
i

 A

 Major Project Report

On

Protecting Data Privacy for Permissioned Blockchains

 Using Identity-Based Encryption

Submitted to CMR ENGINEERING COLLEGE(Autonomous)
HYDERABAD

 In Partial Fulfillment of the requirements for the Award of Degree of

BACHELOR OF TECHNOLOGY
 IN

 COMPUTER SCIENCE AND ENGINEERING (DATA SCIENCE)
 Submitted By

 G. SAI KIRAN REDDY (218R1A6781)

 K. SUSHMA (218R1A67A0)

 K. SIDDU (218R1A6795)

 Under the Esteemed guidance of

 Dr. M. LAXMAIAH

Head of the Department of CSE (Data Science)

 Department of Computer Science & Engineering
(Data Science)

CMR ENGINEERING COLLEGE
UGC AUTONOMOUS

 (Approved by AICTE, NEW DELHI, Affiliated to JNTU,
Hyderabad)

 Kandlakoya, Medchal Road, R.R. Dist. Hyderabad-501 401.

2024-2025

ii

CMR ENGINEERING COLLEGE

UGC AUTONOMOUS
 (Accredited by NBA,Approved by AICTE NEW DELHI, Affiliated to JNTU,Hyderabad)

Kandlakoya, Medchal Road, Hyderabad-501 401

Department of Computer Science & Engineering

(Data Science)

CERTIFICATE

This is to certify that the project entitled “Protecting Data Privacy for Permissioned
Blockchains

using Identity-Based Encryption” is a bonafide work carried out by

 G. SAI KIRAN REDDY (218R1A6781)

 K. SUSHMA (218R1A67A0)

 K. SIDDU (218R1A6795)

in partial fulfillment of the requirement for the award of the degree of BACHELOR OF

TECHNOLOGY in COMPUTER SCIENCE AND ENGINEERING (DATA

SCIENCE) from CMR Engineering College, affiliated to JNTU, Hyderabad, under our

guidance and supervision.

The results presented in this Major project have been verified and are found to be satisfactory.

The results embodied in this Major project have not been submitted to any other university for

the award of any other degree or diploma.

 Internal Guide Major Project
 Coordinator

 Head of the
 Department

External
Examiner

 Dr.M.Laxmaiah Mr. B. KumaraSwamy Dr. M. Laxmaiah

 Professor & HOD Assistant Professor Professor & HOD

 CSE (Data Science),
 CMREC

CSE (Data Science),
CMREC

CSE (Data Science),
CMREC

iii

 DECLARATION

This is to certify that the work reported in the present Major project entitled "

Protecting Data Privacy for Permissioned Blockchains using Identity-Based

Encryption” is a record of bonafide work done by us in the Department of Computer

Science and Engineering (Data Science), CMR Engineering College, JNTU

Hyderabad. The reports are based on the project work done entirely by us and not

copied from any other source.We submit our project for further development by any

interested students who share similar interests to improve the project in the future.

The results embodied in this Major project report have not been submitted to any

other University or Institute for the award of any degree or diploma to the best of

our knowledge and belief.

 G. SAI KIRAN REDDY (218R1A6781)

 K. SUSHMA (218R1A67A0)

 K. SIDDU (218R1A6795)

iv

 ACKNOWLEDGMENT

We are extremely grateful to Dr. A. Srinivasula Reddy, Principal and Dr. M.

Laxmaiah, HOD, Department of CSE (Data Science), CMR Engineering College

for their constant support.

We are extremely thankful to Dr. M. Laxmaiah, Professor, Internal Guide,

Department of CSE(DS), for his/ her constant guidance, encouragement and moral

support throughout the project.

We will be failing in duty if We do not acknowledge with grateful thanks to the

authors of the references and other literatures referred in this Project.

We thank Mr. B. Kumaraswamy, Associate Professor, CSE(DS) Department,

Major Project Coordinator for her constant support in carrying out the project

activities and reviews.

We express my thanks to all staff members and friends for all the help and co-

ordination extended in bringing out this project successfully in time.

Finally, We are very much thankful to our parents who guided me for every step.

 G. SAI KIRAN REDDY(218R1A6781)

 K. SUSHMA (218R1A67A0)

 K. SIDDU (218R1A6795)

v

ABSTRACT

Blockchain is an emerging decentralized architecture and distributed public

ledger technology underlying Bitcoin, and has recently attracted intensive attention

from governments, financial institutions and high-tech enterprises. It is believed that

blockchain can improve efficiency, reduce costs and enhance data security, but it is

still in the face of serious privacy issues which may hinder the wide application of

blockchain. In this project, we present a practical scheme by adding the Identity-Based

encryption system, which effectively improves the data privacy for non-transaction

applications. Analyses show that our proposal has a high security level which can

prevent both disguise and passive attacks, and is functional, effective and practical in

many applications for non-transactional scenarios.

vi

 Contents
TOPIC PAGE NO

ABSTRACT v

LIST OF FIGURES vii

1. INTRODUCTION

1.1. Overview 1

1.2. Research Motivation 2

1.3. Problem Statement 2

1.4. Application 4

2. LITERATURE SURVEY 6

3. EXISTING SYSTEM
3.1. SVM 10

3.2. SVM working and Drawbacks 11

4. PROPOSED SYSTEM
4.1. Overview and EDA 13

4.2. Data Preprocessing 13

4.3. Dataset Splitting 14

4.4. KNN and its Advantages 15

5. DIAGRAMS
5.1. Class Diagram 17

5.2. Use Case Diagram 17

5.3. Sequence Diagram 18

5.4. Activity Diagram 19

6. SOFTWARE ENVIRONMENT
6.1. What is python and its Advantages and Disadvantages 23

6.2. History of python 23

6.3. Modules used in project 24

6.4. Installation of python 26

7. SYSTEM REQUIREMENTS SPECIFICATIONS

7.1. Software Requirements 38

7.2. Hardware Requirements 38

8. FUNCTIONAL REQUIREMENTS
8.1. Output Design and Definition 39

8.2. Input Design , Stages, Types, Media 38

vii

8.3. User Interface 39

8.4. Performance Requirements 39

9. SOURCE CODE 44

10. RESULTS AND DISCUSSION

10.1. Implementation description 47

10.2. Dataset Description 60

11. CONCLUSION AND REFERENCES 61

viii

 LIST OF FIGURE

FIG.NO FIG.NAME PG.NO
5.1.1 System architecture 9
5.1.2 Flow diagram 9
5.1.3 Dataflow diagram 10
5.2.1 Usecase diagram 12
5.2.2 Class diagram 13
5.2.3 Activity diagram 13
5.2.4 Sequence diagram 14
5.2.5 Collaboration diagram 14
5.2.6 Component diagram 15
5.2.7 Deployment diagram 15

ix

1

1.INTRODUCTION

 1.1 overview

Blockchain is a distributed public ledger technology in peer-to-peer network

characterized by decentralization and distrusting, and it has witnessed a growing

interest from different domains and use cases. In general terms, a blockchain is an

immutable transaction ledger, maintained within a distributed network of peer

nodes. These nodes each maintain a copy of the ledger by applying transactions

that have been validated by a consensus protocol, grouped into blocks that include

a hash that bind each block to the preceding block. The heart of a blockchain

network is a distributed ledger that records all the transactions that take place on

the network. In addition, the information recorded to a blockchain is appendonly,

using cryptographic techniques that guarantee that once a transaction has been

added to the ledger, it cannot be modified. This property of immutability makes

it simple to assure that data has not been changed after the fact. Bitcoin

cryptocurrency is the first and most widely recognized application of blockchain,

then Ethereum took a different approach, integrating many of the same

characteristics as Bitcoin but adding smart contracts to create a platform for

distributed applications. Bitcoin and Ethereum fall into a class of public

permissionless blockchain technology. Basically, these are public networks, open

to anyone, where participants interact anonymously. In a permissionless

blockchain, virtually anyone can participate, and every participant is anonymous.

In order to mitigate the absence of trust, permissionless blockchains typically

employ a “mined” native cryptocurrency or transaction fees to provide economic

incentive to offset the extraordinary costs of participating in a form of byzantine

fault tolerant consensus based on “proof of work”. Permissioned blockchains, on

the other hand, run a blockchain among a set of known, identified participants. A

permissioned blockchain provides a way to secure the interactions among a group

of entities that have a common goal but which do not fully trust each other, such

as businesses that exchange funds, goods, or information. By relying on the

identities of the peers, a permissioned blockchain can use traditional Byzantine-

fault tolerant consensus. In this project, we aim to achieve data privacy in

permissioned blockchains. We present a scheme by adding Identity-Based

encryption (ID-Based encryption) system, which effectively improves the data

2

privacy for non-transaction applications. Analyses show that our proposal is

secure and practical.

1.2 Research motivation

The research approach for protecting data privacy in permissioned

blockchains using IBE will commence with a comprehensive literature review,

delving into the intricacies of permissioned blockchain architectures, their

existing privacy limitations, and the theoretical foundations and practical

challenges of various IBE schemes. This initial phase will culminate in a clearly

defined problem statement and specific research questions focusing on the

effective integration of IBE to address identified privacy gaps. Subsequently, the

research will proceed with the design and implementation of an IBE integration

framework tailored for permissioned blockchains, addressing critical aspects such

as mapping user identities to IBE public keys, determining optimal encryption

points, and designing secure protocols for private key distribution. A significant

focus will be placed on mitigating the inherent trust issues associated with the

central PKG in IBE, potentially exploring solutions like threshold IBE or

distributed key generation, alongside the development of efficient key revocation

mechanisms suitable for the blockchain environment. A proof-of-concept

implementation on a chosen permissioned blockchain platform will follow,

allowing for rigorous security analysis to identify potential vulnerabilities,

thorough performance evaluation to assess the overhead introduced by IBE, and

comprehensive functional testing to verify the privacy-preserving capabilities.

Finally, the research will conclude with a comparative analysis against existing

privacy solutions, detailed documentation of the entire research process, and

dissemination of the findings through relevant academic channels. This

systematic approach aims to provide a thorough understanding of the potential

and challenges of leveraging IBE to enhance data privacy within permissioned

blockchain networks.

3

1.3Problem statement

Data privacy in permissioned blockchains is a significant concern due to

the inherent transparency of the technology, where all authorized participants can

typically view the transaction history. While permissioned blockchains restrict

network access to known and trusted entities, this doesn't inherently protect the

confidentiality of the data itself. Sensitive information recorded on the blockchain

or exchanged between participants might still be accessible to authorized users

who are not meant to see it, necessitating additional layers of protection.

Traditional cryptographic methods used in blockchain, relying on public-private

key pairs, can introduce complexities in key management, particularly in large

and dynamic networks. Generating, distributing, storing, and especially revoking

these keys can become cumbersome. Furthermore, achieving fine-grained access

control over specific data elements within transactions or associated off-chain

data is often challenging with standard blockchain access control mechanisms,

which typically operate at a broader level.

Identity-Based Encryption (IBE) offers a compelling alternative by

allowing the encryption of data using a recipient's identity (like an organization

ID or a role) as their public key. This simplifies key management significantly as

there's no need for prior public key distribution or complex certificate

management. A trusted central authority, known as the Private Key Generator

(PKG), is responsible for generating the corresponding private keys for these

identities. When a user registers with the system, they obtain their private key

from the PKG, enabling them to decrypt data encrypted with their identity. IBE

facilitates data encryption even if the recipient hasn't yet registered or generated

key pairs. However, the reliance on a central PKG that holds the master secret key

introduces a trust assumption; if the PKG is compromised, all data encrypted

within its domain could be at risk. Efficient revocation of access also poses a

challenge in IBE, as simply changing an identity might not be practical.

Integrating IBE into permissioned blockchains could provide a more

granular approach to data privacy. For instance, specific data fields within a

transaction could be encrypted using the identity of the intended recipient within

the permissioned network. This would ensure that even if a participant has general

4

access to the blockchain, they could only decrypt the data specifically addressed

to their identity. Furthermore, IBE could streamline the onboarding process for

new participants in the permissioned network, as they wouldn't need to generate

and distribute public keys. However, careful consideration must be given to the

design of the PKG, its security, and mechanisms for key revocation or updates

within the blockchain context to fully leverage the benefits of IBE while

mitigating its inherent challenges. Balancing the need for data privacy with the

transparency and auditability that blockchain provides is crucial, and the

integration of IBE needs to be carefully architected to maintain the overall

integrity and functionality of the permissioned blockchain system.

1.3 Application

Integrating Identity-Based Encryption (IBE) into permissioned blockchains can

offer significant advantages for protecting data privacy across various

applications. Here are some key areas where this combination can be particularly

beneficial:

Secure Data Sharing in Collaborative Environments:

Supply Chain Management: In a permissioned blockchain for tracking goods,

sensitive information like pricing, supplier details, or quality control reports can

be encrypted using the identities of authorized participants (e.g., specific

departments within a company, verified partners). Only those with the

corresponding private keys derived from their identities can decrypt this

information, while the transaction record on the blockchain remains auditable. For

example, a manufacturer might encrypt the batch number and origin of a

component, allowing only the quality assurance team and the end retailer to access

this data.

Healthcare Data Exchange: Permissioned blockchains can facilitate secure

sharing of patient records among authorized healthcare providers. Using IBE, a

patient's medical history can be encrypted with the identities of their primary

physician, specialists, and the hospital they are admitted to. This ensures that only

5

these authorized entities can access the complete record, enhancing patient

privacy while enabling seamless information flow for better care coordination.

Financial Transactions and Trade Finance: In a consortium blockchain for trade

finance, sensitive details within transaction documents (e.g., letters of credit,

invoices) can be protected using IBE. For instance, the specifics of a deal between

two companies can be encrypted using their respective organizational identities,

preventing other participants on the network (like shipping companies or banks

with limited roles in that specific transaction) from accessing this confidential

data.

Fine-Grained Access Control within Organizations:

Internal Data Management: Large organizations using permissioned

blockchains for internal data management can leverage IBE to enforce granular

access control based on roles or departments. Sensitive documents or records

stored on-chain or linked via hashes can be encrypted with the identities of

specific teams or individuals who require access. This simplifies access

management compared to traditional role-based access control lists, as public keys

are implicitly defined by identities. For example, HR records on a company's

blockchain could be encrypted using the identity of the HR department, ensuring

only authorized personnel can decrypt them.

Simplifying Key Management for Network Participants:

Onboarding New Members: When new participants join a permissioned

blockchain network, IBE can streamline the onboarding process. Instead of

generating and distributing public-private key pairs, their organizational identity

or designated role can serve as their public key for encryption purposes from other

members. They would then obtain their private key from a trusted authority (the

PKG). This reduces the complexity of initial setup and key exchange.

Ad-hoc Secure Communication: IBE enables participants to securely

communicate and share data without the need for prior key exchange. If a member

needs to send a confidential message or document to another known participant

within the permissioned network, they can simply encrypt it using the recipient's

identity, assuming the recipient has obtained their private key from the PKG.

6

Potential for Enhanced Auditability with Privacy:

While IBE focuses on confidentiality, its integration with permissioned blockchains

can still maintain auditability of who accessed what data, even if the content itself is

encrypted. Transaction records on the blockchain would show that a particular piece of

encrypted data was accessed by a user with a specific identity at a certain time. This

can be crucial for compliance and accountability.

7

2.LITERATURE SURVAY

In this work, we introduce a novel type of cryptographic scheme, which enables

any pair of users to communicate securely and to verify each other’s signatures

without exchanging private or public keys, without keeping key directories, and

without using the services of a third party. The scheme assumes the existence of

trusted key generation centers, whose sole purpose is to give each user a

personalized smart card when he first joins the network. The information

embedded in this card enables the user to sign and encrypt the messages he sends

and to decrypt and verify the messages he receives in a totally independent way,

regardless of the identity of the other party. Previously issued cards do not have to

be updated when new users join the network, and the various centers do not have

to coordinate their activities or even to keep a user list. The centers can be closed

after all the cards are issued, and the network can continue to function in a

completely decentralized way for an indefinite period [1].

We propose a fully functional identity-based encryption scheme (IBE). The

scheme has chosen ciphertext security in the random oracle model assuming an

elliptic curve variant of the computational Diffie-Hellman problem. Our system is

based on the Weil pairing. We give precise definitions for secure identity based

encryption schemes and give several applications for such systems[2].

We construct two efficient Identity Based Encryption (IBE) systems that are

selective identity secure without the random oracle model. Selective identity

secure IBE is a slightly weaker security model than the standard security model

for IBE. In this model the adversary must commit ahead of time to the identity

that it intends to attack, whereas in the standard model the adversary is allowed

to choose this identity adaptively. Our first secure IBE system extends to give a

selective identity Hierarchical IBE secure without random oracles[3].

We construct two efficient Identity Based Encryption (IBE) systems that are

selective identity secure without the random oracle model. Selective identity

secure IBE is a slightly weaker security model than the standard security model

for IBE. In this model the adversary must commit ahead of time to the identity

that it intends to attack, whereas in the standard model the adversary is allowed

8

to choose this identity adaptively. Our first secure IBE system extends to give a

selective identity Hierarchical IBE secure without random oracles[4].

We propose Bulletproofs, a new non-interactive zero-knowledge proof protocol

with very short proofs and without a trusted setup; the proof size is only

logarithmic in the witness size. Bulletproofs are especially well suited for

efficient range proofs on committed values: they enable proving that a committed

value is in a range using only 2 log_2(n)+9 group and field elements, where n is

the bit length of the range. Proof generation and verification times are linear in

n. Bulletproofs greatly improve on the linear (in n) sized range proofs in existing

proposals for confidential transactions in Bitcoin and other cryptocurrencies.

Moreover, Bulletproofs supports aggregation of range proofs, so that a party can

prove that m commitments lie in a given range by providing only an additive

O(log(m)) group elements over the length of a single proof. To aggregate proofs

from multiple parties, we enable the parties to generate a single proof without

revealing their inputs to each other via a simple multi-party computation (MPC)

protocol for constructing Bulletproofs. This MPC protocol uses either a constant

number of rounds and linear communication, or a logarithmic number of rounds

and logarithmic communication. We show that verification time, while

asymptotically linear, is very efficient in practice. The marginal cost of batch

verifying 32 aggregated range proofs is less than the cost of verifying 32 ECDSA

signatures. Bulletproofs build on the techniques of Bootle et al. (EUROCRYPT

2016). Beyond range proofs, Bulletproofs provide short zero-knowledge proofs

for general arithmetic circuits while only relying on the discrete logarithm

assumption and without requiring a trusted setup. We discuss many applications

that would benefit from Bulletproofs, primarily in the area of cryptocurrencies.

The efficiency of Bulletproofs is particularly well suited for the distributed and

trustless nature of blockchains. The full version of this article is available one

Print[5].

It seems like you would like to structure the given references in a tabular format,

organizing them under columns like Study, Image Modality, Task, Method,

Strengths, and Weaknesses. However, based on the content provided (mostly

references related to blockchain and cryptographic systems), some of these

9

columns don't directly correlate with the references, but I can suggest a format

based on available information. Here's a tabular organization where I will include

the citation info and try to fill in the other columns based on available context:

Study Image

Modality

Task Method Strengths Weakness

es

[1] The Linux

Foundation Helps

Hyperledger

Build the Most

Vibrant Open

Source

Ecosystem for

Blockchain

Hyperled

ger

Developing

open-source

blockchain

infrastructure

Blockchain

ecosystems,

Hyperledger

Promotes

open-source

collaboration,

scalability

May lack

centralizati

on, slower

adoption in

some areas

[2] S.

Omohundro.

Cryptocurrencies,

smart contracts,

and artificial

intelligence.

cryptocur

rency

Explore

integration of

AI in

blockchain

Cryptocurrencies,

Smart Contracts,

AI

Cross-

disciplinary

approach,

innovation

potential

Technical

complexit

y,

regulatory

hurdles

[3] D. D.

Detwiler. One

nation's move to

increase food

safety with

blockchain.

blockchai

n

Improving

food safety

using

blockchain

Blockchain-

based traceability

system

Enhanced

transparency,

food safety

Possible

implement

ation

challenges,

scalability

10

[4] Shamir, A.

Identity-based

cryptosystems

and signature

schemes.

simplifie

d

Cryptography Identity-based

cryptography

Simplifies

key

management,

security

Limited

adoption,

computati

onal cost

[5] Boneh, D.,

Franklin, M.

Identity-based

encryption from

the Weil pairing.

vulnarabl

e

Identity-based

encryption

Weil pairing-

based encryption

Efficient,

practical

identity

management

Vulnerable

to quantum

attacks

[6] Boneh, D.,

Boyen, X.

Efficient

selective-ID

secure identity-

based encryption.

oracles Identity-based

encryption

Selective-ID

encryption

Improved

security with

no oracles

Complexit

y in

implement

ation

[7] Boneh, D.,

Boyen, X. Secure

identity-based

encryption

without random

oracles.

reliance Identity-based

encryption

Encryption

without random

oracles

Avoids

reliance on

random

oracles

Performan

ce

overhead

[8] Gentry, C.

Practical identity-

based encryption

without random

oracles.

secure Secure

identity

encryption

Practical identity-

based encryption

without oracles

Robust

security

features

Complexit

y of

algorithms

11

 3.EXISTING SYSTEM

 3.1 SVM

While there isn't a widely deployed "existing system" that uses Support Vector

Machines (SVMs) directly for protecting the data content within permissioned

blockchains in a privacy-preserving manner, SVMs are being explored and used in

related areas that contribute to the overall security and privacy of such systems.

Here's a breakdown of how SVMs are relevant in this context:

1. Privacy-Preserving SVM Training on Blockchain Data:

 Research Focus: Several research efforts explore how to train SVM models on

sensitive data that might reside on or be managed by a permissioned blockchain

without directly exposing the raw data.

 Techniques Involved: These approaches often combine SVM with privacy-enhancing

techniques like:

Homomorphic Encryption: Allows computations (including parts of SVM training)

to be performed on encrypted data.

Federated Learning: Trains models across decentralized devices or servers holding

local data samples without exchanging them. Blockchain can be used to manage the

federated learning process securely.

Secure Multi-Party Computation (SMPC): Enables multiple parties to jointly compute

a function (like training an SVM) on their private inputs while keeping those inputs

secret.

 Goal: To enable collaborative machine learning without compromising the privacy of

individual data contributors within the permissioned blockchain network.

 Example: Research explores "Privacy-Preserving Support Vector Machine Training

Over Blockchain-Based Encrypted IoT Data," where homomorphic encryption is

used to allow SVM training on encrypted data recorded on a blockchain.

2. SVMs for Access Control and Security in Permissioned Blockchains:

 Anomaly Detection: SVMs can be trained to detect unusual patterns in blockchain

transaction data or network behavior, potentially identifying malicious activities or

12

unauthorized access attempts. This indirectly contributes to data privacy by flagging

security breaches.

 Malicious Node Detection: In a permissioned blockchain, SVMs could analyze the behavior

of participating nodes to identify those that might be compromised or acting maliciously,

helping to maintain the integrity and confidentiality of the network.

 Client Access Permission Distribution: SVMs can be used to efficiently manage and

distribute access permissions to clients within a federated learning system that might be

underpinned by a blockchain.

Why not direct SVM for data content privacy?

 SVM as a classification/regression algorithm: SVM's primary function is to learn patterns

from data for classification or prediction. It doesn't inherently encrypt or directly control

access to data content in the same way as cryptographic techniques like IBE or attribute-

based encryption.

 Computational Complexity: Applying SVM directly to large volumes of encrypted on-chain

data for access control decisions could be computationally expensive.

While you won't find "existing systems" using SVM as the primary mechanism for

encrypting and controlling access to the content of data on permissioned blockchains, SVMs

are being researched and utilized in conjunction with other privacy-preserving techniques

and for security-related tasks (like anomaly detection and access management) that

indirectly contribute to a more secure and privacy-respecting permissioned blockchain

environment. The focus is often on enabling privacy-preserving machine learning on data

managed by the blockchain or using SVMs to enhance the security of the blockchain network

itself.

3.2 SVM working and Drawbacks

While Support Vector Machines (SVMs) aren't directly used for encrypting data content on

permissioned blockchains, they play a role in enhancing privacy and security in related

aspects. Here's a breakdown of their working principles in this context and the associated

drawbacks:

SVM Working in Privacy for Permissioned Blockchains :

1. Privacy-Preserving Machine Learning:

o Goal: Train SVM models on sensitive data managed by permissioned

blockchains without revealing the raw data.

o Techniques: This involves combining SVM with privacy-enhancing

technologies (PETs) like:

13

 Homomorphic Encryption (HE): Allows computations on encrypted data.

For instance, parts of the SVM training process can be performed on data

while it remains encrypted on the blockchain.

 Federated Learning (FL): Trains models collaboratively across different

participants holding local data. Blockchain can secure the aggregation of

model updates in FL.

 Secure Multi-Party Computation (SMPC): Enables joint computation

(like SVM training) by multiple parties on their private data without

sharing it.

o How SVM Works Here: The core SVM algorithm (finding hyperplanes to

classify data) is adapted to work with encrypted or distributed data through these

PETs. For example, in HE-based approaches, secure building blocks for

operations like encrypted multiplication and comparison (needed in SVM

training) are developed.

2. Security and Anomaly Detection:

o Goal: Identify malicious activities or unauthorized access attempts within the

permissioned blockchain network.

o Technique: SVMs are trained on historical blockchain transaction data or node

behavior to learn "normal" patterns.

o How SVM Works Here: Once trained, the SVM can classify new data points as

either normal or anomalous. Transactions or node activities that deviate

significantly from the learned patterns are flagged as potential security threats,

indirectly protecting data privacy by detecting breaches.

Drawbacks of Using SVM for Protecting Data Privacy in Permissioned Blockchains

(Indirectly):

1. Computational Overhead:

o Integrating SVM with PETs like homomorphic encryption or SMPC can

introduce significant computational overhead. Operations on encrypted data are

generally much slower than on plaintext data, potentially impacting the

performance and scalability of the blockchain system. Training complex SVM

models in a privacy-preserving manner can be resource-intensive.

2. Complexity of Implementation:

o Designing and implementing privacy-preserving machine learning techniques with SVM on

a blockchain requires specialized expertise.

14

 4.PROPOSED SYSTEM

This proposed system outlines an architecture and key mechanisms for integrating Identity-

Based Encryption (IBE) into a permissioned blockchain to enhance data privacy. The goal is

to ensure that sensitive data stored on the blockchain or exchanged between participants can

only be accessed and decrypted by intended recipients identified by their organizational roles

or attributes.

 SYSTEM ARCHITECTURE:

Fig.4.1. System architecture

DATA FLOW DIAGRAM:

1. The DFD is also called as bubble chart. It is a simple graphical formalism that can be used

to represent a system in terms of input data to the system, various processing carried out

on this data, and the output data is generated by this system.

2. The data flow diagram (DFD) is one of the most important modeling tools. It is used to

model the system components. These components are the system process, the data used

15

by the process, an external entity that interacts with the system and the information flows

in the system.

3. DFD shows how the information moves through the system and how it is modified by a

series of transformations. It is a graphical technique that depicts information flow and the

transformations that are applied as data moves from input to output.

4. DFD is also known as bubble chart. A DFD may be used to represent a system at any level

of abstraction. DFD may be partitioned into levels that represent increasing information

flow and functional detail.

5.

 Yes NO

Fig.4.2 Dataflow diagrams

 4.2 Data preprocessing

 Identify Sensitive Data: Pinpoint data needing IBE protection.

 Structure & Format: Standardize data for consistent encryption.

 Granularity: Decide if encrypting whole records or specific fields.

 Anonymize/Pseudonymize (Optional): Reduce directly sensitive data.

VERIFY

NO PROCESS

User login

Post private messages

End process

New user signup

View Shared Private Message Blockchain

16

 Metadata Management: Handle non-sensitive and potentially sensitive metadata.

 IBE Compatibility: Format data according to IBE implementation.

 Payload Size: Consider ciphertext size for blockchain limits.

 Identity as Policy: Recipient identity dictates access.

 Off-Chain Consistency: Process off-chain data similarly.

 Permissioned Context: Leverage known identities and trust in IMS.

 Efficiency: Minimize processing overhead.

4.3 Dataset splitting

Split by Access Needs: Divide data based on who requires access to which parts.

IBE per Segment: Encrypt each data segment using the IBE identity of authorized users.

Granular Control: Enables fine-grained access at the data level.

Consortium Management: Each participant manages and encrypts their data subset.

Off-Chain Storage: Encrypted subsets can reside off-chain with links on the blockchain.

Privacy-Preserving Analytics: Split data can be encrypted for authorized analysis.

SMPC/FL Integration: IBE controls access to data used in secure computations.

Temporal Splitting: Split data by time periods, encrypting with rotating identities for better

revocation.

Data Linkability: Consider how authorized users will link split and encrypted data.

Implementation Complexity: Managing granular access adds system complexity.

Performance Impact: Multiple encryption/decryption operations can affect speed.

Key Management: Robust DPKG needed for managing multiple identities.

Querying Challenges: Searching across differently encrypted segments can be harder.

4.4 Advantages

Simplified Key Management: IBE eliminates the need for complex public key

infrastructure (PKI) and certificate management. A user's public key is simply their

identity (e.g., organizational ID, role), making key generation, distribution, and

revocation much easier to manage, especially in large and dynamic permissioned

networks.

17

Fine-Grained Access Control: IBE allows for encrypting data to specific identities or

sets of identities (if extended with attribute-based concepts). This enables granular control

over who can access particular data elements within transactions or off-chain storage

linked to the blockchain, going beyond broader transaction-level permissions.

Encryption Before Recipient Key Generation: Data can be encrypted even before the

intended recipient has generated their private key. As long as the sender knows the

recipient's identity, they can encrypt the data, and the recipient can decrypt it once they

obtain their private key from the Private Key Generator (PKG). This is particularly useful

for asynchronous communication or when onboarding new participants.

Efficient Onboarding of New Participants: Adding new members to the permissioned

blockchain becomes simpler as they don't need to generate and distribute public keys to

start receiving encrypted information. Their identity serves as their public key,

streamlining the onboarding process.

Reduced Communication Overhead: The exchange of public keys, a standard procedure

in traditional PKI, is eliminated in IBE. This reduces communication overhead, especially

in scenarios involving numerous participants or frequent data sharing.

Potential for Enhanced Auditability with Privacy: While the data content is encrypted,

the blockchain ledger can still record transactions indicating who encrypted data and to

whom it was addressed (by identity). This provides a level of auditability for data access

and sharing, even though the content remains private to authorized parties.

Suitability for Consortium Environments: In permissioned blockchains involving

multiple organizations, IBE aligns well with the concept of identity-based access control

across organizational boundaries. Using organizational IDs or roles as identities simplifies

secure data sharing within the consortium.

Foundation for Advanced Privacy Techniques: IBE can serve as a foundational

cryptographic primitive for building more complex privacy-preserving mechanisms,

potentially combined with other techniques like attribute-based encryption or proxy re-

encryption to achieve more sophisticated access control and data sharing policies.

18

 5.UML DAIGRAMS

UML stands for Unified Modeling Language. UML is a standardized general-

purpose modeling language in the field of object-oriented software engineering. The

standard is managed, and was created by, the Object Management Group..The goal is for

UML to become a common language for creating models of object oriented computer

software. In its current form UML is comprised of two major components: a Meta-model

and a notation. In the future, some form of method or process may also be added to; or

associated with, UML.

The Unified Modeling Language is a standard language for specifying, Visualization,

Constructing and documenting the artifacts of software system, as well as for business

modeling and other non-software systems. The UML represents a collection of best

engineering practices that have proven successful in the modeling of large and complex

systems.The UML is a very important part of developing objects oriented software and the

software development process. The UML uses mostly graphical notations to express the

design of software projects.

GOALS: The Primary goals in the design of the UML are as follows:

 Provide users a ready-to-use, expressive visual modeling Language so that they can

develop and exchange meaningful models.

 Provide extendibility and specialization mechanisms to extend the core concepts.

 Be independent of particular programming languages and development process.

 Provide a formal basis for understanding the modeling language.

 Encourage the growth of OO tools market.

 Support higher level development concepts such as collaborations, frameworks, patterns

and components.

 Integrate best practices.

5.1 Use case diagram:

 A use case diagram in the Unified Modeling Language (UML) is a type of

behavioral diagram defined by and created from a Use-case analysis. Its purpose is to

present a graphical overview of the functionality provided by a system in terms of actors,

their goals (represented as use cases), and any dependencies between those use cases. The

main purpose of a use case diagram is to show what system functions are performed for

which actor. Roles of the actors in the system can be depicted

19

 Fig 5.1 Use case diagram

 5.2 Class diagram:

 The class diagram is used to refine the use case diagram and define a detailed design of the

system. The class diagram classifies the actors defined in the use case diagram into a set of

interrelated classes. The relationship or association between the classes can be either an "is-

a" or "has-a" relationship. Each class in the class diagram may be capable of providing

certain functionalities. These functionalities provided by the class are termed "methods" of

the class. Apart from this, each class may have certain "attributes" that uniquely identify

the class.

New user signup

User login

Post Private Messages

User

View Shared Private Message
Blockchain

20

 Fig 5.2 Class diagram

 5.3 Activity diagram:

The process flows in the system are captured in the activity diagram. Similar to a state

diagram, an activity diagram also consists of activities, actions, transitions, initial and final

states, and guard conditions.

 Fig.5.2.3 Activity diagram

Newusersignup

username
password
contact no
gender
email id
phone no

signup()

Userlogin

username
password

login()

PostPrivateMessages

post tweet
browse file
private data shares

save psot in blockchain()

ViewSharedPrivateMessageBlockchain

view()
decrypt()

New user signup

Post Private Messages

View Shared Private
Message Blockchain

User login

21

5.4 Sequence diagram:

A sequence diagram represents the interaction between different objects in the system. The

important aspect of a sequence diagram is that it is time-ordered. This means that the exact

sequence of the interactions between the objects is represented step by step. Different

objects in the sequence diagram interact with each other by passing "messages".

 Fig.5.2.4 Sequence diagram

 5.5 Collaboration diagram:

A collaboration diagram groups together the interactions between different objects. The

interactions are listed as numbered interactions that help to trace the sequence of the

User System

New user signup

user can signup with the application

User login

user can login to application

Post Private Messages

private and public key will be generated and then encrypt message and save in Blockchain

View Shared Private Message Blockchain

owner or share users can decrypt and view all messages

22

interactions. The collaboration diagram helps to identify all the possible interactions that

each object has with other objects.

 Fig.5.2.5 Collaboration diagram

5.6 Component diagram:

The component diagram represents the high-level parts that make up the system. This

diagram depicts, at a high level, what components form part of the system and how they

are interrelated. A component diagram depicts the components culled after the system has

undergone the development or construction phase.

User System

1: New user signup

2: user can signup with the application

3: User login

4: user can login to application

5: Post Private Messages

6: private and public key will be generated and then encrypt message and save in Blockchain

7: View Shared Private Message Blockchain

8: owner or share users can decrypt and view all messages

User

New user
signup

User login

Post Private
Messages

View Shared Private
Message Blockchain

23

 5.7 Deployment diagram:

The deployment diagram captures the configuration of the runtime elements of the application.

This diagram is by far most useful when a system is built and ready to be deployed.

 Fig 5.7 Deployment diagram

Users blockchain

24

6.SOFTWARE ENVIRONMENT

 6.1 What is Python :-

 Below are some facts about Python.

 Python is currently the most widely used multi-purpose, high-level programming

language.

 Python allows programming in Object-Oriented and Procedural paradigms. Python

programs generally are smaller than other programming languages like Java.

 Programmers have to type relatively less and indentation requirement of the language,

makes them readable all the time.

 Python language is being used by almost all tech-giant companies like – Google, Amazon,

Facebook, Instagram, Dropbox, Uber… etc.

The biggest strength of Python is huge collection of standard library which can be used

for the following –

 Machine Learning

 GUI Applications (like Kivy, Tkinter, PyQt etc.)

 Web frameworks like Django (used by YouTube, Instagram, Dropbox)

 Image processing (like Opencv, Pillow)

 Web scraping (like Scrapy, BeautifulSoup, Selenium)

 Test frameworks

 Multimedia

Advantages of Python :-

Let’s see how Python dominates over other languages.

1. Extensive Libraries

Python downloads with an extensive library and it contain code for various purposes like

regular expressions, documentation-generation, unit-testing, web browsers,

threading, databases, CGI, email, image manipulation, and more. So, we don’t have to

write the complete code for that manually.

2. Extensible

25

As we have seen earlier, Python can be extended to other languages. You can write some of

your code in languages like C++ or C. This comes in handy, especially in projects.

3. Embeddable

Complimentary to extensibility, Python is embeddable as well. You can put your Python code

in your source code of a different language, like C++. This lets us add scripting capabilities to

our code in the other language.

4. Improved Productivity

The language’s simplicity and extensive libraries render programmers more productive than

languages like Java and C++ do. Also, the fact that you need to write less and get more things

done.

5. IOT Opportunities

Since Python forms the basis of new platforms like Raspberry Pi, it finds the future bright for

the Internet Of Things. This is a way to connect the language with the real world.

6. Simple and Easy

When working with Java, you may have to create a class to print ‘Hello World’. But in Python,

just a print statement will do. It is also quite easy to learn, understand, and code. This is why

when people pick up Python, they have a hard time adjusting to other more verbose languages

like Java.

7. Readable

Because it is not such a verbose language, reading Python is much like reading English. This

is the reason why it is so easy to learn, understand, and code. It also does not need curly braces

to define blocks, and indentation is mandatory. This further aids the readability of the code.

8. Object-Oriented

This language supports both the procedural and object-oriented programming paradigms.

While functions help us with code reusability, classes and objects let us model the real world.

A class allows the encapsulation of data and functions into one.

9. Free and Open-Source

26

Like we said earlier, Python is freely available. But not only can you download Python for

free, but you can also download its source code, make changes to it, and even distribute it. It

downloads with an extensive collection of libraries to help you with your tasks.

10. Portable

When you code your project in a language like C++, you may need to make some changes to

it if you want to run it on another platform. But it isn’t the same with Python. Here, you need

to code only once, and you can run it anywhere. This is called Write Once Run Anywhere

(WORA). However, you need to be careful enough not to include any system-dependent

features.

11. Interpreted

Lastly, we will say that it is an interpreted language. Since statements are executed one by

one, debugging is easier than in compiled languages.

Any doubts till now in the advantages of Python? Mention in the comment section.

Advantages of Python Over Other Languages

1. Less Coding

Almost all of the tasks done in Python requires less coding when the same task is done in other

languages. Python also has an awesome standard library support, so you don’t have to search

for any third-party libraries to get your job done. This is the reason that many people suggest

learning Python to beginners.

2. Affordable

Python is free therefore individuals, small companies or big organizations can leverage the

free available resources to build applications. Python is popular and widely used so it gives

you better community support.

The 2019 Github annual survey showed us that Python has overtaken Java in the most popular

programming language category.

3. Python is for Everyone

Python code can run on any machine whether it is Linux, Mac or Windows. Programmers

need to learn different languages for different jobs but with Python, you can professionally

27

build web apps, perform data analysis and machine learning, automate things, do web scraping

and also build games and powerful visualizations. It is an all-rounder programming language.

Disadvantages of Python

So far, we’ve seen why Python is a great choice for your project. But if you choose it, you
should be aware of its consequences as well. Let’s now see the downsides of choosing Python
over another language.

1. Speed Limitations

We have seen that Python code is executed line by line. But since Python is interpreted, it often

results in slow execution. This, however, isn’t a problem unless speed is a focal point for the

project. In other words, unless high speed is a requirement, the benefits offered by Python are

enough to distract us from its speed limitations.

2. Weak in Mobile Computing and Browsers

While it serves as an excellent server-side language, Python is much rarely seen on the client-
side. Besides that, it is rarely ever used to implement smartphone-based applications. One such
application is called Carbonnelle.

The reason it is not so famous despite the existence of Brython is that it isn’t that secure.

3. Design Restrictions

As you know, Python is dynamically-typed. This means that you don’t need to declare the type
of variable while writing the code. It uses duck-typing. But wait, what’s that? Well, it just
means that if it looks like a duck, it must be a duck. While this is easy on the programmers
during coding, it can raise run-time errors.

4. Underdeveloped Database Access Layers

Compared to more widely used technologies like JDBC (Java DataBase Connectivity) and

ODBC (Open DataBase Connectivity), Python’s database access layers are a bit underdeveloped.

Consequently, it is less often applied in huge enterprises.

1. Simple:

No, we’re not kidding. Python’s simplicity can indeed be a problem. Take my example. I don’t

do Java, I’m more of a Python person. To me, its syntax is so simple that the verbosity of Java

code seems unnecessary.

This was all about the Advantages and Disadvantages of Python Programming Language.

6.2 History of python

28

What do the alphabet and the programming language Python have in common? Right, both

start with ABC. If we are talking about ABC in the Python context, it's clear that the

programming language ABC is meant. ABC is a general-purpose programming language and

programming environment, which had been developed in the Netherlands, Amsterdam, at the

CWI (Centrum Wiskunde &Informatica). The greatest achievement of ABC was to influence

the design of Python. Python was conceptualized in the late 1980s. Guido van Rossum worked

that time in a project at the CWI, called Amoeba, a distributed operating system. In an interview

with Bill Venners1, Guido van Rossum said: "In the early 1980s, I worked as an implementer

on a team building a language called ABC at Centrum voor Wiskunde en Informatica (CWI).

I don't know how well people know ABC's influence on Python. I try to mention ABC's

influence because I'm indebted to everything I learned during that project and to the people

who worked on it. "Later on in the same Interview, Guido van Rossum continued: "I

remembered all my experience and some of my frustration with ABC. I decided to try to design

a simple scripting language that possessed some of ABC's better properties, but without its

problems. So, I started typing. I created a simple virtual machine, a simple parser, and a simple

runtime. I made my own version of the various ABC parts that I liked. I created a basic syntax,

used indentation for statement grouping instead of curly braces or begin-end blocks, and

developed a small number of powerful data types: a hash table (or dictionary, as we call it), a

list, strings, and numbers."

Python Development Steps

Guido Van Rossum published the first version of Python code (version 0.9.0) at alt.sources in

February 1991. This release included already exception handling, functions, and the core data

types of lists, dict, str and others. It was also object oriented and had a module system. Python

version 1.0 was released in January 1994. The major new features included in this release were

the functional programming tools lambda, map, filter and reduce, which Guido Van Rossum

never liked. Six and a half years later in October 2000, Python 2.0 was introduced. This release

included list comprehensions, a full garbage collector and it was supporting unicode. Python

flourished for another 8 years in the versions 2.x before the next major release as Python 3.0 (also known

as "Python 3000" and "Py3K") was released. Python 3 is not backwards compatible with Python 2.x.

The emphasis in Python 3 had been on the removal of duplicate programming constructs and modules,

thus fulfilling or coming close to fulfilling the 13th law of the Zen of Python: "There should be one --

and preferably only one -- obvious way to do it."Some changes in Python 7.3:

 Print is now a function.

29

 Views and iterators instead of lists

 The rules for ordering comparisons have been simplified. E.g., a heterogeneous list

cannot be sorted, because all the elements of a list must be comparable to each other.

 There is only one integer type left, i.e., int. long is int as well.

 The division of two integers returns a float instead of an integer. "//" can be used to have

the "old" behaviour.

 Text Vs. Data Instead of Unicode Vs. 8-bit

Purpose

We demonstrated that our approach enables successful segmentation of intra-retinal layers—

even with low-quality images containing speckle noise, low contrast, and different intensity

ranges throughout—with the assistance of the ANIS feature.

Python

Python is an interpreted high-level programming language for general-purpose programming. Created

by Guido van Rossum and first released in 1991, Python has a design philosophy that emphasizes code

readability, notably using significant whitespace.

Python features a dynamic type system and automatic memory management. It supports multiple

programming paradigms, including object-oriented, imperative, functional and procedural, and has a

large and comprehensive standard library.

 Python is Interpreted − Python is processed at runtime by the interpreter. You do not

need to compile your program before executing it. This is similar to PERL and PHP.

 Python is Interactive − you can actually sit at a Python prompt and interact with the

interpreter directly to write your programs.

Python also acknowledges that speed of development is important. Readable and terse code is

part of this, and so is access to powerful constructs that avoid tedious repetition of code.

Maintainability also ties into this may be an all but useless metric, but it does say something

about how much code you have to scan, read and/or understand to troubleshoot problems or

tweak behaviors. This speed of development, the ease with which a programmer of other

languages can pick up basic Python skills and the huge standard library is key to another area

where Python excels. All its tools have been quick to implement, saved a lot of time, and several

of them have later been patched and updated by people with no Python background - without

breaking.

30

6.3 Modules Used in Project

TensorFlow

TensorFlow is a free and open-source software library for dataflow and differentiable

programming across a range of tasks. It is a symbolic math library, and is also used for machine

learning applications such as neural networks. It is used for both research and production

at Google.

TensorFlow was developed by the Google Brain team for internal Google use. It was released under

the Apache 2.0 open-source license on November 9, 2015.

Numpy

Numpy is a general-purpose array-processing package. It provides a high-performance

multidimensional array object, and tools for working with these arrays.

It is the fundamental package for scientific computing with Python. It contains various features

including these important ones:

 A powerful N-dimensional array object

 Sophisticated (broadcasting) functions

 Tools for integrating C/C++ and Fortran code

 Useful linear algebra, Fourier transform, and random number capabilities

Besides its obvious scientific uses, Numpy can also be used as an efficient multi-dimensional

container of generic data. Arbitrary data-types can be defined using Numpy which allows

Numpy to seamlessly and speedily integrate with a wide variety of databases.

Pandas

Pandas is an open-source Python Library providing high-performance data manipulation and

analysis tool using its powerful data structures. Python was majorly used for data munging and

preparation. It had very little contribution towards data analysis. Pandas solved this problem.

Using Pandas, we can accomplish five typical steps in the processing and analysis of data,

regardless of the origin of data load, prepare, manipulate, model, and analyze. Python with

Pandas is used in a wide range of fields including academic and commercial domains including

finance, economics, Statistics, analytics, etc.

Matplotlib

31

Matplotlib is a Python 2D plotting library which produces publication quality figures in a variety

of hardcopy formats and interactive environments across platforms. Matplotlib can be used in

Python scripts, the Python and IPython shells, the Jupyter Notebook, web application servers,

and four graphical user interface toolkits. Matplotlib tries to make easy things easy and hard

things possible. You can generate plots, histograms, power spectra, bar charts, error charts,

scatter plots, etc., with just a few lines of code. For examples, see the sample plots and thumbnail

gallery.

For simple plotting the pyplot module provides a MATLAB-like interface, particularly when

combined with IPython. For the power user, you have full control of line styles, font properties,

axes properties, etc, via an object oriented interface or via a set of functions familiar to MATLAB

users.

Scikit – learn

Scikit-learn provides a range of supervised and unsupervised learning algorithms via a consistent

interface in Python. It is licensed under a permissive simplified BSD license and is distributed

under many Linux distributions, encouraging academic and commercial use. Python

Python is an interpreted high-level programming language for general-purpose programming.

Created by Guido van Rossum and first released in 1991, Python has a design philosophy that

emphasizes code readability, notably using significant whitespace.

Python features a dynamic type system and automatic memory management. It supports multiple

programming paradigms, including object-oriented, imperative, functional and procedural, and

has a large and comprehensive standard library.

 Python is Interpreted − Python is processed at runtime by the interpreter. You do not need to

compile your program before executing it. This is similar to PERL and PHP.

 Python is Interactive − you can actually sit at a Python prompt and interact with the

interpreter directly to write your programs.

Python also acknowledges that speed of development is important. Readable and terse

code is part of this, and so is access to powerful constructs that avoid tedious repetition

of code. Maintainability also ties into this may be an all but useless metric, but it does Z

32

Now, check for the latest and the correct version for your operating system.

Step 2: Click on the Download Tab.

33

Step 3: You can either select the Download Python for windows 3.7.4 button in Yellow

Color or you can scroll further down and click on download with respective to their

version. Here, we are downloading the most recent python version for windows 3.7.4

Step 4: Scroll down the page until you find the Files option.

Step 5: Here you see a different version of python along with the operating system.

34

 To download Windows 32-bit python, you can select any one from the three

options: Windows x86 embeddable zip file, Windows x86 executable installer or

Windows x86 web-based installer.

Here we will install Windows x86-64 web-based installer. Here your first part

regarding which version of python is to be downloaded is completed. Now we move

ahead with the second part in installing python i.e. Installation

Note: To know the changes or updates that are made in the version you can click on

the Release Note Option.

Installation of Python

Step 1: Go to Download and Open the downloaded python version to carry out the

installation process.

35

Step 2: Before you click on Install Now, Make sure to put a tick on Add Python 3.7 to

PATH.

Step 3: Click on Install NOW After the installation is successful. Click on Close.

36

With these above three steps on python installation, you have successfully and

correctly installed Python. Now is the time to verify the installation.

Note: The installation process might take a couple of minutes.

Verify the Python Installation

Step 1: Click on Start

Step 2: In the Windows Run Command, type “cmd”.

Step 3: Open the Command prompt option.

Step 4: Let us test whether the python is correctly installed. Type python –V and

press Enter.

37

Step 5: You will get the answer as 3.7.4

Note: If you have any of the earlier versions of Python already installed. You must

first uninstall the earlier version and then install the new one.

Check how the Python IDLE works

Step 1: Click on Start

Step 2: In the Windows Run command, type “python idle”.

Step 3: Click on IDLE (Python 3.7 64-bit) and launch the program

Step 4: To go ahead with working in IDLE you must first save the file. Click on File

> Click on Save

38

Step 5: Name the file and save as type should be Python files. Click on SAVE.

Here I have named the files as Hey World.

Step 6: Now for e.g. enter print.

You will see that the command given is launched. With this, we end our tutorial on how

to install Python. You have learned how to download python for windows into your

respective operating system.

Note: Unlike Java, Python does not need semicolons at the end of the statements

otherwise it won’t work.

39

7. SOFTWARE REQUIREMENTS

 7.1 Software Requirements

The functional requirements or the overall description documents include the product

perspective and features, operating system and operating environment, graphics requirements,

design constraints and user documentation.

The appropriation of requirements and implementation constraints gives the general overview

of the project in regard to what the areas of strength and deficit are and how to tackle them.

 Python IDLE 3.7 version (or)

 Anaconda 3.7 (or)

 JuPiter (or)

 Google colab

7.2 Hardware Requirements

 Minimum hardware requirements are very dependent on the particular software being

developed by a given Enthought Python / Canopy / VS Code user. Applications that need to

store large arrays/objects in memory will require more RAM, whereas applications that need

to perform numerous calculations or tasks more quickly will require a faster processor.

 Operating system : Windows, Linux

 Processor : Intel I3

 RAM : 4 GB

 Hard disk : 250GB

40

8.FUNCTIONAL REQUIREMENTS
8.1 Output Design

Outputs from computer systems are required primarily to communicate the results of

processing to users. They are also used to provides a permanent copy of the results for later

consultation. The various types of outputs in general are:

 External Outputs, whose destination is outside the organization

 Internal Outputs whose destination is within organization and they are the

 User’s main interface with the computer.

 Operational outputs whose use is purely within the computer department.

 Interface outputs, which involve the user in communicating directly.

Output Defination

The outputs should be defined in terms of the following points:

 Type of the output

 Content of the output

 Format of the output

 Location of the output

 Frequency of the output

 Volume of the output

 Sequence of the output

It is not always desirable to print or display data as it is held on a computer. It should be
decided as which form of the output is the most suitable.

8.2 Input Design

Input design is a part of overall system design. The main objective during the input design is
as given below:

 To produce a cost-effective method of input.

 To achieve the highest possible level of accuracy.

 To ensure that the input is acceptable and understood by the user.

 Input Stages

The main input stages can be listed as below:

41

 Data recording

 Data transcription

 Data conversion

 Data verification

 Data control

 Data transmission

 Data validation

 Data correction

 Input Types

It is necessary to determine the various types of inputs. Inputs can be categorized as follows:

 External inputs, which are prime inputs for the system.

 Internal inputs, which are user communications with the system.

 Operational, which are computer department’s communications to the system?

 Interactive, which are inputs entered during a dialogue.

 Input Media

At this stage choice has to be made about the input media. To conclude about the input media

consideration has to be given to;

 Type of input

 Flexibility of format

 Speed

 Accuracy

 Verification methods

 Rejection rates

 Ease of correction

 Storage and handling requirements

 Security

 Easy to use

 Portability

Keeping in view the above description of the input types and input media, it can be said that

most of the inputs are of the form of internal and interactive. As

42

Input data is to be the directly keyed in by the user, the keyboard can be considered to be the

most suitable input device.

Error Avoidance

At this stage care is to be taken to ensure that input data remains accurate form the stage at

which it is recorded up to the stage in which the data is accepted by the system. This can be

achieved only by means of careful control each time the data is handled.

 Error Detection

Even though every effort is made to avoid the occurrence of errors, still a small proportion of

errors is always likely to occur, these types of errors can be discovered by using validations to

check the input data.

 Data Validation

Procedures are designed to detect errors in data at a lower level of detail. Data validations have

been included in the system in almost every area where there is a possibility for the user to

commit errors. The system will not accept invalid data. Whenever an invalid data is keyed in,

the system immediately prompts the user and the user has to again key in the data and the

system will accept the data only if the data is correct. Validations have been included where

necessary.

The system is designed to be a user friendly one. In other words the system has been designed

to communicate effectively with the user. The system has been designed with popup menus.

 8.3 User Interface Design

It is essential to consult the system users and discuss their needs while designing the user

interface:

 User Interface Can Be Broadly Clasified As:

 User initiated interface the user is in charge, controlling the progress of the

user/computer dialogue. In the computer-initiated interface, the computer selects the

next stage in the interaction.

 Computer initiated interfaces

43

In the computer-initiated interfaces the computer guides the progress of the user/computer

dialogue. Information is displayed and the user response of the computer takes action or

displays further information.

 User Initiated Interfaces

User initiated interfaces fall into two approximate classes:

 Command driven interfaces: In this type of interface the user inputs commands

 Forms oriented interface: The user calls up an image of the form to his/her screen and

fills in the form. The forms-oriented interface is chosen because it is the best choice.

 Computer Initiated Interfaces

The following computer – initiated interfaces were used:

 The menu system for the user is presented with a list of alternatives and the user chooses

one; of alternatives.

 Questions – answer type dialog system where the computer asks question and takes

action based on the basis of the users reply.

Right from the start the system is going to be menu driven, the opening menu displays the

available options. Choosing one option gives another popup menu with more options. In this

way every option leads the users to data entry form where the user can key in the data.

 Error Message Design

The design of error messages is an important part of the user interface design. As user is bound

to commit some errors or other while designing a system the system should be designed to be

helpful by providing the user with information regarding the error he/she has committed.

This application must be able to produce output at different modules for different inputs.

 8.4 Performance Requirements

Performance is measured in terms of the output provided by the application. Requirement

specification plays an important part in the analysis of a system. Only when the requirement

specifications are properly given, it is possible to design a system, which will fit into required

environment. It rests largely in the part of the users of the existing system to give the

requirement specifications because they are the people who finally use the system. This is

because the requirements have to be known during the initial stages so that the system can be

44

designed according to those requirements. It is very difficult to change the system once it has

been designed and on the other hand designing a system, which does not cater to the

requirements of the user, is of no use.

The requirement specification for any system can be broadly stated as given below:

 The system should be able to interface with the existing system

 The system should be accurate

 The system should be better than the existing system

 The existing system is completely dependent on the user to perform all the

45

9.SOURCE CODE

import binascii

import json

import base64

import base58

import nacl.hash

import nacl.signing

import nacl.secret

import nacl.utils

def to_b64(barray):

 return base64.b64encode(barray).decode('utf8')

def from_b64(string):

return base64.b64decode(string)

def to_bytes(obj):

 if isinstance(obj, bytes):

 return obj

 if isinstance(obj, dict):

 obj = json.dumps(obj, sort_keys=True, separators=(',', ':'))

 return obj.encode('utf8')

def sign(data, sign_key):

 return to_b64(sign_key.sign(to_bytes(data)))

def random(size=nacl.secret.SecretBox.KEY_SIZE):

 return nacl.utils.random(nacl.secret.SecretBox.KEY_SIZE)

def hash(data):

 return nacl.hash.sha256(to_bytes(data)).decode('utf8')

def pkencrypt(data, sender_sk, receiver_pk):

 sender_sk = nacl.public.PrivateKey(base58.b58decode(sender_sk))

46

 receiver_pk = nacl.public.PublicKey(base58.b58decode(receiver_pk))

 box = nacl.public.Box(sender_sk, receiver_pk)

 nonce = nacl.utils.random(nacl.public.Box.NONCE_SIZE)

 encrypted = box.encrypt(to_bytes(data), nonce)

 return to_b64(encrypted)

def pkdecrypt(data, sender_pk, receiver_sk):

 sender_pk = nacl.public.PublicKey(base58.b58decode(sender_pk))

 receiver_sk = nacl.public.PrivateKey(base58.b58decode(receiver_sk))

 box = nacl.public.Box(receiver_sk, sender_pk)

 return box.decrypt(from_b64(data))

def encrypt(data, key):

 box = nacl.secret.SecretBox(key)

 nonce = nacl.utils.random(nacl.secret.SecretBox.NONCE_SIZE)

 cipher = box.encrypt(to_bytes(data), nonce)

 return to_b64(cipher)

def decrypt(cipher, key):

 box = nacl.secret.SecretBox(key)

 decrypted = box.decrypt(cipher)

 return json.loads(decrypted.decode('utf8'))

def keypair(seed=None):

 if not seed:

 seed = nacl.utils.random(32)

 signing_key = nacl.signing.SigningKey(seed=seed)

 private_key = signing_key.to_curve25519_private_key()

 return {'sign': signing_key,

47

 'sign_b58': base58.b58encode(signing_key.encode()),

 'verify': signing_key.verify_key,

 'verify_b58': base58.b58encode(signing_key.verify_key.encode()),

 'private': private_key,

 'private_b58': base58.b58encode(private_key.encode()),

 'public': private_key.public_key,

 'public_b58': base58.b58encode(private_key.public_key.encode()),

 'seed': seed}

def create_keypair(name):

 filename = '.{}.bcdb_seed'.format(name)

 seed = nacl.utils.random(32)

 with open(filename, 'wb') as fh:

 fh.write(seed)

def load_keypair(name):

 filename = '.{}.bcdb_seed'.format(name)

 with open(filename, 'rb') as fh:

 seed = fh.read()

 return keypair(seed)

def resolve(name):

 try:

 return load_keypair(name)['verify_b58']

 except FileNotFoundError:

 return name

48

10. RESULTS AND DISCUSSION

10.1 Implementation and description

Blockchain is a distributed technology where it will store data at multiple nodes in a network

and has inbuilt support for data verification and encryption. Blockchain store data as

block/transaction and associate each block with unique hashcode and before storing new block

or data then Blockchain will verify all blocks hashcode and if data not tamper then result into

same hashcode and verification will be successful otherwise verification failed and due to this

verification Blockchain consider as immutable which means data cannot be alter in any

manner.

Blockchain is of two types Permissioned and Permission less, any person can join in

permission less Blockchain but only authorised companies are allowed to access Permissioned

based Blockchain and all data stored in Permissioned based Blockchain are visible to all

authorised users and to provide privacy author of this paper employing IBE (identity based

encryption) algorithm to encrypt data stored in Permissioned Based Blockchain.

IBE encrypt data using person identity such as Mobile number or username, first it will

generate private and public key by using person identity and then by using private key it will

encrypt data and by using public key it will decrypt data.

Data owner can share encrypted data to other member by generating keys on their identity and

only share users can decrypt and view data and non-share users cannot decrypt and view data.

So only allowed users can access data and achieve data privacy

10.2 Dataset and description

In below screen we are showing code for IBE to generate keys and encrypt data

49

In above screen read red colour comments to know about data encryption using IBE and now to

store data in Permissioned Blockchain we need developed smart contract which will contains

functions to store and retrieve data. In below screen we are showing Smart Contract code for Data

Privacy

50

In above smart contract solidity code we have define functions to save USER signup data and

Messages data. Now we need to deploy above contract in Blockchain by using below steps

1) Go inside ‘hello-eth/node-modules/bin’ folder and then double click on

‘runBlockchain.bat’ file to start Blockchain server and get below screen

2)

3)
4) In above screen Blockchain generated some default keys and accounts and in above screen

type command as ‘truffle migrate’ and press enter key to deploy contract and get below

output

51

5)
6) In above screen in white colour text we can see ‘Data Privacy’ Contract deployed (let above

screen running) and we got contract address also and this address we need to specify in

python program to allow it call Blockchain to store and retrieve data and in below screen

we can see python code calling Blockchain functions

7)
8) In above screen read red colour comments to know about Blockchain contract calling using

python.

52

In this project author is sending messages to phone for verification but we don’t have any SMS

facility or email facility as GMAIL block all email accessing from python or any other code.

So we cannot verify with phone or email but we are verifying users with IBE public and private

keys. Only genuine user will have valid key and they only can decrypt data. In this paper author

implemented this project as NON-TRANSACTION based data sharing application

To implements this project we have designed following modules

1) New User Signup: using this module user can signup with the application

2) User Login: using this module user can login to application

3) Post Private Messages: using this module user can post messages and using USER’S ‘username

or id’ private and public key will be generated and then encrypt message and save in

Blockchain. User can share this message with multiple users

4) View Shared Private Message Blockchain: using this module message owner or share users

can decrypt and view all messages and non-sharing users cannot view or decrypt message.

While sharing data user may upload images also but Blockchain can store only text data not

images so to store images we are using IPFS file server.

Results and description

To run project first double click on ‘Start_IPFS.bat’ to start IPFS file server and get below
output

53

In above screen IPFS server started and it running and now double click on ‘runServer.bat’ file to

start python DJANGO server and get below screen.

In above screen python server started and now open browser and enter URL as

‘http://127.0.0.1:8000/index.html’ and press enter key to get below home page

54

In above screen click on ‘New User Signup Here’ link to signup user

In above screen user is entering signup details and press submit button to store details in

Blockchain and get below output

55

In above screen user signup completed and details saved in Blockchain and now click on ‘User

Login’ link to get below screen

In above screen user is login and after login will get below screen

56

In above screen user can click on ‘Post Private Messages’ link to upload message

In above screen user type some message and then uploading image and then select list of users to

share with and you can select multiple users by holding CTRL key like below screen

57

In above screen user John is uploading some post and then giving share access to user ‘aaa and

bbb’ and user ‘ccc’ cannot access and now press ‘submit’ button to save post in Blockchain and

get below output

58

In above screen we can see message in red colour as POST MESSAGE saved in Blockchain and

with Hashcode and we can see IBE encrypted message and now click on ‘View Shared Private

Message Blockchain’ link to view message in decrypted format

In above screen use can view decrypted message with image and hashcode and this user has shared

post with user ‘aaa’ and now we login as ‘aaa’ and check message

59

In above screen user ‘aaa’ is login and after login will get below screen

In above screen click on ‘View Shared Message’ link to get below output

In above screen user aaa can view all his and shared messages and now we will login as user ‘ccc’

and check message as this user has no sharing permission

60

In above screen user ‘ccc’ is login and after login will get below output

In above screen user can click on ‘View Shared Message’ link to view messages

61

In above screen we can see user CCC has no share permission so he cannot decrypt and view

messages and privacy will be achieved

62

 11.CONCLUSION AND FUTURE SCOPE

We have proposed an improved delicately scheme on top of non-transactional cases in

permissioned blockchain to improve the privacy. Our scheme can hide the information by

encrypting the plaintext into the ciphertext, without using advanced technologies such as ring

signature, homomorphic encryption and zero-knowledge proofs. Our scheme not only avoids

the complicated certificate management and issuance in the traditional PKI system, but has a

high security level which can prevent both disguise and passive attacks, and is functional,

effective and practical for applications. This scheme provides an inspiring way to achieve

delicate confidentiality of the transactions in many applications for non-transactional

scenarios.

Future Scope

The future of data privacy in permissioned blockchains using IBE holds substantial promise,

with ongoing research likely to yield more efficient and secure revocable IBE schemes and

threshold IBE implementations that enhance trust in decentralized settings. The development

of standardized integration frameworks for popular permissioned blockchain platforms will be

crucial for wider adoption, potentially leading to modular privacy solutions incorporating IBE.

Hybrid approaches combining IBE with other Privacy-Enhancing Technologies like ZKPs and

SMPC, alongside its use for securing off-chain data with on-chain access control, will offer

more comprehensive privacy solutions. Specific industries such as healthcare, supply chain,

and finance are poised to benefit significantly from IBE's ability to provide fine-grained,

identity-based access control. Advancements in key management infrastructure, including the

use of secure enclaves for PKG operations and decentralized key management services, will

further bolster the security and practicality of IBE in blockchain environments. While

challenges related to trust in key generation, implementation complexity, performance

overhead, and regulatory compliance need to be addressed, the future trajectory indicates a

significant role for IBE in bolstering data privacy within permissioned blockchain networks.

63

 REFERENCES

[1] The Linux Foundation Helps Hyperledger Build the Most Vibrant Open Source Ecosystem

for Blockchain. http://www.linuxfoundation.org/.

[2] S. Omohundro. Cryptocurrencies, smart contracts, and artificial intelligence. AI Matters,

1(2):19C21, Dec. 2014.

[3] D. D. Detwiler. One nations move to increase food safety with blockchain.

https://www.ibm.com/blogs/blockchain/2018/02/one-nationsmove-to-increase-food-safety-

with-blockchain/,2018. [Online; accessed 1-May-2018].

[4] Shamir, A. Identity-based cryptosystems and signature schemes. In: Blakely, G.R., Chaum,

D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47C53. Springer, Heidelberg (1985)

[5] Boneh, D., Franklin, M. Identity-based encryption from the Weil pairing. In: Kilian, J. (ed.)

CRYPTO 2001. LNCS, vol. 2139, pp. 213C229. Springer, Berlin, Ger- many (2001)

[6] Boneh, D., Boyen, X. Efficient selective-ID secure identity based encryption without

random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027,

pp. 223C238. Springer, Berlin, Germany (2004)

[7] Boneh, D., Boyen, X. Secure identity based encryption without random oracles. In:

Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, Springer, Berlin, Germany (2004).

[8] Gentry, C. Practical identity-based encryption without random oracles. In: Vaudenay, S.

(ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445C464. Springer, Berlin, Germany (2006).

[9] Labs, Shen Noether Mrl. Ring confidential transactions. 2016.

[10] R. S. Wahby, I. Tzialla, A. Shelat, J. Thaler and M. Walfish. DoublyEfficient zkSNARKs

Without Trusted Setup. 2018 IEEE Symposium on Security and Privacy (SP), San Francisco,

CA, 2018, pp. 926-943.

[11] B. Bnz J. Bootle D. Boneh A. Poelstra P. Wuille G. Maxwell. Bulletproofs: Efficient range

proofs for confidential transactions”, IEEE S&P May 2018.

64

[12] A. Chiesa E. Tromer M. Virza. Cluster computing in zero knowledge, EUROCRYPT Apr.

2015.

[13] A. Chiesa M. A. Forbes N. Spooner. A zero knowledge sumcheck and its applications.

CoRR abs1704.02086 2017.

[14] T. P. Pedersen et al. Non-interactive and information-theoretic secure verifiable secret

sharing. in Crypto, vol. 91, pp. 129C140, Springer, 1991.

[15] P. Paillier et al. Public-key cryptosystems based on composite degree residuosity classes.

in Eurocrypt, vol. 99, pp. 223C238, Springer, 1999.

