
i

A

Major Project Report

On

SIGN LANGUAGE DETECTION USING MACHINE LEARNING

Submitted to CMREC, HYDERABAD

In Partial Fulfillment of the requirements for the Award of Degree of

BACHELOR OF TECHNOLOGY

IN

COMPUTER SCIENCE AND ENGINEERING (DATA SCIENCE)

Submitted By

V. Harshitha (218R1A6763)

C. Mahesh (218R1A6718)

P. Sumanth (218R1A6749)

Ch. Harshavardhan (228R5A6703)

Under the Esteemed guidance of

Dr. M. Laxmaiah

Professor & HOD, Department of CSE (Data Science)

Department of Computer Science & Engineering (Data

Science)

CMR ENGINEERING COLLEGE
UGC AUTONOMOUS

(Approved by AICTE, NEW DELHI, Affiliated to JNTU, Hyderabad)

Kandlakoya, Medchal Road, R.R. Dist. Hyderabad-501 401.

2024-2025

ii

CMR ENGINEERING COLLEGE

UGC AUTONOMOUS

(Accredited by NBA, Approved by AICTE NEW DELHI, Affiliated to JNTU, Hyderabad)

KandlaKoya, Medchal Road, Hyderabad-501 401

Department of Computer Science & Engineering (Data Science)

CERTIFICATE

This is to certify that the project entitled “Sign Language Detection Using Machine Learning” is a

Bonafide work carried out by

V. Harshitha (218R1A6763)

C. Mahesh (218R1A6718)

P. Sumanth (218R1A6749)

Ch. Harshavardhan (228R5A6703)

in partial fulfillment of the requirement for the award of the degree of BACHELOR OF

TECHNOLOGY in COMPUTER SCIENCE AND ENGINEERING (DATA SCIENCE) from

CMR Engineering College, affiliated to JNTU, Hyderabad, under our guidance and supervision.

The results presented in this Major project have been verified and are found to be satisfactory. The results

embodied in this Major project have not been submitted to any other university for the award of any other

degree or diploma.

Internal Guide Project

Coordinator

Head of the Department External Examiner

Dr. M. Laxmaiah Mrs. G. Shruthi Dr. M. Laxmaiah

Professor & HOD Assistant Professor Professor & HOD

CSE (Data Science),

CMREC

CSE (Data Science),

CMREC

CSE (Data Science),

CMREC

iii

DECLARATION

This is to certify that the work reported in the present Major project entitled "Sign Language

Detection using Machine Learning” is a record of Bonafide work done by us in the Department

of Computer Science and Engineering (Data Science), CMR Engineering College, JNTU

Hyderabad. The reports are based on the project work done entirely by us and not copied from

any other source. We submit our project for further development by any interested students who

share similar interests to improve the project in the future.

The results embodied in this Major project report have not been submitted to any other

University or Institute for the award of any degree or diploma to the best of our knowledge and

belief.

V. Harshitha (218R1A6763)

C. Mahesh (218R1A6718)

P. Sumanth (218R1A6749)

Ch. Harshavardhan (228R5A6703)

iv

ACKNOWLEDGMENT

We are extremely grateful to Dr. A. Srinivasula Reddy, Principal and Dr. M. Laxmaiah,

HOD, Department of CSE (Data Science), CMR Engineering College for their constant
support.

We are extremely thankful to Dr. M. Laxmaiah, HOD & Professor, Internal Guide,

Department of CSE(DS), for his/ her constant guidance, encouragement and moral support

throughout the project.

We will be failing in duty if We do not acknowledge with grateful thanks to the authors of the

references and other literatures referred in this Project.

We thank Mrs. G. Shruthi, Assistant Professor, CSE(DS) Department, Major Project
Coordinator for her constant support in carrying out the project activities and reviews.

We express my thanks to all staff members and friends for all the help and co-ordination
extended in bringing out this project successfully in time.

Finally, We are very much thankful to our parents who guided me for every step.

V. Harshitha (218R1A6763)

C. Mahesh (218R1A6718)

P. Sumanth (218R1A6749)

Ch. Harshavardhan (228R5A6703)

v

ABSTRACT

 Sign language is a crucial means of communication for deaf and hard-of-hearing

individuals, yet barriers persist in interactions with those unfamiliar with it. Unlike existing

solutions requiring specialized sensors, our approach uses standard cameras with OpenCV

for image capture and employs Convolutional Neural Networks for gesture recognition. The

system processes hand movements in real-time, translating American Sign Language into

text and speech using TensorFlow, MediaPipe, PYTTSX3, and the Enchant library for

improved linguistic precision. By integrating text-to-speech synthesis with PYTTSX3 and

spell- checking with Enchant, our solution enhances readability and pronunciation for

seamless communication. Experimental results demonstrate high accuracy across diverse

environmental conditions and user variations, ensuring robust performance in real-world

scenarios. This accessible and scalable technology fosters greater inclusion in education,

workplaces, and public settings, bridging communication gaps between signing and non-

signing individuals without the need for specialized equipment.

vi

CONTENTS

TOPIC PAGE NO

ABSTRACT v

LIST OF FIGURES vii

LIST OF SCREENSHOTS viii

LIST OF TABLES ix

1. INTRODUCTION

1.1. Overview 01

1.2. Research Motivation 02

1.3. Problem Statement 03

1.4. Applications 04

2. LITERATURE SURVEY 05

3. EXISTING SYSTEM

3.1. Overview 08

3.2. Challenges of existing system 09

4. PROPOSED METHODOLOGY

4.1. Overview 10

4.2. Advantages 10

5. SYSTEM DESIGN

5.1. Architecture Design 11

5.2. UML Diagrams 13

6. REQUIREMENTS SPECIFICATIONS

6.1. Requirement Analysis 18

6.2. What is Python 19

6.3. History of Python 23

6.4. Modules Used in Project 23

6.5. What is Machine Learning 25

6.6. Installation of Python 32

7. IMPLEMENTATION

7.1. Implementation Steps 39

7.2. Modules 40

7.3. Source Code 47

8. TESTING 58

9. RESULTS AND DISCUSSION 60

10. CONCLUSION AND FUTURE SCOPE

10.1 Conclusion 62

10.2 Future Scope 62

11. REFERENCES 63

vii

LIST OF FIGURES

FIG.NO DESCRIPTION PAGENO

5.1.1 System Architecture 12

5.2.1 Class Diagram 14

5.2.2 Use Case Diagram 15

5.2.3 Sequence Diagram 16

5.2.4 Activity Diagram 17

6.6 Python installation Diagrams 32

7.2.1 Data Acquisition 40

7.2.2 Conversion of Image to Gray Image 41

7.2.3 Gray Image to Binary Image 42

7.2.4 Data Preprocessing & Feature Extraction 42

7.2.5 MediaPipe Landmark 43

7.2.6

7.2.7

Hand Gestures

Convolutional Neural Network

44

46

viii

LIST OF SCREENSHOTS

FIG.NO DESCRIPTION PAGENO

7.2.1 Data Acquisition 40

9.1

9.2

 Interface

 Output Based on Sign

 60

 60

ix

LIST OF TABLES

FIG.NO DESCRIPTION PAGENO

2 Literature Survey 7

1

1. INTRODUCTION

1.1 Overview:

The Sign Language Detection Using Machine Learning project aims to bridge the communication

gap for individuals who are deaf or hard of hearing by translating sign language into readable text

in real-time. Sign language, a critical tool for communication among the deaf community, consists

of complex gestures and symbols made with hand movements and facial expressions. Despite its

significance, many people lack proficiency in sign language, which can hinder effective

communication in daily life, educational settings, and professional environments.

This project leverages advancements in computer vision and machine learning to create a system

that can interpret these gestures without the need for specialized hardware or devices. By using a

camera-based setup and applying Convolutional Neural Networks (CNN) for image classification,

the system is designed to identify various hand gestures and translate them into corresponding text.

This approach ensures accessibility and affordability, as it eliminates the need for costly equipment

while still delivering accurate, real-time translations.

Through a streamlined interface and efficient gesture recognition model, this system aims to

enhance accessibility, reduce misunderstandings, and foster a more inclusive environment for the

deaf and hard of hearing community. By providing a low-cost, easy-to-use solution, the project

underscores the potential of machine learning in improving communication accessibility and

promoting inclusivity in a variety of social and professional contexts.

2

1.2 Research Motivation:

Communication is a fundamental human right, yet millions of people in the deaf and hard-of-

hearing community face daily barriers due to the limited understanding and use of sign language

by the general population. Sign language serves as their primary mode of communication, but the

lack of interpreters and real-time translation tools often isolates them from mainstream

communication channels. This creates challenges in education, healthcare, employment, and social

integration.

The motivation behind this project is to leverage the power of Machine Learning (ML) and

Computer Vision to bridge this communication gap. Recent advancements in ML, particularly

deep learning and image processing, have enabled systems to recognize complex patterns such as

human gestures, facial expressions, and hand signs. By applying these technologies, we can

develop an automated Sign Language Detection System that accurately interprets hand gestures

and converts them into text or speech in real time.

Such a system can have widespread applications:

 Assistive technology for people with hearing impairments

 Educational tools for teaching sign language

 Communication aids in public spaces, hospitals, banks, and government offices

 Integration with virtual assistants and smart devices

This project also aims to contribute to the growing research field of human-computer interaction,

where enabling seamless communication between humans and machines is a key focus. By solving

challenges like gesture recognition, dynamic sign processing, and contextual understanding, this

research will pave the way for more inclusive technology solutions.

1.3 Problem Statement:

Communication barriers between the hearing-impaired community and the general population

create significant challenges in daily life, education, healthcare, and professional environments.

Sign language, the primary mode of communication for the deaf and hard-of-hearing, is not widely

understood by the majority of people. This lack of accessibility leads to social isolation and limits

opportunities for the hearing-impaired.

3

Traditional methods of sign language interpretation rely heavily on human interpreters, which are

costly, not always available, and not feasible in real-time scenarios. Existing technological

solutions are limited in accuracy, struggle with dynamic gestures, or require specialized equipment

such as gloves or sensors, making them impractical for widespread use.

Therefore, there is a need to develop an efficient, real-time, and cost-effective system that can

automatically detect and interpret sign language gestures using Machine Learning and Computer

Vision techniques. Such a system can bridge the communication gap by converting sign language

gestures into readable text or speech, making communication more inclusive and accessible for

the hearing-impaired community.

1.4 Applications

1. Assistive Communication Tools

Real-time sign language translation to text or speech to help the deaf and hard-of-hearing

communicate easily with non-sign language users in daily life.

2. Educational Platforms for Learning Sign Language

Interactive learning apps that teach sign language by detecting and correcting user gestures

in real time.

3. Healthcare Communication Systems

Facilitates communication between hearing-impaired patients and healthcare providers in

hospitals, clinics, and emergency situations.

4. Customer Service & Public Interaction Kiosks

Implementation in banks, airports, railway stations, malls, and government offices to

provide inclusive services without the need for human interpreters.

5. Virtual Assistants and Smart Devices Integration

Allow smart home devices and virtual assistants (like Alexa, Google Assistant) to

understand and respond to sign language commands.

4

6. Social Media and Video Conferencing Platforms

Real-time translation of sign language in video calls, live streams, and social media

platforms to enhance accessibility.

7. Automated Subtitling and Content Accessibility

Automatic generation of subtitles by detecting sign language gestures in recorded or live

videos to make media content accessible.

8. Human-Computer Interaction (HCI) Enhancement

Gesture-based control systems for computers, robots, and IoT devices using sign language

as input.

9. Job Support for Hearing Impaired

Enables better workplace communication and helps create more inclusive work

environments by supporting hearing-impaired employees.

10. Law Enforcement and Emergency Response

Assisting police, fire departments, and emergency responders in communicating with

hearing-impaired individuals during critical situations.

5

2. LITERATURE SURVEY

Sign language recognition has emerged as a crucial research area due to its ability to bridge

communication gaps between the deaf and hard-of-hearing community and the general public.

Various methodologies utilizing machine learning, deep learning, and computer vision have been

proposed to effectively translate hand gestures into text and speech. This study examines key

contributions in this field and their relevance to the development of a real-time sign language

recognition system.

Victoria Adebimpe Akano and Adejoke O Olamiti (2018) developed a machine learning-based

system that converts sign language gestures into text and speech. Their approach utilizes feature

extraction from images to achieve accurate gesture classification. This research lays the

groundwork for our project by demonstrating the feasibility of image-based recognition models

in sign detection and translation.

Felix Zhan (2019) introduced a Convolutional Neural Network (CNN)-based hand gesture

recognition system. His research underscores the effectiveness of CNNs in feature extraction and

classification of static hand gestures. The use of deep learning models for classification aligns

with our approach, where a CNN-based architecture is employed to enhance recognition accuracy.

Muhammad AI-Qurishi, Thariq Khalid, and Riad Souissi (2021) conducted a comprehensive

review of deep learning techniques such as CNN, RNN, and LSTM for sign language recognition.

Their study highlights challenges such as dataset limitations, real-time performance constraints,

and computational complexity. By addressing these issues, our project incorporates optimized

model selection and efficient preprocessing to ensure high accuracy and real-time responsiveness.

Ayushi Sharma et al. (2021) implemented object detection using OpenCV and Python, a critical

component in real-time video feed processing for sign language recognition. Their work focuses

on gesture tracking and detection, providing insights into video-based recognition models, which

are incorporated into our project to enhance gesture capture efficiency.

6

N. Rajasekhar et al. (2022) developed a real-time sign language recognition system using CNN,

emphasizing image preprocessing techniques, data augmentation, and custom dataset training.

Their study highlights the importance of data enhancement strategies in improving classification

accuracy, which our project leverages to increase model robustness across different environments.

Sajin Xavier et al. (2023) proposed a real-time gesture recognition system using MediaPipe for

hand tracking and Artificial Neural Networks (ANNs) for classification. Their research focuses

on efficient hand segmentation, real-time tracking, and feature extraction. Inspired by their

findings, our project integrates MediaPipe’s advanced tracking algorithms with deep learning-

based classification to achieve fast and accurate sign language recognition.

The studies reviewed provide valuable insights into deep learning models, feature extraction

techniques, and real-time processing for sign language recognition. By incorporating CNN-based

classification, OpenCV-based object detection, and MediaPipe for real-time tracking, our project

aims to develop an efficient, accurate, and scalable sign language-to-text and speech conversion

system.

Despite these advancements, dataset availability, model optimization, and real-time performance

challenges remain critical areas of improvement. Our research addresses these gaps by

implementing optimized deep learning architectures, enhanced preprocessing techniques, and

real-time gesture recognition strategies. The incorporation of data augmentation, noise reduction,

and efficient hand segmentation ensures adaptability to diverse environments and lighting

conditions, making our system highly practical for real-world applications.

By leveraging these methodologies, the proposed system achieves seamless gesture recognition,

real-time text conversion, and speech output generation, significantly improving accessibility and

communication for individuals with hearing impairments.

7

S.

N

o

Author(s) Title Yea

r

Contributions

1

Victoria

Adebimpe

Akano, Adejoke

O Olamiti

Conversion of Sign

Language To Text

and Speech Using

Machine Learning

Techniques

201

8

Developed a system that converts sign

language into text and speech using machine

learning classifiers. Used feature extraction

techniques from images for gesture

classification.

2

Felix Zhan

Hand Gesture

Recognition with

Convolution

Neural Networks

201

9

Designed a CNN-based system for

classifying hand gestures. Used

Convolutional Neural Networks (CNNs) for

feature extraction and classification of static

hand gestures.

3

Muhammad AI-

Qurishi, Thariq

Khalid, Riad

Souissi

Deep Learning for

Sign Language

Recognition: Current

Techniques,

Benchmarks, and

Open Issues

202

1

Reviewed and compared deep learning

techniques used for sign language

recognition, including CNN, RNN, and

LSTM models. Identified challenges like

dataset availability and real-time

performance issues.

4

Ayushi Sharma,

Jyotsna Pathak,

Muskan Prakash,

J N Singh

Object Detection

using OpenCV and

Python

202

1

Implemented object detection using

OpenCV and Python, essential for video

feed processing in sign language

recognition.

5

N. Rajasekhar,

M. Yadav,

Charitha

Vedantam,

Karthik

Pellakuru,

Chaitanya

Navapete

Sign Language

Recognition using

Machine Learning

Algorithm

202

2

Built a real-time sign language recognition

model using CNN. Used image

preprocessing techniques, data

augmentation, and a custom dataset for

better classification accuracy.

8

3. EXISTING SYSTEM

3.1 Overview

Current systems for interpreting sign language are limited in scope and accessibility. Many rely

on costly sensors, specialized gloves, or large data requirements, which restrict their practicality

for everyday use. These systems often require users to wear additional hardware, making them

inconvenient and expensive for widespread adoption.

One of the main limitations of existing methods is their dependency on specialized equipment.

Many sign language translation tools use depth sensors, infrared cameras, or gloves embedded

with motion sensors to detect hand movements. While these technologies improve accuracy, they

are often expensive and require regular calibration and maintenance. As a result, they are not

feasible for everyday users or small organizations with limited budgets.

Disadvantages of Existing Systems

1. Limited Real-Time Capabilities: Some systems lack real-time processing, causing delays in

gesture translation. This significantly affects usability, making natural conversations difficult.

2. Restricted Vocabulary and Gesture Range: Many current models support only a limited set

of signs, making them ineffective for complex or fluid communication.

3. High Costs: The requirement for specialized hardware increases costs, making these systems

inaccessible to many users.

4. Lack of Contextual Understanding: Existing models often recognize individual gestures but

fail to understand the context in which they are used, making sentence formation difficult.

Key Limitations of Existing Systems

Restricted Vocabulary and Gesture Range: Many models can only recognize a limited number

of signs, which restricts their ability to support complete communication.

High Costs: The use of specialized hardware like gloves or depth sensors makes these systems

expensive and inaccessible for widespread adoption.

Lack of Contextual Understanding: Current models recognize individual gestures but struggle

to form coherent sentences, limiting their practical usability.

9

3.2 Challenges of Existing system

Developing a sign language detection system using machine learning presents numerous

challenges, both in theory and practical implementation. Sign language is a complex visual

language that incorporates hand gestures, dynamic movements, facial expressions, and body

posture—all crucial for accurate interpretation. Capturing these elements in diverse conditions

adds to the difficulty of building a robust system.

Key Challenges in Sign Language Recognition

Complexity of Sign Language: Unlike spoken languages, sign language relies on hand

movements, orientation, facial expressions, and spatial positioning. Accurately capturing all these

elements is challenging.

Variability in Lighting and Backgrounds: Changing lighting conditions, diverse backgrounds,

and variations in camera angles can affect model accuracy and increase error rates.

Lack of a Universal Sign Language Model: Sign languages differ across regions and cultures

(e.g., ASL, BSL, ISL), making it difficult to create a single model that can understand multiple

languages effectively.

Dataset Limitations: The availability of large, diverse, and well-annotated datasets is crucial for

training deep learning models. However, most datasets are limited in scope, leading to issues such

as overfitting and poor generalization.

Real-Time Processing Challenges: Maintaining both speed and accuracy is difficult when

processing video frames in real time. High computational power is often required for efficient

performance.

Distinguishing Similar Signs: Many signs have slight variations in hand orientation, movement,

or position, which can completely change their meaning. Ensuring accurate classification of these

signs is a significant challenge.

Integration of Contextual Understanding: Sign language is not just a series of isolated

gestures—it follows grammatical structures and sentence rules.

Limitations of Current Sign Language Recognition Systems

User Interface: Most systems display only recognized alphabets without forming complete words.

Real-Time Video Capture: Video feed is necessary for gesture recognition, but models often

struggle with accuracy in varying environments.

Effectiveness: These systems are not yet optimized for real-time communication and lack Text-

to-Speech (TTS) features, making them less accessible for visually impaired users.

10

4. PROPOSED METHODOLOGY

4.1 Overview:

To address the limitations of existing sign language recognition systems, our proposed solution

integrates advanced deep learning techniques to provide a more efficient, accessible, and user-

friendly experience. The system eliminates the need for expensive hardware, enhances real-time

recognition, and incorporates additional features to improve usability.

Key Features of the Proposed System

1. Advanced User Interface (UI):

o Interactive UI with real-time text display.

o Supports a more engaging user experience with clear and intuitive design.

2. Improved Real-Time Video Capture:

o Utilizes enhanced machine learning models for more accurate gesture recognition.

o Optimized for different lighting conditions and varying backgrounds.

3. Enhanced Translation Output:

o Stores previously detected alphabets until the user presses "Clear."

o Enables users to form words and sentences more efficiently.

4. Text-to-Speech (TTS) Feature:

o Converts recognized sign language into spoken text.

o Improves accessibility for visually impaired users.

5. Smart Word Suggestions:

o Suggests possible words based on recognized letters.

o Helps users construct words faster (e.g., detecting "H" suggests "Hi" or "Hello").

4.2 Advantages of the Proposed System

 Increased Accuracy: Uses deep learning techniques for better hand gesture recognition.

 Cost-Effective: Does not rely on specialized hardware like gloves or sensors.

 Real-Time Processing: Enables seamless communication without significant delays.

 Improved Accessibility: Supports both text and speech output for broader usability.

This system enhances communication for individuals with hearing impairments and provides a

practical solution for real-time sign language interpretation.

11

5. SYSTEM DESIGN

5.1 Architecture Design

The design phase of the Sign Language Recognition System is a crucial step in defining how the

system will function to achieve the desired results. It involves structuring the solution to meet the

system’s requirements as specified in the requirement document. The design is divided into two

major phases: System Design and Detailed Design.

System Design:

The System Design phase focuses on defining the core components, their interactions, and the

overall architecture of the system. The provided system architecture follows these steps:

1. Capturing Scene Through Device Camera

o The system captures real-time video input of hand gestures using a camera.

o This step provides the raw input necessary for further processing.

2. Video Stream Processing

o The captured video stream is processed to extract meaningful frames.

o Each frame contains an image of the sign language gesture that will be analyzed

further.

3. Segmentation with Thresholding

o The system applies segmentation techniques to isolate the hand region from the

background.

o Thresholding is used to enhance the contrast between the hand and the background,

making it easier to detect gestures.

4. Feature Extraction

o After segmentation, the system extracts relevant features such as hand shape,

position, and movement patterns.

o These features serve as the input data for the machine learning model.

5. CNN-Based Recognition

o The extracted hand features are fed into a Convolutional Neural Network (CNN)

trained on an ASL (American Sign Language) dataset.

o The CNN processes the image through multiple layers, including convolution,

pooling, and fully connected layers, to classify the gesture.

o

12

6. Output Generation

o Once the gesture is recognized, the system produces the corresponding text label.

o The recognized text is then displayed as output, enabling real-time sign language

interpretation.

Detailed Design:

In the Detailed Design phase, the focus shifts to defining the internal logic of each module and

ensuring efficient implementation. This includes:

 Data Preprocessing Techniques:

o Image enhancement using Gaussian blur.

o Hand tracking using OpenCV and MediaPipe.

 Neural Network Architecture:

o Layers used: Convolution, Pooling, Fully Connected Layers.

o Dataset: Pre-trained ASL dataset for classification.

 Speech Conversion:

o The recognized text is converted into speech using pyttsx3.

o Additional language processing using Enchant for spell-checking and corrections.

Fig 5.1.1 System Architecture

13

5.2 UML Diagrams

The Unified Modelling Language (UML) allows software engineers to visually represent an

analysis model using standardized notation governed by syntactic, semantic, and pragmatic rules.

UML helps in designing, visualizing, and documenting different aspects of a system before

implementation.

A UML system is represented using five different views, each describing the system from a distinct

perspective. These views include a set of diagrams to represent different aspects of the system.

1. User Model View

This view represents the system from the user’s perspective and describes how users

interact with the system. It is modelled using Use Case Diagrams, which illustrate the

various actions performed by users and how they interact with the system components.

2. Structural Model View

This view models the static structure of the system, showing different components and their

relationships. It represents the internal components, data, and functionality of the

system.

3. Behavioural Model View

This view represents the dynamic behaviour of the system, depicting interactions between

various components over time. It illustrates how data flows and how different

components interact.

4. Implementation Model View

This view defines how the structural and behavioural aspects of the system are actually

implemented in the software. It focuses on representing components as they are

developed and deployed in the real-world system.

5. Deployment Model View

This view describes how the system will be physically deployed across different devices

and environments, such as servers, cloud storage, and end-user devices.

14

Class diagram:

In software engineering, a class diagram in the Unified Modeling Language (UML) is a type of

static structure diagram that describes the structure of a system by showing the system's classes,

their attributes, operations (or methods), and the relationships among the classes. It explains which

class contains information.

Fig 5.2.1 Class Diagram

The Above Class Diagram represents a structured workflow for a machine learning-based

classification system, consisting of five key stages. The Data Set class handles dataset selection,

import, and viewing before passing it to Data Preprocessing, where missing values are removed,

and categorical data is encoded. Next, the Feature Extraction class splits the dataset into training

and testing sets while extracting key features. These features are then processed by the

Classification class, which detects patterns and makes predictions. Finally, the Result Generation

class presents the classification outcome. This systematic approach ensures efficient data handling,

preprocessing, model training, and result generation, making it suitable for applications like Sign

Language Recognition or Object Detection.

15

Use case Diagram:

A use case diagram at its simplest is a representation of a user's interaction with the system

and depicting the specifications of a use case. A use case diagram can portray the different types

of users of a system and the various ways that they interact with the system. This type of diagram

is typically used in conjunction with the textual use case and will often be accompanied by other

types of diagrams as well.

Fig 5.2.2 Use case Diagram

16

Sequence Diagram :

A sequence diagram is a kind of interaction diagram that shows how processes operate with one

another and in what order. It is a construct of a Message Sequence Chart. A sequence diagram

shows object interactions arranged in time sequence. It depicts the objects and classes involved in

the scenario and the sequence of messages exchanged between the objects needed to carry out the

functionality of the scenario. Sequence diagrams are typically associated with use case realizations

in the Logical View of the system under development. Sequence diagrams are sometimes called

event diagrams, event scenarios, and timing diagrams.

Fig 5.2.3 Sequence Diagram

17

Activity Diagram:

The activity diagram represents a Machine Learning Workflow, starting with data

collection (select, import, view dataset) and preprocessing (handling missing values,

encoding categorical data). It moves to feature extraction (dataset splitting, selecting

important features) and classification (feature detection, prediction). Finally, results are

generated, and the process ends.

Fig 5.2.4 Activity Diagram

18

6. REQUIREMENT SPECIFICATIONS

6.1 REQUIREMENT ANALYSIS:

Requirement Specification provides a high secure storage to the web server efficiently.

Software requirements deal with software and hardware resources that need to be installed on

a serve which provides optimal functioning for the application. These software and hardware

requirements need to be installed before the packages are installed. These are the most common

set of requirements defined by any operation system. These software and hardware

requirements provide a compatible support to the operation system in developing an

application.

Software Requirements:

The software requirements define all necessary software components required for the system,

including the operating system, programming language, and any interfacing software.

 Operating System: Windows XP / 7 / 10

 Programming Language: Python 3.7

Hardware Requirements

The hardware requirements specify the essential configuration characteristics of the system,

including the interface between software and hardware components.

 Processor: Pentium IV 2.4 GHz or higher

 Hard Disk: Minimum 100 GB storage

 RAM: Minimum 1 GB (Recommended: 4 GB or more for better performance)

 Monitor: Any standard LCD/LED monitor with VGA/HDMI support

 Mouse: Any standard optical or wireless mouse

19

6.2 What is Python:

Python is a high-level, interpreted, and general-purpose programming language known for

its simplicity, readability, and versatility. It was created by Guido van Rossum and first

released in 1991. Python supports multiple programming paradigms, including procedural,

object-oriented, and functional programming.

Python language is being used by almost all tech-giant companies like – Google,

Amazon, Facebook, Instagram, Dropbox, Uber… etc.

The biggest strength of Python is huge collection of standard libraries which can be used

for the following –

 Machine Learning

 GUI Applications (like Kivy, Tkinter, PyQt etc.)

 Web frameworks like Django (used by YouTube, Instagram, Dropbox)

 Image processing (like Opencv, Pillow)

 Web scraping (like Scrapy, BeautifulSoup, Selenium)

 Test frameworks

 Multimedia

Advantages of Python:

1. Extensive Libraries

Python downloads with an extensive library and it contain code for various

purposes like regular expressions, documentation-generation, unit-testing, web

browsers, threading, databases, CGI, email, image manipulation, and more. So, we

don’t have to write the complete code for that manually.

20

2. Extensible

As we have seen earlier, Python can be extended to other languages. You can write

some of your code in languages like C++ or C. This comes in handy, especially in

projects.

3. Embeddable

Complimentary to extensibility, Python is embeddable as well. You can put your

Python code in your source code of a different language, like C++. This lets us add

scripting capabilities to our code in the other language.

4. Improved Productivity

The language’s simplicity and extensive libraries render programmers more

productive than languages like Java and C++ do. Also, the fact that you need to

write less and get more things done.

5. IOT Opportunities

Since Python forms the basis of new platforms like Raspberry Pi, it finds the future

bright for the Internet of Things. This is a way to connect the language with the real

world.

6. Simple and Easy

When working with Java, you may have to create a class to print ‘Hello World’. But

in Python, just a print statement will do. It is also quite easy to learn, understand,

and code. This is why when people pick up Python, they have a hard time adjusting

to other more verbose languages like Java.

7. Readable

It is not such a verbose language, reading Python is much like reading English. This

is the reason why it is so easy to learn, understand, and code. It also does not need

curly braces to define blocks, and indentation is mandatory. These further aids the

readability of the code.

8. Object-Oriented

This language supports both the procedural and object-oriented programming

paradigms. While functions help us with code reusability, classes and objects let us

model the real world.

21

9. Free and Open-Source

Like we said earlier, Python is freely available. But not only can you download

Python for free, but you can also download its source code, make changes to it, and

even distribute it. It downloads with an extensive collection of libraries to help you

with your tasks.

10. Portable

When you code your project in a language like C++, you may need to make some

changes to it if you want to run it on another platform. But it isn’t the same with

Python. Here, you need to code only once, and you can run it anywhere. This is

called Write Once Run Anywhere (WORA). However, you need to be careful

enough not to include any system-dependent features.

11. Interpreted

Lastly, we will say that it is an interpreted language. Since statements are executed

one by one, debugging is easier than in compiled languages.

Advantages of Python Over Other Languages

1. Less Coding

Almost all of the tasks done in Python requires less coding when the same task is done

in other languages. Python also has an awesome standard library support, so you don’t

have to search for any third-party libraries to get your job done. This is the reason that

many people suggest learning Python to beginners.

2. Affordable

Python is free therefore individuals, small companies or big organizations can leverage

the free available resources to build applications. Python is popular and widely used so

it gives you better community support.

The 2019 GitHub annual survey showed us that Python has overtaken Java in the most

popular programming language category.

1. Python is for Everyone

2. Python code can run on any machine whether it is Linux, Mac or Windows.

Programmers need to learn different languages for different jobs but with

22

python, you can professionally build web apps, perform data analysis and

machine learning, automate things, do web scraping and also build games and

powerful visualizations. It is an all-rounder programming language.

Disadvantages of Python

So far, we’ve seen why Python is a great choice for your project. But if you choose it,

you should be aware of its consequences as well. Let’s now see the downsides of

choosing Python over another language.

1. Speed Limitations

We have seen that Python code is executed line by line. But since Python is interpreted,

it often results in slow execution. This, however, isn’t a problem unless speed is a focal

point for the project. In other words, unless high speed is a requirement, the benefits

offered by Python are enough to distract us from its speed limitations.

2. Weak in Mobile Computing and Browsers

While it serves as an excellent server-side language, Python is much rarely seen on the

client- side. Besides that, it is rarely ever used to implement smartphone-based

applications. One such application is called Carbonnelle.

The reason it is not so famous despite the existence of Brython is that it isn’t that secure.

3. Design Restrictions

As you know, Python is dynamically-typed. This means that you don’t need to declare

the type of variable while writing the code. It uses duck-typing. But wait, what’s that?

Well, it just means that if it looks like a duck, it must be a duck. While this is easy on

the programmers during coding, it can raise run-time errors.

4. Underdeveloped Database Access Layers

Compared to more widely used technologies like JDBC (Java Database

Connectivity) and ODBC (Open Database Connectivity), Python’s database access

layers are a bit underdeveloped. Consequently, it is less often applied in huge

enterprises.

23

5. Simple

No, we’re not kidding. Python’s simplicity can indeed be a problem. Take my example.

I don’t do Java; I’m more of a Python person. To me, its syntax is so simple that the

verbosity of Java code seems unnecessary.

6.3 History of Python:

Python is a high-level, interpreted programming language that was developed by Guido van

Rossum in the late 1980s at Centrum Wiskunde & Informatica (CWI), Netherlands. The

development of Python was heavily influenced by the ABC programming language, which was

also created at CWI. ABC was designed to be a simple and easy-to-use language but had some

limitations that Guido van Rossum aimed to overcome.

During his work on Amoeba, a distributed operating system, van Rossum saw the need for a

scripting language that combined simplicity, readability, and powerful functionality. Drawing

inspiration from ABC, he designed Python to:

 Use indentation for block structuring, making it more readable than languages that rely on

curly braces {} or keywords like begin and end.

 Provide built-in data types such as lists, dictionaries, strings, and numbers for easy

manipulation.

 Feature a simple virtual machine, parser, and runtime, making it lightweight and efficient.

The first official version, Python 1.0, was released in 1991, introducing fundamental features

like exception handling, modules, and functions. Over time, Python evolved with the release

of Python 2.x (2000) and Python 3.x (2008), enhancing its usability, performance, and support

for modern programming paradigms.

6.4 Modules Used in the Project

This section provides an overview of the essential Python libraries and modules utilized in the

Sign Language Recognition System. These modules enable various functionalities, including

image processing, hand tracking, gesture recognition, text-to-speech conversion, and user

interface development.

1. NumPy:

NumPy is a fundamental library for numerical computing in Python. It provides support

for large, multi-dimensional arrays and matrices, along with a collection of mathematical

functions to operate on these arrays efficiently. In this project, numpy is used for handling

image data, performing matrix operations, and manipulating pixel values.

24

2. Math:

The math module offers various mathematical functions that are useful for computations

related to gesture recognition. It is used to perform calculations such as logarithmic

transformations, angle measurements, and trigonometric functions. These mathematical

operations help in analyzing hand movement patterns and improving accuracy in feature

extraction from hand gestures.

3. OpenCV:

OpenCV is an open-source computer vision library that provides powerful tools for real-

time image and video processing. It is widely used in object detection, face recognition,

and gesture tracking applications. In this project, OpenCV is utilized to capture live video

feeds from the webcam, preprocess the images by adjusting lighting conditions using

Gaussian blur, and extract features from hand gestures. Additionally, OpenCV assists in

removing the background to enhance the focus on hand movements, improving model

accuracy.

4. OS and System Modules:

The os and sys modules enable interaction with the operating system and provide

functionalities for file management, directory navigation, and handling system paths.

These modules are particularly useful for managing datasets, loading pre-trained models,

and ensuring smooth execution of the program across different platforms. By automating

file handling operations, these modules contribute to a more organized and efficient

workflow.

5. Traceback:

The traceback module is used for debugging and error handling in Python applications. It

provides detailed reports of exceptions and errors encountered during execution, allowing

developers to trace back to the source of the problem. In this project, traceback helps in

identifying issues that may arise during hand tracking, image processing, or model

inference, making the system more robust and easier to maintain.

6. Pyttsx3:

Pyttsx3 is a text-to-speech (TTS) conversion library that allows Python applications to

generate spoken output. Unlike cloud-based TTS services, pyttsx3 runs locally, ensuring

faster and more private speech generation. In this project, it is used to convert recognized

sign language gestures into speech, enhancing accessibility for users who rely on audio

feedback. This feature is crucial for making communication smoother between sign

language users and non-signing individuals.

25

7. Keras:

Keras is a high-level neural networks API used for building and training deep learning

models. The load_model function from Keras is utilized in this project to load a pre-trained

Convolutional Neural Network (CNN) model that classifies hand gestures.

8. Cvzone:

The HandDetector module from cvzone is a simplified hand tracking tool that builds on

OpenCV and MediaPipe’s hand tracking features. This module is responsible for detecting

hands in the webcam feed, identifying key points on the hand, and tracking movement in

real time. It helps in segmenting hand gestures and extracting essential features required

for classification. By using this module, the system achieves more stable and accurate hand

recognition.

9. Enchant:

The enchant module is a spell-checking library that provides dictionary support for various

languages. In this project, it is used to validate and correct recognized words or phrases

before displaying them as text output. By integrating enchant, the system ensures that the

converted text is meaningful and correctly formatted, reducing potential errors in sign-to-

text conversion.

10. Tkinter:

Tkinter is a built-in Python library used for creating graphical user interfaces (GUIs). It

enables the development of interactive windows, buttons, and text displays. In this project,

Tkinter is utilized to design a user-friendly interface where recognized sign language

gestures are displayed in text format, along with corresponding speech output. This

enhances the overall usability of the system, making it more accessible for end-users.

11. PIL:

The Pillow (PIL) library is an image processing module that supports various image

formats and operations such as opening, editing, and converting images. In this project,

PIL.Image and PIL.ImageTk are used to process and display images within the Tkinter

GUI, ensuring smooth visualization of hand gesture inputs and recognition results.

By integrating these modules, the Sign Language Recognition System effectively

processes hand gestures in real-time, translates them into text, and converts the output into

speech. Each module plays a vital role in making the system efficient, interactive, and

accessible for users.

26

6.5 What is Machine Learning: -

Before we take a look at the details of various machine learning methods, let's start by looking

at what machine learning is, and what it isn't. Machine learning is often categorized as a

subfield of artificial intelligence, but I find that categorization can often be misleading at first

brush. The study of machine learning certainly arose from research in this context, but in the

data science application of machine learning methods, it's more helpful to think of machine

learning as a means of building models of data.

Fundamentally, machine learning involves building mathematical models to help understand

data. "Learning" enters the fray when we give these models tunable parameters that can be

adapted to observed data; in this way the program can be considered to be "learning" from the

data. Once these models have been fit to previously seen data, they can be used to predict and

understand aspects of newly observed data. I'll leave to the reader the more philosophical

digression regarding the extent to which this type of mathematical, model-based "learning" is

similar to the "learning" exhibited by the human brain. Understanding the problem setting in

machine learning is essential to using these tools effectively, and so we will start with some

broad categorizations of the types of approaches we'll discuss here.

Categories Of Machine Leaning: -

At the most fundamental level, machine learning can be categorized into two main types:

supervised learning and unsupervised learning.

Supervised learning involves somehow modeling the relationship between measured features

of data and some label associated with the data; once this model is determined, it can be used

to apply labels to new, unknown data. This is further subdivided into classification tasks

and regression tasks: in classification, the labels are discrete categories, while in regression,

the labels are continuous quantities. We will see examples of both types of supervised learning

in the following section.

Unsupervised learning involves modeling the features of a dataset without reference to any

label, and is often described as "letting the dataset speak for itself." These models include tasks

such as clustering and dimensionality reduction. Clustering algorithms identify distinct

groups of data, while dimensionality reduction algorithms search for more succinct

representations of the data. We will see examples of both types of unsupervised learning in the

27

following section.

Need for Machine Learning

Human beings, at this moment, are the most intelligent and advanced species on earth because

they can think, evaluate and solve complex problems. On the other side, AI is still in its initial

stage and haven’t surpassed human intelligence in many aspects. Then the question is that

what is the need to make machine learn? The most suitable reason for doing this is, “to make

decisions, based on data, with efficiency and scale”.

Lately, organizations are investing heavily in newer technologies like Artificial Intelligence,

Machine Learning and Deep Learning to get the key information from data to perform several

real-world tasks and solve problems. We can call it data-driven decisions taken by machines,

particularly to automate the process. These data-driven decisions can be used, instead of using

programing logic, in the problems that cannot be programmed inherently. The fact is that we

can’t do without human intelligence, but other aspect is that we all need to solve real-world

problems with efficiency at a huge scale. That is why the need for machine learning arises.

Challenges in Machine Learning: -

While Machine Learning is rapidly evolving, making significant strides with cybersecurity and

autonomous cars, this segment of AI as whole still has a long way to go. The reason behind is

that ML has not been able to overcome number of challenges. The challenges that ML is facing

currently are −

Quality of data − Having good-quality data for ML algorithms is one of the biggest challenges.

Use of low-quality data leads to the problems related to data preprocessing and feature

extraction.

Time-Consuming task − Another challenge faced by ML models is the consumption of time

especially for data acquisition, feature extraction and retrieval.

Lack of specialist persons − As ML technology is still in its infancy stage, availability of

expert resources is a tough job.

No clear objective for formulating business problems − Having no clear objective and well-

defined goal for business problems is another key challenge for ML because this technology

is not that mature yet.

Issue of overfitting & underfitting − If the model is overfitting or underfitting, it cannot be

28

represented well for the problem.

Curse of dimensionality − Another challenge ML model faces is too many features of data

points. This can be a real hindrance.

Difficulty in deployment − Complexity of the ML model makes it quite difficult to be

deployed in real life.

Applications of Machines Learning: -

Machine Learning is the most rapidly growing technology and according to researchers we are

in the golden year of AI and ML. It is used to solve many real-world complex problems which

cannot be solved with traditional approach. Following are some real-world applications of ML-

 Emotion analysis

 Sentiment analysis

 Error detection and prevention

 Weather forecasting and prediction

 Stock market analysis and forecasting

 Speech synthesis

 Speech recognition

 Customer segmentation

 Object recognition

 Fraud detection

 Fraud prevention

 Recommendation of products to customer in online shopping

How to Start Learning Machine Learning?

Arthur Samuel coined the term “Machine Learning” in 1959 and defined it as a “Field of study

that gives computers the capability to learn without being explicitly programmed”.

And that was the beginning of Machine Learning! In modern times, Machine Learning is one

of the most popular (if not the most!) career choices. According to Indeed, Machine Learning

http://blog.indeed.com/2019/03/14/best-jobs-2019/

29

Engineer Is The Best Job of 2019 with a 344% growth and an average base salary

of $146,085 per year.

But there is still a lot of doubt about what exactly is Machine Learning and how to start learning

it? So this article deals with the Basics of Machine Learning and also the path you can follow

to eventually become a full-fledged Machine Learning Engineer. Now let’s get started!!!

How to start learning ML?

This is a rough roadmap you can follow on your way to becoming an insanely talented Machine

Learning Engineer. Of course, you can always modify the steps according to your needs to

reach your desired end-goal!

Step 1 – Understand the Prerequisites

In case you are a genius, you could start ML directly but normally, there are some prerequisites

that you need to know which include Linear Algebra, Multivariate Calculus, Statistics, and

Python. And if you don’t know these, never fear! You don’t need a Ph.D. degree in these topics

to get started but you do need a basic understanding.

(a) Learn Linear Algebra and Multivariate Calculus

Both Linear Algebra and Multivariate Calculus are important in Machine Learning. However,

the extent to which you need them depends on your role as a data scientist. If you are more

focused on application heavy machine learning, then you will not be that heavily focused on

maths as there are many common libraries available. But if you want to focus on R&D in

Machine Learning, then mastery of Linear Algebra and Multivariate Calculus is very important

as you will have to implement many ML algorithms from scratch.

(b) Learn Statistics

Data plays a huge role in Machine Learning. In fact, around 80% of your time as an ML expert

will be spent collecting and cleaning data. And statistics is a field that handles the collection,

analysis, and presentation of data. So it is no surprise that you need to learn it!!!

Some of the key concepts in statistics that are important are Statistical Significance, Probability

30

Distributions, Hypothesis Testing, Regression, etc. Also, Bayesian Thinking is also a very

important part of ML which deals with various concepts like Conditional Probability, Priors,

and Posteriors, Maximum Likelihood, etc.

(c) Learn Python

Some people prefer to skip Linear Algebra, Multivariate Calculus and Statistics and learn them

as they go along with trial and error. But the one thing that you absolutely cannot skip is Python!

While there are other languages you can use for Machine Learning like R, Scala, etc. Python is

currently the most popular language for ML. In fact, there are many Python libraries that are

specifically useful for Artificial Intelligence and Machine Learning such

as Keras, TensorFlow, Scikit-learn, etc.

So if you want to learn ML, it’s best if you learn Python! You can do that using various online

resources and courses.

Step 2 – Learn Various ML Concepts

Now that you are done with the prerequisites, you can move on to actually learning ML (Which

is the fun part!!!) It’s best to start with the basics and then move on to the more complicated

stuff. Some of the basic concepts in ML are:

(a) Terminologies of Machine Learning

Model – A model is a specific representation learned from data by applying some machine

learning algorithm. A model is also called a hypothesis.

Feature – A feature is an individual measurable property of the data. A set of numeric features

can be conveniently described by a feature vector. Feature vectors are fed as input to the model.

For example, in order to predict a fruit, there may be features like color, smell, taste, etc.

Target (Label) – A target variable or label is the value to be predicted by our model. For the

fruit example discussed in the feature section, the label with each set of input would be the name

of the fruit like apple, orange, banana, etc.

Training – The idea is to give a set of inputs(features) and it’s expected outputs(labels), so after

training, we will have a model (hypothesis) that will then map new data to one of the categories

trained on.

Prediction – Once our model is ready, it can be fed a set of inputs to which it will provide a

predicted output(label).

b) Types of Machine Learning

https://www.geeksforgeeks.org/python-programming-language/
https://keras.io/
https://www.tensorflow.org/
https://scikit-learn.org/stable/

31

Supervised Learning – This involves learning from a training dataset with labeled data

using classification and regression models. This learning process continues until the

required level of performance is achieved.

Unsupervised Learning – This involves using unlabeled data and then finding the

underlying structure in the data in order to learn more and more about the data itself using

factor and cluster analysis models.

Semi-supervised Learning – This involves using unlabeled data like Unsupervised

Learning with a small amount of labeled data. Using labeled data vastly increases the

learning accuracy and is also more cost-effective than Supervised Learning.

Reinforcement Learning – This involves learning optimal actions through trial and error.

So, the next action is decided by learning behaviors that are based on the current state and

that will maximize the reward in the future.

Advantages of Machine learning: -

Easily identifies trends and patterns -Machine Learning can review large volumes of data and

discover specific trends and patterns that would not be apparent to humans. For instance, for an e-

commerce website like Amazon, it serves to understand the browsing behaviors and purchase

histories of its users to help cater to the right products, deals, and reminders relevant to them. It

uses the results to reveal relevant advertisements to them.

No human intervention needed (automation) -With ML, you don’t need to babysit your project

every step of the way. Since it means giving machines the ability to learn, it lets them make

predictions and also improve the algorithms on their own. A common example of this is anti-virus

software’s; they learn to filter new threats as they are recognized. ML is also good at recognizing

spam.

Continuous Improvement -As ML algorithms gain experience, they keep improving in accuracy

and efficiency. This lets them make better decisions. Say you need to make a weather forecast

model. As the amount of data you have keeps growing, your algorithms learn to make more

accurate predictions faster.

Handling multi-dimensional and multi-variety data -Machine Learning algorithms are good at

handling data that are multi-dimensional and multi-variety, and they can do this in dynamic or

uncertain environments.

Wide Applications -You could be an e-tailer or a healthcare provider and make ML work for you.

https://data-flair.training/blogs/machine-learning-algorithms/

32

Where it does apply, it holds the capability to help deliver a much more personal experience to

customers while also targeting the right customers.

Disadvantages of Machine Learning: -

1. Data Acquisition

Machine Learning requires massive data sets to train on, and these should be inclusive/unbiased,

and of good quality. There can also be times where they must wait for new data to be generated.

2. Time and Resources

ML needs enough time to let the algorithms learn and develop enough to fulfill their purpose with

a considerable amount of accuracy and relevancy. It also needs massive resources to function.

This can mean additional requirements of computer power for you.

3. Interpretation of Results

Another major challenge is the ability to accurately interpret results generated by the algorithms.

You must also carefully choose the algorithms for your purpose.

4. High error-susceptibility

Machine Learning is autonomous but highly susceptible to errors. Suppose you train an

algorithm with data sets small enough to not be inclusive. You end up with biased

predictions coming from a biased training set. This leads to irrelevant advertisements being

displayed to customers. In the case of ML, such blunders can set off a chain of errors that

can go undetected for long periods of time. And when they do get noticed, it takes quite

some time to recognize the source of the issue, and even longer to correct it.

6.6 How to Install Python on Windows and Mac

There have been several updates in the Python version over the years. The question is

how to install Python? It might be confusing for the beginner who is willing to start

learning Python but this tutorial will solve your query. The latest or the newest version

of Python is version

https://en.wikipedia.org/wiki/Machine_learning

33

3.7.4 or in other words, it is Python 3.

Before you start with the installation process of Python. First, you need to know

about your System Requirements. Based on your system type i.e., operating system and

based processor, you must download the python version. My system type is a Windows

64-bit operating system. So, the steps below are to install python version 3.7.4 on

Windows 7 device or to install Python 3. Download the Python Cheat sheet here. The

steps on how to install Python on Windows 10, 8 and 7 are divided into 4 parts to help

understand better.

Download the Correct version into the system

Step 1: Go to the official site to download and install python using Google Chrome or

any other web browser. OR Click on the following link: https://www.python.org

Now, check for the latest and the correct version for your operating

system.

Step 2: Click on the Download Tab.

http://www.python.org/

34

Step 3: You can either select the Download Python for windows 3.7.4 button in Yellow

Color or you can scroll further down and click on download with respective to their

version. Here, we are downloading the most recent python version for windows 3.7.4

Step 4: Scroll down the page until you find the Files option.

Step 5: Here you see a different version of python along with the operating system.

 To download Windows 32-bit python, you can select any one from the three

options: Windows x86 embeddable zip file, Windows x86 executable installer

or Windows x86 web-based installer.

 To download Windows 64-bit python, you can select any one from the three

options: Windows x86-64 embeddable zip file, Windows x86-64 executable

installer or Windows x86-64 web-based installer.

35

Here we will install Windows x86-64 web-based installer. Here your first part

regarding which version of python is to be downloaded is completed. Now we

move ahead with the second part in installing python i.e., Installation

Note: To know the changes or updates that are made in the version you can click

on the Release Note Option.

Installation of Python

Step 1: Go to Download and Open the downloaded python version to carry out the

installation process.

Step 2: Before you click on Install Now, make sure to put a tick on Add Python 3.7 to

PATH.

36

Step 3: Click on Install NOW After the installation is successful. Click on Close.

With these above three steps on python installation, you have successfully and

correctly installed Python. Now is the time to verify the installation.

Note: The installation process might take a couple of minutes.

Verify the Python Installation

Step 1: Click on Start

Step 2: In the Windows Run Command, type “cmd”.

Step 3: Open the Command prompt option.

Step 4: Let us test whether the python is correctly installed. Type python –V and press Enter.

37

Step 5: You will get the answer as 3.7.4

Note: If you have any of the earlier versions of Python already installed. You must

first uninstall the earlier version and then install the new one.

Step 1: Click on Start

Step 2: In the Windows Run command, type “python idle”.

Step 3: Click on IDLE (Python 3.7 64-bit) and launch the program

Step 4: To go ahead with working in IDLE you must first save the file. Click on File >

Click on Save

38

Step 5: Name the file and save as type should be Python files. Click on SAVE. Here I

have named the files as Hey World.

Step 6: Now for e.g., enter print (“Hey World”) and Press Enter.

You will see that the command given is launched. With this, we end our tutorial on how

to install Python. You have learned how to download python for windows into your

respective operating system.

Note: Unlike Java, Python does not need semicolons at the end of the statements

otherwise it won’t work.

39

7. IMPLEMENTATION

7.1 Implementation Steps

The implementation of the Sign Language Recognition System involves multiple stages,

including data preprocessing, feature extraction, model training, evaluation, and real-time

sign prediction. The system integrates computer vision (OpenCV, MediaPipe), deep

learning (CNN), and NLP-based text-to-speech conversion (pyttsx3 and enchant) to

enhance the accuracy of sign language recognition. Various classifiers and deep learning

models are evaluated using performance metrics such as accuracy, precision, recall, and

F1-score, ensuring a reliable and efficient recognition system for real-time communication.

 Upload Sign Language Dataset – The dataset consists of images of hand

gestures representing different signs. It is pre-processed for training by resizing,

normalizing, and augmenting the images.

 Extract Key Features – Feature extraction is performed using OpenCV and

MediaPipe. The system detects hand landmarks, removes the background,

applies Gaussian blur for lighting adjustments, and extracts critical features for

gesture recognition.

 Split Data into Training and Testing Sets – The dataset is divided into training

and testing subsets to ensure the model generalizes well to unseen gestures.

 Train Classifiers on Full Feature Set – The CNN-based deep learning model

is trained on the full set of extracted features, learning to classify different hand

gestures with high accuracy.

 Train Classifiers on Selected Features – A refined training approach is

applied using only the most relevant features, improving computational

efficiency and reducing overfitting.

 Performance Comparison Graph – The model’s performance is evaluated

using accuracy, precision, recall, and F1-score. A comparison graph is plotted

to visualize the effectiveness of different approaches.

 Comparison Table of Classifier Performance – A table summarizing the

performance of various models (CNN) is created, showcasing their strengths

and weaknesses in sign language recognition.

40

 Predict Sign Language Gesture in Real-Time – The final model is deployed

to process live hand gestures, convert recognized signs into text, and use

pyttsx3 to generate speech output, ensuring seamless communication.

7.2 Modules

The Sign Language Recognition System is structured into four key modules: Data

Acquisition, Data Preprocessing & Feature Extraction, Gesture Classification, and Text &

Speech Translation. These modules work together to ensure accurate real-time gesture

recognition and conversion into both text and speech.

1. Data Acquisition:

The different approaches to acquire data about the hand gesture can be done in the

following ways:

It uses electromechanical devices to provide exact hand configuration, and position.

Different glove-based approaches can be used to extract information. But it is expensive

and not user friendly.

In vision-based methods, the computer webcam is the input device for observing the

information of hands and/or fingers. The Vision Based methods require only a camera,

thus realizing a natural interaction between humans and computers without the use of

any extra devices, thereby reducing costs. The main challenge of vision-based hand

detection ranges from coping with the large variability of the human hand’s appearance

due to a huge number of hand movements, to different skin-color possibilities as well

as to the variations in viewpoints, scales, and speed of the camera capturing the scene

Fig 7.2.1 Data Acquisition

41

2. Data Preprocessing & Feature Extraction:

In this approach for hand detection, firstly we detect hand from image that is

acquired by webcam and for detecting a hand we used media pipe library which is

used for image processing. So, after finding the hand from image we get the

region of interest (Roi) then we cropped that image and convert the image to gray

image using OpenCV library after we applied the gaussian blur. The filter can be

easily applied using open computer vision library also known as OpenCV. Then

we converted the gray image to binary image using threshold and Adaptive

threshold methods.

We have collected images of different signs of different angles for sign letter A to

Z

Fig 7.2.2 Conversion of Image to Gray Image

In this method there are many loop holes like your hand must be ahead of

clean soft background and that is in proper lightning condition then only this

method will give good accurate results but in real world we don’t get good

background everywhere and we don’t get good lightning conditions too

42

.

Fig 7.2.3 Gray Image to Binary Image

Fig 7.2.4 Data preprocessing and Feature Extraction

So, to overcome this situation we try different approaches then we reached at

one interesting solution in which firstly we detect hand from frame using

mediapipe and get the hand landmarks of hand present in that image then we draw

and connect those landmarks in simple white image

43

MEDIAPIPE LANDMARK SYSTEM:

Fig 7.2.5 Mediapipe Landmark

The MediaPipe Landmark System is a powerful computer vision framework that

detects and tracks key landmarks on objects such as hands, faces, and bodies in real-

time. It is widely used in applications such as gesture recognition, face tracking, pose

estimation, and hand tracking, making it an essential tool in sign language

recognition.

1. Overview of MediaPipe Hand Tracking

MediaPipe provides pre-trained deep learning models that accurately track hand

positions and key points. The Hand Tracking module uses machine learning

algorithms to:

Detect the presence of a hand in a video frame.

Identify 21 key landmarks on the hand, including finger joints and palm points.

Track hand movement in real-time with high accuracy.

2. Hand Landmark Detection Process

The landmark detection process follows these steps:

Hand Detection: The system first localizes the hand in the image or video frame.

Region of Interest (ROI) Extraction: The detected hand is cropped and resized for

consistent processing.

Landmark Prediction: The 21 key points (joints of fingers and palm) are

identified and mapped.

44

Pose Normalization: To improve accuracy, the detected landmarks are normalized

to handle variations in hand size, orientation, and lighting.

Real-Time Tracking: The system continuously updates the landmark positions as

the hand moves, ensuring smooth gesture recognition.

3. Key Features of MediaPipe Hand Tracking

High Accuracy: Uses deep learning models trained on large datasets for precise

tracking.

Low Latency: Processes hand landmarks in real-time (30-60 FPS), making it ideal

for live applications like sign language recognition.

Robustness to Variations: Works under different lighting conditions, hand

orientations, and background environments.

Efficient Processing: Optimized for CPU and GPU, enabling real-time

performance on mobile and embedded devices.

Now we will get these landmark points and draw it in plain white background using

OpenCV library .by doing this we tackle the situation of background and lightning

conditions because the mediapipe library will give us landmark points in any

background and mostly in any lightning conditions. We have collected 180

skeleton images of alphabets from a to z.

Fig 7.2.6 Hand Gestures

45

3. Gesture Classification:

Gesture classification is the process of recognizing and categorizing human

hand gestures into predefined classes. It is widely used in applications such as

sign language recognition, human-computer interaction, and augmented reality.

By leveraging machine learning techniques, gesture classification enables

computers to interpret hand movements accurately, facilitating seamless

communication between humans and machines.

Convolutional Neural Network (CNN):

A Convolutional Neural Network (CNN) is a class of neural networks that are

highly useful in solving computer vision problems. They take inspiration from

the actual perception of vision that takes place in the visual cortex of the human

brain. CNNs utilize a filter/kernel to scan through the entire pixel values of an

image, making computations by setting appropriate weights to enable the

detection of specific features.

CNN is equipped with several layers that work together to extract and process

features from an image:

 Convolution Layer: Extracts key features from the input image using

filters.

 Max Pooling Layer: Reduces spatial dimensions while retaining

important features.

 Flatten Layer: Converts the feature maps into a one-dimensional

vector.

 Dense Layer: Fully connected layer that processes high-level features.

 Dropout Layer: Prevents overfitting by randomly disabling neurons

during training.

 Fully Connected Neural Network Layer: Classifies the extracted

features into different categories.

46

Fig 7.2.7 Convolutional Neural Network

These layers together form a powerful architecture that can effectively identify and

classify features in an image. The initial layers focus on detecting low-level

features such as edges and textures, while deeper layers recognize more complex,

high-level patterns. By the end of the CNN architecture, the entire image is reduced

to a single vector of class scores, enabling accurate classification of gestures.

4. Text to Speech Translation and Suggestions:

Text-to-Speech (TTS) translation is a technology that converts written text into

spoken words. It is widely used in applications such as virtual assistants,

accessibility tools for visually impaired users, and language learning. By

leveraging natural language processing (NLP) and speech synthesis techniques,

TTS systems can generate human-like speech from text input.

Libraries Used:

For TTS translation and text processing, the following libraries are commonly

used:

 pyttsx3: A text-to-speech conversion library in Python that works offline

and supports multiple speech engines.

 enchant: A library for spell-checking and text correction, useful for

refining input text before TTS conversion.

Working of TTS System:

1. Text Input: The user provides the text to be converted into speech.

2. Text Processing: Enchant is used to check and correct spelling errors.

47

3. Speech Synthesis: pyttsx3 converts the corrected text into speech using

a selected voice engine.

4. Audio Output: The generated speech is played through the system

speakers or saved as an audio file.

By integrating pyttsx3 and enchant, TTS translation systems can be made more

robust and efficient, improving user experience across various domains.

7.3 Source Code:

DataCollection.py:

import cv2

from cvzone.HandTrackingModule import HandDetector

import numpy as np

import os as oss

import traceback

capture = cv2.VideoCapture(0)

hd = HandDetector(maxHands=1)

hd2 = HandDetector(maxHands=1)

count = len(oss.listdir("D:\\sign2text_dataset_3.0\\AtoZ_3.0\\A\\"))

c_dir = 'A'

offset = 15

step = 1

flag=False

suv=0

white=np.ones((400,400),np.uint8)*255

cv2.imwrite("C:\\Users\\devansh

raval\\PycharmProjects\\pythonProject\\white.jpg",white)

while True:

try:

_, frame = capture.read()

frame = cv2.flip(frame, 1)

48

hands= hd.findHands(frame, draw=False, flipType=True)

white = cv2.imread("C:\\Users\\devansh

raval\\PycharmProjects\\pythonProject\\white.jpg")

if hands:

hand = hands[0]

x, y, w, h = hand['bbox']

image =np.array(frame[y - offset:y + h + offset, x - offset:x + w + offset])

handz,imz = hd2.findHands(image, draw=True, flipType=True)

if handz:

hand = handz[0]

pts = hand['lmList']

x1,y1,w1,h1=hand['bbox']

os=((400-w)//2)-15

os1=((400-h)//2)-15

for t in range(0,4,1):

cv2.line(white,(pts[t][0]+os,pts[t][1]+os1),(pts[t+1][0]+os,pts[t+1][1]+os1),(

0,255,0),3)

for t in range(5,8,1):

cv2.line(white,(pts[t][0]+os,pts[t][1]+os1),(pts[t+1][0]+os,pts[t+1][1]+os1),(

0,255,0),3)

for t in range(9,12,1):

cv2.line(white,(pts[t][0]+os,pts[t][1]+os1),(pts[t+1][0]+os,pts[t+1][1]+os1),(

0,255,0),3)

for t in range(13,16,1):

cv2.line(white,(pts[t][0]+os,pts[t][1]+os1),(pts[t+1][0]+os,pts[t+1][1]+os1),(

0,255,0),3)

for t in range(17,20,1):

cv2.line(white,(pts[t][0]+os,pts[t][1]+os1),(pts[t+1][0]+os,pts[t+1][1]+os1),(

0,255,0),3)

cv2.line(white, (pts[5][0]+os, pts[5][1]+os1), (pts[9][0]+os, pts[9][1]+os1), (0,

255, 0), 3)

cv2.line(white, (pts[9][0]+os, pts[9][1]+os1), (pts[13][0]+os, pts[13][1]+os1),

(0, 255, 0), 3)

cv2.line(white, (pts[13][0]+os, pts[13][1]+os1), (pts[17][0]+os,

49

pts[17][1]+os1), (0, 255, 0), 3)

cv2.line(white, (pts[0][0]+os, pts[0][1]+os1), (pts[5][0]+os, pts[5][1]+os1), (0,

255, 0), 3)

cv2.line(white, (pts[0][0]+os, pts[0][1]+os1), (pts[17][0]+os, pts[17][1]+os1),

(0, 255, 0), 3)

skeleton0=np.array(white)

zz=np.array(white)

for i in range(21):

cv2.circle(white,(pts[i][0]+os,pts[i][1]+os1),2,(0 , 0 , 255),1)

skeleton1=np.array(white)

cv2.imshow("1",skeleton1)

frame = cv2.putText(frame, "dir=" + str(c_dir) + " count=" + str(count), (50,50),

cv2.FONT_HERSHEY_SIMPLEX,

1, (255, 0, 0), 1, cv2.LINE_AA)

cv2.imshow("frame", frame)

interrupt = cv2.waitKey(1)

if interrupt & 0xFF == 27:

esc key

break

if interrupt & 0xFF == ord('n'):

c_dir = chr(ord(c_dir)+1)

if ord(c_dir)==ord('Z')+1:

c_dir='A'

flag = False

count = len(oss.listdir("D:\\sign2text_dataset_3.0\\AtoZ_3.0\\" + (c_dir) + "\\"))

if interrupt & 0xFF == ord('a'):

if flag:

flag=False

else:

50

suv=0

flag=True

print("=====",flag)

if flag==True:

if suv==180:

flag=False

if step%3==0:

cv2.imwrite("D:\\sign2text_dataset_3.0\\AtoZ_3.1\\" + (c_dir) + "\\" +

str(count) + ".jpg",

skeleton1)

count += 1

suv += 1

step+=1

except Exception:

print("==",traceback.format_exc())

capture.release()

cv2.destroyAllWindows()

DataCollection_binary.py:

import cv2

from cvzone.HandTrackingModule import HandDetector

from cvzone.ClassificationModule import Classifier

import numpy as np

import os, os.path

from keras.models import load_model

import traceback

#model = load_model('C:\\Users\\devansh

raval\\PycharmProjects\\pythonProject\\cnn9.h5')

51

capture = cv2.VideoCapture(0)

hd = HandDetector(maxHands=1)

hd2 = HandDetector(maxHands=1)

#training data

count = len(os.listdir("D://sign2text_dataset_2.0/Binary_imgs//A"))

#testing data

count = len(os.listdir("D://test_data_2.0//Gray_imgs//A"))

p_dir = "A"

c_dir = "a"

offset = 30

step = 1

flag=False

suv=0

#C:\Users\devansh raval\PycharmProjects\pythonProject

white=np.ones((400,400),np.uint8)*255

cv2.imwrite("C:\\Users\\devansh

raval\\PycharmProjects\\pythonProject\\white.jpg",white)

while True:

try:

_, frame = capture.read()

frame = cv2.flip(frame, 1)

hands= hd.findHands(frame, draw=False, flipType=True)

img_final=img_final1=img_final2=0

if hands:

hand = hands[0]

x, y, w, h = hand['bbox']

image = frame[y - offset:y + h + offset, x - offset:x + w + offset]

#image1 = imgg[y - offset:y + h + offset, x - offset:x + w + offset]

52

roi = image #rgb image without drawing

roi1 = image1

#for simple gray image without draw

gray = cv2.cvtColor(roi, cv2.COLOR_BGR2GRAY)

blur = cv2.GaussianBlur(gray, (1, 1), 2)

#for binary image

gray2 = cv2.cvtColor(roi, cv2.COLOR_BGR2GRAY)

blur2 = cv2.GaussianBlur(gray2, (5, 5), 2)

th3 = cv2.adaptiveThreshold(blur2, 255,

cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV, 11, 2)

ret, test_image = cv2.threshold(th3, 27, 255, cv2.THRESH_BINARY_INV +

cv2.THRESH_OTSU)

test_image1=blur

img_final1 = np.ones((400, 400), np.uint8) * 148

h = test_image1.shape[0]

w = test_image1.shape[1]

img_final1[((400 - h) // 2):((400 - h) // 2) + h, ((400 - w) // 2):((400 - w) // 2) + w]

= test_image1

img_final = np.ones((400, 400), np.uint8) * 255

h = test_image.shape[0]

w = test_image.shape[1]

img_final[((400 - h) // 2):((400 - h) // 2) + h, ((400 - w) // 2):((400 - w) // 2) + w]

= test_image

hands = hd.findHands(frame, draw=False, flipType=True)

if hands:

53

#print(" --------- lmlist=",hands[1])

hand = hands[0]

x, y, w, h = hand['bbox']

image = frame[y - offset:y + h + offset, x - offset:x + w + offset]

white = cv2.imread("C:\\Users\\devansh

raval\\PycharmProjects\\pythonProject\\white.jpg")

img_final=img_final1=img_final2=0

handz = hd2.findHands(image, draw=False, flipType=True)

if handz:

hand = handz[0]

pts = hand['lmList']

x1,y1,w1,h1=hand['bbox']

os = ((400 - w) // 2) - 15

os1 = ((400 - h) // 2) - 15

for t in range(0, 4, 1):

for t in range(0, 4, 1):

cv2.line(white, (pts[t][0] + os, pts[t][1] + os1), (pts[t + 1][0] + os, pts[t +

1][1] + os1),

(0, 255, 0), 3)

for t in range(5, 8, 1):

cv2.line(white, (pts[t][0] + os, pts[t][1] + os1), (pts[t + 1][0] + os, pts[t +

1][1] + os1),

(0, 255, 0), 3)

for t in range(9, 12, 1):

cv2.line(white, (pts[t][0] + os, pts[t][1] + os1), (pts[t + 1][0] + os, pts[t +

1][1] + os1),

(0, 255, 0), 3)

for t in range(13, 16, 1):

cv2.line(white, (pts[t][0] + os, pts[t][1] + os1), (pts[t + 1][0] + os, pts[t +

1][1] + os1),

(0, 255, 0), 3)

for t in range(17, 20, 1):

cv2.line(white, (pts[t][0] + os, pts[t][1] + os1), (pts[t + 1][0] + os, pts[t +

1][1] + os1),

54

(0, 255, 0), 3)

cv2.line(white, (pts[5][0] + os, pts[5][1] + os1), (pts[9][0] + os, pts[9][1] +

os1), (0, 255, 0),

3)

cv2.line(white, (pts[9][0] + os, pts[9][1] + os1), (pts[13][0] + os, pts[13][1] +

os1), (0, 255, 0),

3)

cv2.line(white, (pts[13][0] + os, pts[13][1] + os1), (pts[17][0] + os, pts[17][1] +

os1),

(0, 255, 0), 3)

cv2.line(white, (pts[0][0] + os, pts[0][1] + os1), (pts[5][0] + os, pts[5][1] +

os1), (0, 255, 0),

3)

cv2.line(white, (pts[0][0] + os, pts[0][1] + os1), (pts[17][0] + os, pts[17][1] +

os1), (0, 255, 0),

3)

for i in range(21):

cv2.circle(white, (pts[i][0] + os, pts[i][1] + os1), 2, (0, 0, 255), 1)

cv2.imshow("skeleton", white)

cv2.imshow("5", skeleton5)

hands = hd.findHands(white, draw=False, flipType=True)

if hands:

hand = hands[0]

x, y, w, h = hand['bbox']

cv2.rectangle(white, (x - offset, y - offset), (x + w, y + h), (3, 255, 25), 3)

image1 = frame[y - offset:y + h + offset, x - offset:x + w + offset]

roi1 = image1 #rdb image with drawing

#for gray image with drawings

gray1 = cv2.cvtColor(roi1, cv2.COLOR_BGR2GRAY)

blur1 = cv2.GaussianBlur(gray1, (1, 1), 2)

55

test_image2= blur1

img_final2= np.ones((400, 400), np.uint8) * 148

h = test_image2.shape[0]

w = test_image2.shape[1]

img_final2[((400 - h) // 2):((400 - h) // 2) + h, ((400 - w) // 2):((400 - w) // 2) + w]

= test_image2

#cv2.imshow("aaa",white)

cv2.imshow("gray",img_final2)

cv2.imshow("binary", img_final)

cv2.imshow("gray w/o draw", img_final1)

img = img_final.reshape(1, 400, 400, 1)

print(model.predict(img))

prob = np.array(model.predict(img)[0], dtype='float32')

ch1 = np.argmax(prob, axis=0)

prob[ch1] = 0

ch2 = np.argmax(prob, axis=0)

prob[ch2] = 0

ch3 = np.argmax(prob, axis=0)

prob[ch3] = 0

ch1 = chr(ch1 + 65)

ch2 = chr(ch2 + 65)

ch3 = chr(ch3 + 65)

frame = cv2.putText(frame, "Predicted " + ch1 + " " + ch2 + " " + ch3, (x -

offset - 150, y - offset - 10),

cv2.FONT_HERSHEY_SIMPLEX,

1, (255, 0, 0), 1, cv2.LINE_AA)

#cv2.rectangle(frame, (x - offset, y - offset), (x + w, y + h), (3, 255, 25), 3)

frame = cv2.putText(frame, "dir=" + c_dir + " count=" + str(count), (50,50),

cv2.FONT_HERSHEY_SIMPLEX,

1, (255, 0, 0), 1, cv2.LINE_AA)

56

cv2.imshow("frame", frame)

interrupt = cv2.waitKey(1)

if interrupt & 0xFF == 27:

esc key

break

if interrupt & 0xFF == ord('n'):

p_dir = chr(ord(p_dir) + 1)

c_dir = chr(ord(c_dir) + 1)

if ord(p_dir)==ord('Z')+1:

p_dir="A"

c_dir="a"

flag = False

#training data

count = len(os.listdir("D://sign2text_dataset_2.0/Binary_imgs//" + p_dir + "//"))

test data

count = len(os.listdir("D://test_data_2.0/Gray_imgs//" + p_dir + "//"))

if interrupt & 0xFF == ord('a'):

if flag:

flag=False

else:

suv=0

flag=True

print("=====",flag)

if flag==True:

if suv==50:

flag=False

if step%2==0:

cv2.imwrite("D:\\test_data_2.0\\Gray_imgs\\" + p_dir + "\\" + c_dir +

str(count) + ".jpg",

img_final1)

cv2.imwrite(

57

"D:\\test_data_2.0\\Gray_imgs_with_drawing\\" + p_dir + "\\" + c_dir +

str(count) + ".jpg",

img_final2)

count += 1

suv += 1

step+=1

except Exception:

print("==",traceback.format_exc())

capture.release()

cv2.destroyAllWindows()

58

8. TESTING

Testing is the process where the test data is prepared and is used for testing the modules

individually and later the validation given for the fields. Then the system testing takes place which

makes sure that all components of the system property function as a unit. The test data should be

chosen such that it passed through all possible condition. The following is the description of the

testing strategies, which were carried out during the testing period.

8.1 System Testing

Testing has become an integral part of any system or project especially in the field of information

technology. The importance of testing is a method of justifying, if one is ready to move further,

be it to be check if one is capable to with stand the rigors of a particular situation cannot be

underplayed and that is why testing before development is so critical. When the software is

developed before it is given to user to user the software must be tested whether it is solving the

purpose for which it is developed. This testing involves various types through which one can

ensure the software is reliable. The program was tested logically and pattern of execution of the

program for a set of data are repeated. Thus the code was exhaustively checked for all possible

correct data and the outcomes were also checked.

8.2 Module Testing

To locate errors, each module is tested individually. This enables us to detect error and correct it

without affecting any other modules. Whenever the program is not satisfying the required function,

it must be corrected to get the required result. Thus all the modules are individually tested from

bottom up starting with the smallest and lowest modules and proceeding to the next level. Each

module in the system is tested separately. For example the job classification module is tested

separately. This module is tested with different job and its approximate execution time and the

result of the test is compared with the results that are prepared manually. Each module in the system

is tested separately. In this system the resource classification and job scheduling modules are tested

separately and their corresponding results are obtained which reduces the process waiting time.

59

8.3 Integration Testing

After the module testing, the integration testing is applied. When linking the modules there may

be chance for errors to occur, these errors are corrected by using this testing. In this system all

modules are connected and tested. The testing results are very correct. Thus the mapping of jobs

with resources is done correctly by the system

8.4 Acceptance Testing

When that user fined no major problems with its accuracy, the system passers through a

final acceptance test. This test confirms that the system needs the original goals, objectives

and requirements established during analysis without actual execution which elimination

wastage of time and money acceptance tests on the shoulders of users and management, it

is finally acceptable and ready for the operation.

60

9. RESULTS AND DISCUSSION

Fig 9.1 Interface

Fig 9.2 Output Based on Sign

61

The proposed sign language conversion system was evaluated based on its ability to

accurately recognize and convert sign language gestures into text and speech. The

performance of the model was measured using key metrics such as accuracy, precision,

recall, and F1-score.

 Model Performance: The Convolutional Neural Network (CNN) model achieved

an accuracy of 94% on the test dataset. The accuracy varied across different lighting

conditions, hand orientations, and background complexities.

 Real-Time Gesture Recognition: The system successfully recognized N hand

gestures in real time with an average response time of 1 second. The use of OpenCV

and MediaPipe for hand tracking improved the stability and detection speed.

 Speech Conversion: The integration of pyttsx3 and Enchant libraries ensured that

the detected text was converted into speech with minimal latency. Users were able

to hear the corresponding words as soon as the gesture was recognized.

62

10. CONCLUSION AND FUTURE SCOPE

10.1 Conclusion:

We have been able to successfully create a strong gesture recognition system that can precisely

predict any alphabet (A–Z) with 97% accuracy in varied conditions, such as different backgrounds

and lighting. In ideal conditions like a clear background and adequate illumination the model is an

impressive 99% accurate, proving its suitability for sign language recognition. This system is

indicative of the promise of computer vision and deep learning for real-time sign language

interpretation, and it presents an important step towards closing the communication gap for the

deaf and hard-of-hearing population.

10.2 Future Scopes:

In future developments, we aim to expand the capabilities of our sign language recognition system

by integrating it into an Android application, making it more accessible to a broader audience. This

mobile implementation will leverage on-device machine learning for real-time gesture prediction,

ensuring efficient performance without requiring an internet connection. By optimizing the system

for low-latency processing and energy efficiency, we aim to make the application practical for

everyday use.

Furthermore, we plan to extend the gesture vocabulary beyond the ASL alphabet by

incorporating dynamic hand gestures and full sign language phrases, improving the system’s

ability to recognize more complex expressions. Future enhancements will include multi-hand

gesture detection, context-aware predictions, and user adaptability, allowing the model to learn

and refine accuracy based on individual signing styles.

63

11. REFERENCES

[1]. Victoria Adebimpe Akano, Adejoke O Olamiti (2018). Conversion of Sign Language To

Text and Speech Using Machine Learning Techniques. DOI:

10.36108/jrrslasu/8102/50(0170)

[2]. Felix Zhan (2019). Hand Gesture Recognition with Convolution Neural Networks. Doi:

10.1109/IRI.2019.00054

[3]. R.S. Sabeenian, S. Sai Bharathwaj, and M. Mohamed Aadhil (2020). Sign Language

Recognition Using Deep Learning and Computer Vision. Doi:

10.5373/JARDCS/V12SP5/20201842

[4]. Muhammad AI-Qurishi, Thariq Khalid, Riad Souissi (2021). Deep Learning for Sign

Language Recognition: Current Techniques, Benchmarks, and Open Issues. Doi:

10.1109/ACCESS.2021.3110912

[5]. Ayushi Sharma; Jyotsna Pathak; Muskan Prakash; J N Singh (2021). Object Detection

using OpenCV and Python. Doi: 10.1109/ICAC3N53548.2021.9725638

[6]. Md Nafis Saiful, Abdulla AI Isam, Hamim Ahmed Moon, Rifa Tammana (2022). Real-

Time Sign Language Detection Using CNN. Doi: 10.1109/ICDABI56818.2022.10041711

[7]. M. J, B. Krishna, S. S, Surendar K (2022). Sign Language Recognition using Machine

Learning. Doi: 10.1109/ICSES55317.2022.9914155

[8]. Aman Pathak, Avinash Kumar, Gupta (2022). Real Time Sign Language Detection. Doi:

10.46501/IJMTST0801006

[9]. CH. Nanda Kumar, E. Nithin Computer, C. Krishna, Ch. Bindhu Madhavi (2023). Real-

Time Face Mask Detection using Computer Vision and Machine Learning.

DOI:10.1109/ICEARS56392.2023.10085276

64

[10]. N. Rajasekhar, M. Yadav, Charitha Vedantam, Karthik Pellakuru, Chaitanya Navapete

(2023). Sign Language Recognition using Machine Learning Algorithm. Doi:

10.1109/ICSCSS57650.2023.10169820

[11]. Bunny Saini, Divya Venkatesh, Nikita Chaudhari, Tanaya Shelake, Shilpa Gite,

Biswajeet Pradhan (2023). A comparative analysis of Indian sign language recognition

using deep learning models. Doi: 10.18063/fls.v5i1.1617

[12]. Sajin Xavier, Vaisakh B, Maya L. Pai (2023). Real-time Hand Gesture Recognition Using

Media Pipe and Artificial Neural Networks. Doi: 10.1109/ICCCNT56998.2023.10306439

	SIGN LANGUAGE DETECTION USING MACHINE LEARNING
	Dr. M. Laxmaiah

	Department of Computer Science & Engineering (Data Science)
	DECLARATION
	ACKNOWLEDGMENT

	CONTENTS
	LIST OF FIGURES
	LIST OF SCREENSHOTS
	LIST OF TABLES
	1. INTRODUCTION
	1.1 Overview:
	1.2 Research Motivation:
	1.3 Problem Statement:
	1.4 Applications
	1. Assistive Communication Tools
	2. Educational Platforms for Learning Sign Language
	3. Healthcare Communication Systems
	4. Customer Service & Public Interaction Kiosks
	5. Virtual Assistants and Smart Devices Integration
	6. Social Media and Video Conferencing Platforms
	7. Automated Subtitling and Content Accessibility
	8. Human-Computer Interaction (HCI) Enhancement
	9. Job Support for Hearing Impaired
	10. Law Enforcement and Emergency Response

	2. LITERATURE SURVEY
	3. EXISTING SYSTEM
	3.1 Overview
	Disadvantages of Existing Systems
	Key Limitations of Existing Systems

	3.2 Challenges of Existing system
	Key Challenges in Sign Language Recognition
	Limitations of Current Sign Language Recognition Systems

	4. PROPOSED METHODOLOGY
	4.1 Overview:
	Key Features of the Proposed System
	2. Improved Real-Time Video Capture:
	3. Enhanced Translation Output:
	4. Text-to-Speech (TTS) Feature:
	5. Smart Word Suggestions:

	4.2 Advantages of the Proposed System

	5. SYSTEM DESIGN
	5.1 Architecture Design
	System Design:
	1. Capturing Scene Through Device Camera
	2. Video Stream Processing
	3. Segmentation with Thresholding
	4. Feature Extraction
	5. CNN-Based Recognition
	6. Output Generation
	Detailed Design:
	 Data Preprocessing Techniques:
	 Neural Network Architecture:
	 Speech Conversion:

	5.2 UML Diagrams
	1. User Model View
	2. Structural Model View
	3. Behavioural Model View
	4. Implementation Model View
	5. Deployment Model View
	Class diagram:
	Use case Diagram:
	Sequence Diagram :

	Activity Diagram:

	6. REQUIREMENT SPECIFICATIONS
	6.1 REQUIREMENT ANALYSIS:
	Software Requirements:
	Hardware Requirements
	6.2 What is Python:
	Advantages of Python:
	2. Extensible
	3. Embeddable
	4. Improved Productivity
	5. IOT Opportunities
	6. Simple and Easy
	7. Readable
	8. Object-Oriented
	9. Free and Open-Source
	10. Portable
	11. Interpreted
	Advantages of Python Over Other Languages
	2. Affordable
	Disadvantages of Python
	1. Speed Limitations
	2. Weak in Mobile Computing and Browsers
	3. Design Restrictions
	4. Underdeveloped Database Access Layers
	5. Simple

	6.3 History of Python:
	6.4 Modules Used in the Project
	1. NumPy:
	2. Math:
	3. OpenCV:
	4. OS and System Modules:
	5. Traceback:
	6. Pyttsx3:
	7. Keras:
	8. Cvzone:
	9. Enchant:
	10. Tkinter:
	11. PIL:

	6.5 What is Machine Learning: -
	Categories Of Machine Leaning: -
	Need for Machine Learning
	Challenges in Machine Learning: -
	Applications of Machines Learning: -
	How to Start Learning Machine Learning?
	How to start learning ML?
	Step 1 – Understand the Prerequisites
	(a) Learn Linear Algebra and Multivariate Calculus
	(b) Learn Statistics
	(c) Learn Python
	Step 2 – Learn Various ML Concepts
	(a) Terminologies of Machine Learning
	b) Types of Machine Learning
	Advantages of Machine learning: -
	Disadvantages of Machine Learning: -
	2. Time and Resources
	3. Interpretation of Results
	4. High error-susceptibility

	6.6 How to Install Python on Windows and Mac
	Download the Correct version into the system
	Installation of Python

	7. IMPLEMENTATION
	7.1 Implementation Steps
	7.2 Modules
	1. Data Acquisition:
	2. Data Preprocessing & Feature Extraction:
	1. Overview of MediaPipe Hand Tracking
	2. Hand Landmark Detection Process
	3. Key Features of MediaPipe Hand Tracking
	3. Gesture Classification:
	4. Text to Speech Translation and Suggestions:
	Libraries Used:
	Working of TTS System:

	7.3 Source Code:
	DataCollection.py:
	DataCollection_binary.py:

	8. TESTING
	8.1 System Testing
	8.2 Module Testing
	8.3 Integration Testing
	8.4 Acceptance Testing

	9. RESULTS AND DISCUSSION
	10. CONCLUSION AND FUTURE SCOPE
	10.1 Conclusion:
	10.2 Future Scopes:

	11. REFERENCES

