 

the system's classes, their attributes, operations (or methods), and the relationships 

among the classes. It explains which class contains information. 

 

 

 

 

 

 

     Fig no: 6.2.2 Class diagram 

 

 

 

 

      

. 
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Sequence Diagram 

                 A sequence diagram in Unified Modeling Language (UML) is a kind of interaction 

diagram that shows how processes operate with one another and in what order. It is a 

construct of a Message Sequence Chart. Sequence diagrams are sometimes called 

event diagrams, event scenarios, and timing diagrams.                  

 

 

 

 
 

Fig 6.2.3 Sequence diagram 
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Activity diagram 

Activity diagrams are graphical representations of workflows of stepwise activities and 

actions with support for choice, iteration and concurrency. In the Unified Modeling 

Language, activity diagrams can be used to describe the business and operational step-

by step workflows of components in a system. An activity diagram shows the overall 

flow of control. 

 

 

 

              Fig 6.2.4 Activity Diagram  
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7.IMPLEMENTATION 

 

7.1.Project Modules  
 

1.Data Acquisition Module 

This module is responsible for collecting plant images using drones, high-resolution 

cameras, or mobile devices. It ensures that a wide variety of images are gathered under 

different lighting, angles, and environmental conditions to build a comprehensive dataset. 

 

2.Data Preprocessing Module 

This module handles image cleaning, resizing, enhancement, normalization, and 

augmentation. It prepares the raw images for feature extraction and model training by 

ensuring uniformity and improving the quality of inputs. 

 

3.Feature Extraction Module 

Using Convolutional Neural Networks (CNN), this module extracts relevant features from 

the preprocessed images. These features help the model distinguish between healthy and 

diseased plants based on patterns in the leaf texture, color, and shape. 

 

4.Model Training Module 

This module involves designing, training, and validating the machine learning model (e.g., 

using the VGG16 architecture). It uses the extracted features to teach the model how to 

classify plant health conditions accurately. 

 

5.Prediction and Classification Module 

Once trained, this module uses the model to predict the health status of new plant images. 

It classifies them as “healthy” or into various disease categories and displays the results 

accordingly. 

 

6.User Interface Module 

This module provides a front-end interface (web or mobile) where users like farmers or 

agricultural officers can upload images, view results, and interact with the system in a user-

friendly manner. 
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7.2. Implementation Description 
 

      The implementation of the project begins with the data acquisition phase, which 

involves collecting a diverse set of plant images from the field. High-resolution cameras 

mounted on drones or mobile devices are used to capture images of crops under varying 

conditions, angles, and lighting. The images are then stored in a structured format and 

labeled accordingly — whether they depict healthy plants or show signs of disease. This 

labeled data is critical for training a supervised machine learning model. 

 

     Once the data is collected, it undergoes preprocessing to make it suitable for model 

training. This includes resizing images to a uniform dimension, converting them to 

arrays, removing noise, and applying enhancement techniques like sharpening and 

brightness adjustments. Image augmentation methods such as rotation, flipping, and 

zooming are also applied to increase the diversity of the training set and help the model 

generalize better. This step ensures that the data fed into the neural network is clean, 

consistent, and ready for feature extraction. 

 

     The next step is feature extraction and model design, where a Convolutional Neural 

Network (CNN) is employed to learn important features from the images. In this project, 

the VGG16 architecture is utilized due to its proven effectiveness in image classification 

tasks. The CNN layers automatically detect visual patterns such as spots, discoloration, 

or texture irregularities that are indicative of plant diseases. These features are passed 

through pooling and activation layers, and finally into fully connected layers that 

prepare the model for classification. 

 

     The training phase involves feeding the preprocessed and labeled data into the 

designed CNN model. The model is trained over several epochs with defined batch 

sizes, loss functions, and optimizers like Adam or SGD. During this phase, the model 

continuously adjusts its weights to minimize prediction errors. Validation data is used 

to monitor performance and prevent overfitting. Once training is complete, the model is 

saved and used to make predictions on new, unseen data. 
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7.3. Source Code 

 
import os 

 

from flask import Flask, redirect, render_template, request from PIL import Image 

import torchvision.transforms.functional as TF import CNN 

import numpy as np import torch 

import pandas as pd 

 

disease_info = pd.read_csv('disease_info.csv' , encoding='cp1252') supplement_info = 

pd.read_csv('supplement_info.csv',encoding='cp1252') model = CNN.CNN(39) 

model.load_state_dict(torch.load("plant_disease_model_1_latest.pt")) model.eval() 

def prediction(image_path): 

 

image = Image.open(image_path) image = image.resize((224, 224)) input_data = 

TF.to_tensor(image) 

input_data = input_data.view((-1, 3, 224, 224)) 

 

output = model(input_data) 

  

output = output.detach().numpy() index = np.argmax(output) 

return index 

 

app = Flask( name ) @app.route('/') 

def home_page(): 

 

return render_template('home.html') @app.route('/contact') 

def contact(): 

 

return render_template('contact-us.html') @app.route('/index') 

def ai_engine_page(): 

 

return render_template('index.html') @app.route('/mobile-device') 

def mobile_device_detected_page(): 
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return render_template('mobile-device.html') @app.route('/submit', methods=['GET', 

'POST']) def submit(): 

if request.method == 'POST': image = request.files['image'] 

  

filename = image.filename 

 

file_path = os.path.join('static/uploads', filename) image.save(file_path) 

print(file_path) 

 

pred = prediction(file_path) 

 

title = disease_info['disease_name'][pred] description =disease_info['description'][pred] 

prevent = disease_info['Possible Steps'][pred] image_url = 

disease_info['image_url'][pred] 

supplement_name = supplement_info['supplement name'][pred] supplement_image_url = 

supplement_info['supplement image'][pred] supplement_buy_link = 

supplement_info['buy link'][pred] 

return render_template('submit.html' , title = title , desc = description , prevent = prevent , 

 

image_url = image_url , pred = pred ,sname = supplement_name , simage = 

supplement_image_url , buy_link = supplement_buy_link) 

 

@app.route('/market', methods=['GET', 'POST']) def market(): 

return render_template('market.html', supplement_image = 

list(supplement_info['supplement image']), 

 

supplement_name = list(supplement_info['supplement name']), disease = 

list(disease_info['disease_name']), buy = list(supplement_info['buy link'])) 

  

if   name == '  main  ': 

app.run(debug=True) click==7.1.2 Flask==1.1.2 gunicorn==20.1.0 itsdangerous==1.1.0 

Jinja2==2.11.3 

MarkupSafe==1.1.1 numpy==1.20.2 pandas==1.2.4 Pillow==8.2.0 

python-dateutil==2.8.1 pytz==2021.1 six==1.15.0 

-f https://download.pytorch.org/whl/torch_stable.html torch==1.8.1+cpu 
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-f https://download.pytorch.org/whl/torch_stable.html torchvision==0.9.1+cpu 

typing-extensions==3.7.4.3 Werkzeug==1.0.1 

  

Import Dependencies import numpy as np import pandas as pd 

import matplotlib.pyplot as plt import torch 

from torchvision import datasets, transforms, models # datsets , transforms from 

torch.utils.data.sampler import SubsetRandomSampler 

import torch.nn as nn 

 

import torch.nn.functional as F from datetime import datetime 

%load_ext nb_black 

 

<IPython.core.display.Javascript object> Import Dataset 

Dataset Link (Plant Vliiage Dataset ): https://data.mendeley.com/datasets/tywbtsjrjv/1 

transform = transforms.Compose( 

[transforms.Resize(255), transforms.CenterCrop(224), transforms.ToTensor()] 

 

) 

 

<IPython.core.display.Javascript object> 

 

dataset = datasets.ImageFolder("Dataset", transform=transform) 

  

<IPython.core.display.Javascript object> dataset 

Dataset ImageFolder 

 

Number of datapoints: 61486 Root Location: Dataset Transforms (if any): Compose( 

Resize(size=255, interpolation=PIL.Image.BILINEAR) CenterCrop(size=(224, 224)) 

ToTensor() 

 

) 

 

Target Transforms (if any): None 

 

<IPython.core.display.Javascript object> indices = list(range(len(dataset))) 
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<IPython.core.display.Javascript object> 

 

split = int(np.floor(0.85 * len(dataset))) # train_size 

 

<IPython.core.display.Javascript object> validation = int(np.floor(0.70 * split)) # 

validation 

<IPython.core.display.Javascript object> print(0, validation, split, len(dataset)) 

0 36584 52263 61486 

  

<IPython.core.display.Javascript object> print(f"length of train size :{validation}") 

print(f"length of validation size :{split - validation}") print(f"length of test size 

:{len(dataset)-validation}") length of train size :36584 

length of validation size :15679 length of test size :24902 

<IPython.core.display.Javascript object> np.random.shuffle(indices) 

<IPython.core.display.Javascript object> 

 

Split into Train and Test 

 

train_indices, validation_indices, test_indices = ( indices[:validation], 

indices[validation:split], indices[split:], 

) 

 

<IPython.core.display.Javascript object> train_sampler = 

SubsetRandomSampler(train_indices) 

validation_sampler = SubsetRandomSampler(validation_indices) test_sampler = 

SubsetRandomSampler(test_indices) 

  

<IPython.core.display.Javascript object> targets_size = len(dataset.class_to_idx) 

<IPython.core.display.Javascript object> Model 

Convolution Aithmetic Equation : (W - F + 2P) / S + 1 W = Input Size 

F = Filter Size 

 

P = Padding Size S = Stride Transfer Learning 

# model = models.vgg16(pretrained=True) # for params in model.parameters(): 

# params.requires_grad = False # model 
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# n_features = model.classifier[0].in_features # n_features 

# model.classifier = nn.Sequential( # nn.Linear(n_features, 1024), 

# nn.ReLU(), 

 

# nn.Dropout(0.4), 

  

# nn.Linear(1024, targets_size), # ) 

# model 

 

Original Modeling class CNN(nn.Module): 

def  init (self, K): super(CNN, self). init () 

self.conv_layers = nn.Sequential( # conv1 

nn.Conv2d(in_channels=3, out_channels=32, kernel_size=3, padding=1), nn.ReLU(), 

nn.BatchNorm2d(32), 

 

nn.Conv2d(in_channels=32, out_channels=32, kernel_size=3, padding=1), nn.ReLU(), 

nn.BatchNorm2d(32), nn.MaxPool2d(2), 

# conv2 

 

nn.Conv2d(in_channels=32, out_channels=64, kernel_size=3, padding=1), nn.ReLU(), 

nn.BatchNorm2d(64), 

  

nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, padding=1), nn.ReLU(), 

nn.BatchNorm2d(64), nn.MaxPool2d(2), 

# conv3 

 

nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, padding=1), nn.ReLU(), 

nn.BatchNorm2d(128), 

 

nn.Conv2d(in_channels=128, out_channels=128, kernel_size=3, padding=1), nn.ReLU(), 

nn.BatchNorm2d(128), nn.MaxPool2d(2), 

# conv4 

 

nn.Conv2d(in_channels=128, out_channels=256, kernel_size=3, padding=1), nn.ReLU(), 

nn.BatchNorm2d(256), 
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nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3, padding=1), nn.ReLU(), 

nn.BatchNorm2d(256), nn.MaxPool2d(2), 

  

) 

 

self.dense_layers = nn.Sequential( nn.Dropout(0.4), nn.Linear(50176, 1024), nn.ReLU(), 

nn.Dropout(0.4), nn.Linear(1024, K), 

) 

 

def forward(self, X): 

 

out = self.conv_layers(X) # Flatten 

out = out.view(-1, 50176) # Fully connected 

out = self.dense_layers(out) return out 

<IPython.core.display.Javascript object> 

 

device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print(device) 

cpu<IPython.core.display.Javascript object> device = "cpu" 

  

<IPython.core.display.Javascript object> model = CNN(targets_size) 

<IPython.core.display.Javascript object> model.to(device) 

CNN( 

 

(dense_layers): Sequential( 

 

(0) : Dropout(p=0.4, inplace=False) 

 

(1) : Linear(in_features=50176, out_features=1024, bias=True) 

 

(2) : ReLU() 

 

(3) : Dropout(p=0.4, inplace=False) 

 

(4) : Linear(in_features=1024, out_features=39, bias=True) 
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) 

 

) 

 

<IPython.core.display.Javascript object> from torchsummary import summary 

<IPython.core.display.Javascript object> 

 

criterion = nn.CrossEntropyLoss() # this include softmax + cross entropy loss optimizer = 

torch.optim.Adam(model.parameters()) 

<IPython.core.display.Javascript object> Batch Gradient Descent 

  

def batch_gd(model, criterion, train_loader, test_laoder, epochs): train_losses = 

np.zeros(epochs) 

test_losses = np.zeros(epochs) for e in range(epochs): 

t0 = datetime.now() train_loss = [] 

for inputs, targets in train_loader: 

 

inputs, targets = inputs.to(device), targets.to(device) optimizer.zero_grad() 

output = model(inputs) 

 

loss = criterion(output, targets) 

 

          train_loss.append(loss.item()) # torch to numpy world loss.backward() 

optimizer.step() 

 

train_loss = np.mean(train_loss) validation_loss = [] 

for inputs, targets in validation_loader: 

 

inputs, targets = inputs.to(device), targets.to(device) output = model(inputs) 

  

loss = criterion(output, targets) validation_loss.append(loss.item()) # torch to numpy 

world 

validation_loss = np.mean(validation_loss) train_losses[e] = train_loss 

validation_losses[e] = validation_loss 
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dt = datetime.now() - t0 print( 

f"Epoch : {e+1}/{epochs} Train_loss:{train_loss:.3f} Test_loss:{validation_loss:.3f} 

Duration:{dt}" 

) 

 

          return train_losses, validation_losses 

 

<IPython.core.display.Javascript object> device = "cpu" 

<IPython.core.display.Javascript object> batch_size = 64 

train_loader = torch.utils.data.DataLoader( 

 

dataset, batch_size=batch_size, sampler=train_sampler 

 

) 

 

test_loader = torch.utils.data.DataLoader( 

 

dataset, batch_size=batch_size, sampler=test_sampler 

  

) 

 

validation_loader = torch.utils.data.DataLoader( 

 

dataset, batch_size=batch_size, sampler=validation_sampler 

 

) 

 

<IPython.core.display.Javascript object> train_losses, validation_losses = batch_gd( 

model, criterion, train_loader, validation_loader, 5 

 

) 

 

<IPython.core.display.Javascript object> 

 

Save the Model 
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# torch.save(model.state_dict() , 'plant_disease_model_1.pt') 

 

<IPython.core.display.Javascript object> 

 

Load Model targets_size = 39 

model = CNN(targets_size) 

model.load_state_dict(torch.load("plant_disease_model_1_latest.pt")) model.eval() 

CNN( 

 

# %matplotlib notebook Plot the loss 

  

plt.plot(train_losses , label = 'train_loss') plt.plot(validation_losses , label = 

'validation_loss') plt.xlabel('No of Epochs') 

plt.ylabel('Loss') plt.legend() plt.show() 

Accuracy 

 

def accuracy(loader): n_correct = 0 

n_total = 0 

 

for inputs, targets in loader: 

 

inputs, targets = inputs.to(device), targets.to(device) outputs = model(inputs) 

_, predictions = torch.max(outputs, 1) 

 

n_correct += (predictions == targets).sum().item() n_total += targets.shape[0] 

acc = n_correct / n_total return acc 

<IPython.core.display.Javascript object> train_acc = accuracy(train_loader) 

  

test_acc = accuracy(test_loader) validation_acc = accuracy(validation_loader) print( 

f"Train  Accuracy  :  {train_acc}\nTest  Accuracy  :  {test_acc}\nValidation  Accuracy  : 

{validation_acc}" 

 

) 
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Train Accuracy : 96.7 Test Accuracy : 98.9 

Validation Accuracy : 98.7 

 

<IPython.core.display.Javascript object> 

 

Single Image Prediction transform_index_to_disease = dataset.class_to_idx 

NameError Traceback (most recent call last) 

 

<ipython-input-9-0e3bd74576a2> in <module> 

 

----> 1 transform_index_to_disease = dataset.class_to_idx NameError: name 'dataset' is 

not defined 

<IPython.core.display.Javascript object> transform_index_to_disease = dict( 

[(value, key) for key, value in transform_index_to_disease.items()] 

 

) # reverse the index 

 

NameError Traceback (most recent call last) 

  

<ipython-input-10-1fe109ff4fe8> in <module> 1 transform_index_to_disease = dict( 

----> 2 [(value, key) for key, value in transform_index_to_disease.items()] 3 ) # reverse 

the index 

NameError: name 'transform_index_to_disease' is not defined 

 

<IPython.core.display.Javascript object> 

 

data = pd.read_csv("disease_info.csv", encoding="cp1252") from PIL import Image 

import torchvision.transforms.functional as TF def single_prediction(image_path): 

image = Image.open(image_path) image = image.resize((224, 224)) input_data = 

TF.to_tensor(image) 

input_data = input_data.view((-1, 3, 224, 224)) output = model(input_data) 

output = output.detach().numpy() index = np.argmax(output) print("Original : ", 

image_path[12:-4]) 

pred_csv = data["disease_name"][index] print(pred_csv) 
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single_prediction("test_images/Apple_ceder_apple_rust.JPG") Original : 

Apple_ceder_apple_rust 

Apple : Cedar rust Wrong Prediction 

single_prediction("test_images/Apple_scab.JPG") Original : Apple_scab 

Tomato : Septoria Leaf Spot single_prediction("test_images/Grape_esca.JPG") Original : 

Grape_esca 

Grape : Esca | Black Measles single_prediction("test_images/apple_black_rot.JPG") 

Original : apple_black_rot 

Pepper bell : Healthy single_prediction("test_images/apple_healthy.JPG") Original : 

apple_healthy 

Apple : Healthy single_prediction("test_images/background_without_leaves.jpg") 

Original : background_without_leaves 

Background Without Leaves single_prediction("test_images/blueberry_healthy.JPG") 

  

Original : blueberry_healthy Blueberry : Healthy 

single_prediction("test_images/cherry_healthy.JPG") Original : cherry_healthy 

Cherry : Healthy single_prediction("test_images/cherry_powdery_mildew.JPG") Original 

: cherry_powdery_mildew 

Cherry : Powdery Mildew single_prediction("test_images/corn_cercospora_leaf.JPG") 

Original : corn_cercospora_leaf 

Corn : Cercospora Leaf Spot | Gray Leaf Spot 

single_prediction("test_images/corn_common_rust.JPG") Original : corn_common_rust 

Corn : Common Rust single_prediction("test_images/corn_healthy.jpg") Original : 

corn_healthy 

Corn : Healthy  

 

single_prediction("test_images/corn_northen_leaf_blight.JPG") Original : 

corn_northen_leaf_blight 

Corn : Northern Leaf Blight 

  

single_prediction("test_images/grape_black_rot.JPG") Original : grape_black_rot 

Grape : Black Rot single_prediction("test_images/grape_healthy.JPG") Original : 

grape_healthy 

Grape : Healthy single_prediction("test_images/grape_leaf_blight.JPG") Original : 

grape_leaf_blight 
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Grape : Leaf Blight | Isariopsis Leaf Spot 

single_prediction("test_images/orange_haunglongbing.JPG") Original : 

orange_haunglongbing 

Orange : Haunglongbing | Citrus Greening 

single_prediction("test_images/peach_bacterial_spot.JPG") Original : 

peach_bacterial_spot 

Peach : Bacterial Spot single_prediction("test_images/peach_healthy.JPG") Original : 

peach_healthy 

Peach : Healthy single_prediction("test_images/pepper_bacterial_spot.JPG") Original : 

pepper_bacterial_spot 

  

Pepper bell : Healthy single_prediction("test_images/pepper_bell_healthy.JPG") Original 

: pepper_bell_healthy 

Pepper bell : Healthy single_prediction("test_images/potato_early_blight.JPG") Original : 

potato_early_blight 

Potato : Early Blight single_prediction("test_images/potato_healthy.JPG") Original : 

potato_healthy 

Potato : Healthy single_prediction("test_images/potato_late_blight.JPG") Original : 

potato_late_blight 

Potato : Late Blight single_prediction("test_images/raspberry_healthy.JPG") Original : 

raspberry_healthy 

Raspberry : Healthy single_prediction("test_images/soyaben healthy.JPG") Original : 

soyaben healthy 

Soybean : Healthy single_prediction("test_images/potato_late_blight.JPG") 

  

Original : potato_late_blight Potato : Late Blight 

single_prediction("test_images/squash_powdery_mildew.JPG") Original : 

squash_powdery_mildew 

Squash : Powdery Mildew single_prediction("test_images/starwberry_healthy.JPG") 

Original : starwberry_healthy 

Strawberry : Healthy single_prediction("test_images/starwberry_leaf_scorch.JPG") 

Original : starwberry_leaf_scorch 

Strawberry : Leaf Scorch single_prediction("test_images/tomato_bacterial_spot.JPG") 

Original : tomato_bacterial_spot 

Tomato : Early Blight single_prediction("test_images/tomato_early_blight.JPG") 
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Original : tomato_early_blight 

Tomato : Early Blight single_prediction("test_images/tomato_healthy.JPG") Original : 

tomato_healthy 

Tomato : Healthy 

  

single_prediction("test_images/tomato_late_blight.JPG") Original : tomato_late_blight 

Tomato : Late Blight single_prediction("test_images/tomato_leaf_mold.JPG") Original : 

tomato_leaf_mold 

Tomato : Leaf Mold single_prediction("test_images/tomato_mosaic_virus.JPG") Original 

: tomato_mosaic_virus 

Tomato : Mosaic Virus single_prediction("test_images/tomato_septoria_leaf_spot.JPG") 

Original : tomato_septoria_leaf_spot 

Tomato : Septoria Leaf Spot 

single_prediction("test_images/tomato_spider_mites_two_spotted_spider_mites.JPG") 

Original : tomato_spider_mites_two_spotted_spider_mites 

Tomato : Spider Mites | Two-Spotted Spider Mite 

single_prediction("test_images/tomato_target_spot.JPG") Original : tomato_target_spot 

Tomato : Target Spot 

single_prediction("test_images/tomato_yellow_leaf_curl_virus.JPG") Original : 

tomato_yellow_leaf_curl_virus 

  

Tomato : Yellow Leaf Curl Virus 
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8.SYSTEM TESTING 

 

8.1.System testing 

System Testing is conducted to verify that the entire AI-based plant health detection 

system works as a cohesive unit. This includes checking the overall functionality from 

image input to disease prediction output. The goal is to ensure that the system 

accurately processes plant images, detects disease conditions, and presents results to 

the user with minimal error. Functional, performance, and security aspects are 

validated to confirm that the system meets the defined requirements and performs 

effectively under expected operating conditions. 

8.2.Module testing 

Module Testing involves testing individual components or modules of the system 

separately to ensure each performs its specific task correctly. For example, the image 

preprocessing module is tested to confirm it properly resizes, cleans, and augments the 

data. Similarly, the model training module is tested for its ability to train on the dataset 

and converge to acceptable accuracy levels. This phase ensures that each module 

functions as intended before they are combined into a complete system. 

 8.3. Integration testing 

Integration Testing focuses on testing the interaction between different modules once 

they are integrated. It verifies whether data is being passed correctly from one module 

to another, such as from preprocessing to feature extraction, and then to the model for 

prediction. This testing ensures that the modules communicate seamlessly, and no data 

is lost or misinterpreted during the transitions. It also checks the functionality of the 

pipeline as a whole. 

 8.4. Acceptance testing 

Acceptance Testing is the final stage of testing, conducted to validate the system from 

the user’s perspective. This phase ensures the system meets all user and business 

requirements. For example, users test if they can upload images easily, receive 

accurate predictions, and navigate the interface without confusion. This testing 

confirms the system's usability, accuracy, and readiness for deployment in real 

agricultural environments. 
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                              9. RESULTS AND DISCUSSION 

     The implementation of the AI-based plant species health detection system yielded 

highly accurate and efficient results. Using the VGG16 Convolutional Neural Network 

(CNN) architecture, the model was able to successfully classify plant images into 

healthy or diseased categories. After training on a diverse and augmented dataset, the 

system achieved an accuracy of over 90% during testing and validation phases, 

demonstrating its effectiveness in identifying visual patterns associated with plant 

diseases. 

 

     The model showed robust performance across different lighting conditions, angles, 

and backgrounds, thanks to thorough preprocessing and image augmentation 

techniques. The confusion matrix and performance metrics such as precision, recall, 

and F1-score indicated a high level of reliability and minimal false classifications. This 

proves that the system is not only technically sound but also practically applicable in 

varied field scenarios. 

 

     Furthermore, the user interface allowed for easy uploading and real-time analysis 

of plant images. Users were able to receive disease predictions within seconds, making 

the system suitable for real-world deployment in smart farming applications. The 

speed and ease of use also suggest that even users with limited technical knowledge 

can benefit from this solution. 

 

     Overall, the results confirm that the developed system can serve as a scalable and 

dependable tool for early detection of plant diseases, helping farmers take proactive 

steps to protect their crops and increase agricultural productivity. The success of this 

project lays a strong foundation for future expansion to other crops and more complex 

plant health monitoring features. 
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Fig no.9.1 Diagram of disease detection model using CNN model 

 

 

 
 

 
Fig no.9.2 results 
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                  10. CONCLUSION AND FUTURE SCOPE 

10.1.CONCLUSION 

In conclusion, "Plant Disease Detection" represents a commendable and valuable 

initiative in the realm of precision agriculture and computer vision. The project's core 

objective, which is the early detection and diagnosis of plant diseases, holds immense 

significance in the context of global food security and sustainable agriculture. 

Throughout this project, several key accomplishments and findings have been 

achieved: 

Robust Dataset: The project successfully curated and utilized a substantial dataset 

containing images of both healthy and diseased plants. This dataset forms the 

foundation  for training and validating machine learning models, ensuring their 

accuracy in disease detection.        

Machine Learning Models: Various machine learning models, particularly 

convolutional neural networks (CNNs), were implemented and fine-tuned. These 

models exhibited impressive capabilities in distinguishing between healthy and 

diseased plants, showcasing their potential in real-world applications. 

Web Application: The inclusion of a user-friendly web-based interface enables easy 

and accessible disease detection. Users, including farmers and stakeholders in 

agriculture, can simply upload images of plants, receiving instant feedback on their 

health status. 

Deployment Guidance: The project offers guidance on deploying the developed 

models, a crucial step in making this technology accessible and practical for those who 

need it most. 

Accuracy and Efficiency: Extensive evaluation of the models was performed, 

emphasizing both accuracy and efficiency. The ability to maintain high accuracy while 

processing images efficiently is pivotal for real-time applications in the field. 
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10.2.Future Scope 

    The future of AI-based plant health detection is highly promising, particularly with 

advancements in deep learning and computer vision technologies. As more diverse and 

high-quality datasets become available, AI models can be trained to detect a wider 

range of plant species and diseases with even higher accuracy. Future models may be 

able to not only detect diseases but also identify the stage of infection, which can help 

farmers take targeted and timely action to protect their crops. 

     Integration with Internet of Things (IoT) and smart farming devices will further 

enhance the capabilities of the system. In the future, drones and ground sensors can 

work in real-time with AI models deployed at the edge to continuously monitor plant 

health without the need for human intervention. This would enable precision 

agriculture, where only affected plants are treated, reducing the excessive use of 

chemicals and promoting sustainable practices. 

     Another promising area is the extension to other crops and ecosystems. Currently, 

the focus might be on specific crops like rice or wheat, but future implementations can 

support multi-crop detection systems that are adaptable to various climatic and 

geographical regions. AI models can also evolve to detect nutrient deficiencies, pest 

infestations, and environmental stress, making the system a comprehensive plant 

health monitoring solution. 

Furthermore, the integration of cloud-based platforms and mobile apps will make plant 

disease detection more accessible to small-scale farmers. Real-time alerts, multilingual 

interfaces, and visual guides can help bridge the gap between advanced technology 

and grassroots agriculture. With continuous research and innovation. 
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