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ABSTRACT 

 

The practice of cultivating the soil, producing crops, and keeping livestock is 

referred to as farming. Agriculture is critical to a country’s economic development. 

Nearly 58 percent of a country’s primary source of livelihood is farming. Farmers 

till date had adopted conventional farming techniques. These techniques were not 

precise thus reduced the productivity and consumed a lot of time. Precise farming 

helps to increase the productivity by precisely determining the steps that needs to 

be practiced at its due season. Predicting the weather conditions, analyzing the soil, 

recommending the crops for cultivation, determine the amount of fertilizers, 

pesticides that need to be used are some elements of precision farming.  

Precise Farming uses advanced technologies such as IOT, Data Mining, Data 

Analytics, Machine Learning to collect the data, train the systems and predict the 

results. With the help of technologies Precise farming helps to reduce manual labor 

and increase productivity. Farmers have been facing various challenges in these 

recent times, this includes crop failure due to less rainfall, infertility of soil and so 

on. Due to the changes taking place in the environment the proposed work helps to 

identify how to manage crops and harvest in a smart way. It guides an individual 

for smart farming. 

The aim of this work is to help an individual cultivate crops efficiently and 

hence achieve high productivity at low cost. It also helps to predict the total cost 

needed for cultivation. This would help an individual to pre-plan the activities 

before cultivation resulting in an integrated solution in farming. 
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1. INTRODUCTION 

1.1 OVERVIEW 

 

Agriculture plays a vital role in sustaining the global economy and ensuring food 

security. However, traditional farming methods often struggle with inefficiencies, resource 

wastage, and unpredictable environmental factors, leading to reduced crop yields and financial 

losses. Factors such as soil quality, climate variations, pest infestations, and improper irrigation 

contribute to suboptimal agricultural productivity. The ability to monitor, analyze, and optimize 

farming conditions is crucial for enhancing crop yields, minimizing resource consumption, and 

ensuring sustainable agricultural practices. Traditional farming decision-making relies on manual 

observations and rule-based approaches, which often fail to leverage the vast amounts of data 

available in modern agricultural systems. These conventional methods lack the ability to process 

high-dimensional data, identify hidden patterns, and provide real-time insights, limiting their 

effectiveness in precision farming applications. 

To address these limitations, this project introduces a Machine Learning (ML)-powered 

Precision Agriculture System that leverages advanced data analytics and predictive modeling for 

smart farming. The proposed system utilizes IoT sensors and satellite imagery to collect real-

time data on soil moisture, weather conditions, crop health, and nutrient levels. Using Random 

Forest (RF) for feature selection and Convolutional Neural Networks (CNNs) for deep feature 

extraction and pattern recognition, the model provides accurate predictions on optimal irrigation 

schedules, pest detection, and disease prevention strategies. A decision support system (DSS) 

powered by machine learning algorithms classifies crop health status and provides 

recommendations for fertilizers, pesticides, and harvesting timelines. 

The integration of ML techniques in precision agriculture enhances farm productivity by 

optimizing water usage, reducing chemical overuse, and mitigating risks associated with climate 

change. By employing real-time data processing and predictive analytics, the system ensures 

adaptive and data-driven farming decisions, making it highly suitable for modern smart farming 

applications. The insights generated by this model empower farmers, agricultural scientists, and 

policymakers to maximize yields, minimize losses, and contribute to sustainable agricultural 

practices.
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1.2 RESEARCH MOTIVATION 

 

The motivation behind this research stems from the urgent need to enhance agricultural 

productivity and sustainability while addressing the growing challenges faced by traditional 

farming practices. With the global population projected to reach 9.7 billion by 2050, the demand 

for food production is increasing exponentially. However, conventional farming methods often 

result in inefficient resource utilization, unpredictable crop yields, and significant environmental 

degradation due to excessive use of fertilizers, pesticides, and water. Climate change, soil 

degradation, and pest infestations further exacerbate the problem, making it essential to adopt 

data-driven and technology-assisted farming techniques to ensure food security and economic 

stability. 

One of the major research gaps in precision agriculture is the lack of an intelligent, AI-

powered decision support system that can process real-time, high-dimensional agricultural data 

and provide actionable insights. Traditional manual observation and rule-based decision-making 

methods are inefficient in handling the complexity of farming conditions, often leading to 

suboptimal decisions regarding irrigation, fertilization, and pest control. Machine Learning 

(ML)-based predictive models can help address these challenges by identifying hidden patterns 

in soil health, weather conditions, and crop growth, thus enabling more accurate and timely 

interventions to optimize farm productivity. 

Additionally, the rapid expansion of smart farming and IoT-based agricultural systems 

presents an opportunity to integrate sensor-driven data collection and ML algorithms for real-

time monitoring of soil nutrients, crop diseases, and water levels. Many governments and 

agricultural organizations are now advocating for the adoption of precision farming techniques to 

enhance food production while minimizing waste and environmental impact. By developing an 

ML-driven smart farming system, this research contributes to the advancement of sustainable 

agriculture, reduction of resource wastage, and maximization of crop yield. The proposed model 

can assist farmers, policymakers, and agronomists in making informed, data-driven decisions, 

thus improving overall agricultural efficiency and sustainability. 
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1.3 PROBLEM STATEMENT 

 

The increasing complexity of agricultural operations and the unpredictability of climate 

conditions demand a more advanced and intelligent precision farming system. Traditional 

farming methods often rely on manual observations and fixed-schedule interventions, which are 

inefficient in optimizing crop yield, soil health, and resource management. These conventional 

techniques fail to adapt to real-time environmental changes, leading to inefficient water usage, 

overuse of fertilizers, and susceptibility to pest infestations. Additionally, imbalanced decision-

making, where farmers lack access to real-time insights, results in reduced productivity and 

financial losses. The need for automated, data-driven, and adaptive farming models is greater 

than ever, especially as climate variability and food demand continue to rise worldwide. 

The Smart Farming - Precision Agriculture using ML model is designed to address these 

challenges by integrating Machine Learning (ML) and Internet of Things (IoT) technologies. 

Unlike traditional rule-based models, which rely on static assumptions and limited feature sets, 

this system leverages sensor data, satellite imagery, and ML algorithms to make real-time 

predictions on factors like soil moisture, weather conditions, crop health, and disease outbreaks. 

This intelligent approach ensures more accurate, timely, and adaptive decision-making, enabling 

efficient resource allocation and higher agricultural productivity. Moreover, the model’s 

continuous learning mechanism allows it to adapt to new data trends in farming conditions, 

ensuring long-term sustainability and efficiency. 

One of the key innovations of this ML-based precision agriculture system is its 

scalability and computational efficiency, allowing deployment in both high-tech commercial 

farms and small-scale agricultural settings. Many existing models struggle with high 

computational costs and require specialized hardware, making them impractical for widespread 

adoption in rural and resource-constrained regions. By employing feature selection techniques, 

the model minimizes redundant data while preserving critical variables that influence crop yield 

and health. Additionally, its predictive analytics and automated decision support system help 

farmers optimize irrigation schedules, detect pest infestations early, and improve soil fertility 

management, reducing waste and maximizing productivity. 

The proposed ML-based Smart Farming system also enables government agencies, 

agribusinesses, and policymakers to make data-driven decisions for sustainable agriculture and 

food security. By analyzing climate trends, soil conditions, and crop health patterns, authorities 

can implement precision farming policies, offer targeted subsidies, and promote sustainable 
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agricultural practices. Additionally, agricultural cooperatives can leverage AI-driven insights to 

forecast market trends, improve supply chain efficiency, and reduce post-harvest losses. The 

integration of AI-powered predictive analytics into modern farming ecosystems represents a 

significant step toward enhancing global food security, minimizing environmental impact, and 

ensuring resilient agricultural practices. 
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2. LITERATURE SURVEY 

Crop growth is primarily influenced by the soil’s macro nutrient and trace mineral content of 

the soil. Soil being the broad representation of several environmental factors including rainfall, 

humidity, sunlight, temperature and soil ph. The use of a support vector machine and decision 

tree algorithm to distinguish the type of crop based on micronutrients and meteorological 

characteristics has been presented as an efficient means of predicting the crop. Three crops 

where selected such as rice, wheat and sugarcane. Based on certain observations details about 

micro nutrients where been obtained. These details where feed into the classifier model that in 

turn predicted the crop based on the passed values. There are many Machine Learning algorithms 

that works in a different manner. Hence selecting only two models will not provide the required 

output. The accuracy score of SVM was greater than decision tree algorithm with a sore of 92% 

[14]. In this work best out of two algorithms is selected. But there are various algorithms 

dedicated for classification tasks.  

There is a need for working on other models such as K Neighbors classifier, Logistic 

Regression, Ensemble classifiers. These algorithms are indeed applied in proposed research 

work. The [14] predicts only a crop based on the values entered into the SVM model. Data is 

most valuable. Hence more information can be obtained apart from using them for prediction. 

The proposed research work not only recommends the crops and also uses the data to obtain 

various information that would provide a detailed view about the predicted crops this includes 

specifying the Growing Degree Days such as heat units, amount of heat needed for the crop 

growth and the amount of nitrogen, phosphorous and potassium content need to be supplied for 

the growth per 200 lb. fertilizer. Machine Learning algorithms such as SVM and decision tree 

classifier was used [14] but in this work Machine Learning algorithms such as Decision Tree, K 

Nearest Neighbor, Linear Regression model, Neural Network, Naïve Bayes and Support Vector 

Machine was used for recommending a crop to the user. It has provided an exposure to other 

algorithms compared to [14].  

Linear Regression model was used to predict the production value against the climatic 

parameters such as rainfall, temperature and humidity. The scores of all these algorithms were 

below 90% [15]. This work was just a model implementation using the dataset. We be inter face 

needs to be implemented so that even common people can use it efficiently. All the values need 

to be provided manually for the model to predict the crop. The proposed work helps in extracting 

temperature and humidity values using Web Scraping. Hence manually entering the values are 
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not needed. The proposed work provides an interactive web interface where the user specifies the 

average rainfall and soil Ph value. The temperature and humidity details are extracted 

automatically and feed into the best model that includes 10 algorithms with hyper parameter 

tuning. The proposed work tends to achieve an accuracy of 95.45% with hyper parameter tuning 

the algorithms which was not included in [14]. The predicted results along with certain 

information are displayed in the web interface which makes the user to understand the results 

more efficiently. 

Base temperature of a given crop can be used to calculate the GDD Growing Degree Days. 

The main aim of this study is to come up with easy and mathematically acceptable formulas for 

calculating GDD’s base temperature. Temperature data for snap beans, sweet corn, and cow pea 

are used to propose, prove, and test mathematical formulas. These new mathematical formulae, 

in comparison to earlier approaches, can produce the base temperature quickly and correctly. 

These formulas can be used to calculate the GDD base temperature for every crop at any 

developmental stage [16]. This work provides a formula to calculate the GDD for the crops. 

Hence the formula specified in [16] was applied to the predicted crop to estimate their GDD in 

the proposed work. 

Weeds grown along with soy bean can be detected using K-means and CNN model. K-means 

were used for identifying the features of the images and convolutional neural network for was 

used for classifying the weeds and soy bean. It also suggests that accuracy can we improved by 

finetuning the CNN model. CNN model provides an efficient way to detect the weeds present 

among crops. When used along with K-means initially the images and its augmentations are 

clustered and on using CNN model helps to precisely identify the weed [17]. The proposed work 

uses the pretrained model such as Resnet152V2 hence it has important layers such as skip layer 

and identity layer. The main goal of these layer is to make sure that the output image is same as 

the input. This increases the accuracy and the predictions are correct. Not only predicting the 

image the proposed model also helps to provide details about the herbicides that can be used 

which is an additional information for the user. 

Existing deep learning techniques are used for weed detection. This study provides 

information of various ML and Deep Learning algorithms that can be used for identifying weeds. 

It mainly emphasis on pre-trained models. It suggests that pre-trained models as lot of benefits 

and hence can be used to image classification. It also provides guidance of how to work on 

datasets and make the datasets efficient for building the models. Many public datasets are 

available on various platforms that can be used for this purpose. It specifies Image Resizing, data 
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augmentation, image segmentation some of the techniques would bring about accurate 

classifications and tendency of increasing the accuracy is also more in pre-trained models [18]. 

Since this study provides directions to perform deep learning techniques the proposed model has 

opted certain techniques preprocessing steps such as Image Resizing, data augmentation is opted 

before building the actual deep learning model to predict the weeds. 

Another algorithm that can be used for identifying weeds in vegetable plantation is the 

CenterNet. CenterNet is used for weed identification. It includes two stages. In first stage the 

Bok choy images were collected and detected. In the second stage, color-index based 

segmentation were performed on the images collected to identify the weeds present in the 

dataset. The images were collected from Nanjing, China. The images were augmented to 

increase the dataset size and images were annotated. CenterNet algorithm was used for both 

training and testing the images. It is a ground-based weed identification technique. More 

optimization would lead to better results was suggested [19]. CenterNet algorithm is simple yet 

there is a need an algorithm that strives to get correct prediction. The proposed work uses 

Resnet152V2 algorithm that strives to achieve more accuracy since it has special layers such as 

skip layer and identity layer that tries to get input image as output itself. Hence predictions 

would be absolutely correct. Hence Resnet152V2 algorithm is selected to obtain accurate 

prediction and based on the prediction obtain the list of herbicides. 

Farmers face a challenging task in identifying crop insects since pest infestation destroys a 

substantial portion of the crop and affects its quality. The use of highly skilled taxonomists to 

correctly identify insects based on their physical traits is a shortcoming of traditional insect 

identification. Experiments were conducted using image characteristics and ml algorithms such 

as neural networks, support vector machine, k-nearest neighbors, naive bayes, and convolutional 

neural network model to identify twenty-four insects from the Wang and Xie dataset. To 

increase the performance of the classification models,9-foldcross-validation was used. The CNN 

model had the greatest classification rates of 91.5 percent and 90 percent, respectively.  

The results revealed a considerable improvement in classification accuracy and 

computational time when compared to state-of-the-art classification algorithms [20]. This work 

[20] has used basic CNN model for classification as well as the same dataset used by various 

researchers. Hence the proposed model has used a different dataset called the Pest’s dataset from 

Kaggle website. This dataset consists of 9 classes of insects. Each image is taken from different 

locations. This dataset was selected for the proposed model since the model is trained of images 

about various locations that gives more knowledge for the model to understand the image and 
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distinguish them. The proposed model uses Resnet152V2 model for classification. The 

Resnet152V2 model is the basic model and top of which Global Average Pooling 2D, Drop outs 

and more hidden layers are been implemented. This refers to finetuning the base pre-trained 

model. This helps in extracting more information and helps in efficient classification. 

The association between the degree of difficulty in identifying insects and the identification 

key was investigated in this article. For a collection of 134 insects, the SPIPOLL database was 

utilized to generate 193 characteristic value pathways. Based on the average IES of all the 

insects with that of characteristic value was formulated. The CV’s derived IES was then used to 

generate an estimated IES for each bug, resulting in a ranked list of insects. Finally, the 

anticipated bug ranking list was compared to the actual bug ranking list. The results showed a 

significant correlation between the estimated and actual truth IES, indicating that the CV can be 

used to estimate the IES of SPIPOLL insects [21]. This work has specified of how to consider 

the features of an image with respect to insects’ dataset. Its main goal is to identify a key that 

helps in distinguishing the classes. This proposed work contributes in specifying that a key is 

important for distinguishing the insect classes.  

Hence the proposed work uses Resnet152V2 algorithm for this very reason. Resnet152V2 is 

a pre-trained model and it automatically picks the important features rather than manually 

defining them. The Resnet152V2 base model on addition with Dropouts helps in removing 

unnecessary hidden layers and selecting the relevant ones is an advantage. Identification of 

insects does not solve the problem completely. Suggesting Pesticides provides a complete 

solution. The proposed model helps to identify the insects as well as suggest Pesticides for the 

same. 

Various elements must be considered when estimating the cost of a crop. It divides 

agricultural costs into five categories and provides calculations for each. It also gives examples 

of how to figure out how much a crop cost. It is a theoretical article that always guide the 

implementation of estimating the cost of cultivation [22]. This theoretical study was used in the 

proposed model to calculate the cost of cultivation. It was very helpful as it provided elementary 

description to calculate the costs for cultivation. The formulas proposed in this study was used in 

the proposed system to estimate the costs till the year 2028
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3. EXISTING SYSTEM 

 

3.1 EXISTING METHODS 

Several traditional and modern approaches have been used in smart farming to improve crop 

yield, resource management, and automation. However, most existing systems face challenges in 

scalability, accuracy, and real-time decision-making. Below are some widely used methods and 

their characteristics: 

1. Rule-Based Agricultural Systems: Rule-based systems use predefined thresholds for 

soil moisture, temperature, and humidity to automate irrigation and fertilization. These systems 

work well for small-scale farms but struggle with dynamic environmental conditions and 

variations in soil types across different locations. 

2. Traditional Farming Methods: Conventional farming relies on manual observations, 

historical knowledge, and generic farming practices. Farmers decide on irrigation, fertilization, 

and pest control based on past experiences rather than real-time data. While effective in some 

cases, these methods lack precision, waste resources, and are highly labor-intensive. 

3. Remote Sensing and GIS-Based Systems: Geographic Information Systems (GIS) and 

remote sensing technologies use satellite images and aerial data to monitor crop health, detect 

drought conditions, and optimize land use. While effective for large-scale farming, these 

methods require high infrastructure costs, expert knowledge, and periodic updates. 

4. IoT-Based Smart Farming Solutions: Internet of Things (IoT) technology enables real-

time monitoring of soil moisture, temperature, and humidity using sensors. These systems allow 

automated irrigation and fertilizer application. However, challenges include high initial costs, 

connectivity issues in rural areas, and sensor maintenance. 

5.  Machine Learning-Based Crop Prediction Models: Machine learning algorithms such 

as Random Forest, Support Vector Machines (SVM), and Gradient Boosting Machines (GBM) 

analyze historical weather data, soil properties, and crop health to predict yields and optimize 

farming practices. However, they require large datasets and suffer from model bias if data is 

insufficient. 

3.2 CHALLENGES 

Current smart farming systems face several challenges, including high implementation costs, 

data integration issues, connectivity limitations, and model accuracy constraints. Traditional IoT-
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based and AI-driven agricultural systems require significant financial investment, making them 

inaccessible to small-scale farmers. Data collection and integration from multiple sources, such 

as soil sensors, weather stations, and satellite images, present interoperability challenges, 

limiting the efficiency of predictive models. 

While machine learning models like Random Forest (RF) and Support Vector Machines 

(SVM) analyze agricultural data, they struggle with imbalanced datasets, leading to inaccurate 

predictions for rare but critical events like droughts and pest outbreaks. Similarly, deep learning 

models such as CNNs and LSTMs, although effective in detecting complex patterns, require 

large datasets and high computational resources, making real-time decision-making difficult for 

farms with limited infrastructure. 

Another key limitation is poor network connectivity in rural areas, restricting real-time 

monitoring and data-driven automation. Privacy concerns and cybersecurity threats also hinder 

smart farming adoption, as farm data, including soil quality and yield forecasts, is vulnerable to 

cyberattacks. Additionally, farmers’ resistance to technology and lack of technical expertise 

further slowdown adoption, emphasizing the need for user-friendly, cost-effective, and scalable 

smart farming solutions. 

Hybrid AI approaches, integrating IoT-driven real-time monitoring, machine learning-based 

predictive analytics, and blockchain-secured data storage, offer a promising solution. These 

advancements can enhance precision agriculture, optimize resource allocation, and improve food 

security, addressing the critical challenges in modern farming.
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4. PROPOSED METHODOLOGY 

 

4.1 OVERVIEW 

Ensemble models have been extensively utilized in machine learning to enhance 

classification accuracy and overall efficiency. The fundamental principle behind ensemble 

learning is that combining multiple models often results in better performance than using a single 

classifier. In smart farming, where diverse factors such as soil health, weather conditions, and 

pest infestations influence agricultural outcomes, ensemble models can improve predictive 

reliability and decision-making. 

To optimize precision agriculture, this study introduces a multi-model ensemble approach 

that integrates machine learning, deep learning, and IoT-driven analytics. The proposed system 

consists of several key components, each leveraging different technologies for enhanced 

accuracy and adaptability. The first ensemble model integrates multiple machine learning 

algorithms, improving structured data analysis. The second ensemble model combines a machine 

learning classifier with deep learning, harnessing both structured data processing and advanced 

feature extraction capabilities. 

The proposed system, termed RF-CNN Farming Model, utilizes a soft voting mechanism to 

enhance predictive accuracy. Soft voting aggregates probability scores from multiple classifiers 

and determines the final decision based on the weighted average of these probabilities. This 

method ensures that the model considers confidence levels rather than merely selecting the most 

frequently predicted outcome. As a result, the system balances multiple predictions, reducing 

errors and improving reliability in smart farming applications. 

By integrating Random Forest (RF) for structured data analysis and Convolutional Neural 

Networks (CNN) for deep feature extraction, the RF-CNN model effectively captures soil health 

indicators, plant disease patterns, and environmental variables. RF identifies key farming 

parameters, while CNN processes drone and sensor images, detecting crop diseases, nutrient 

deficiencies, and pest infestations. This hybrid approach provides a comprehensive and scalable 

precision agriculture framework. 

The smart farming system consists of: 

1. Smart IoT-Based Data Collection – Embedded sensors monitor temperature, humidity, 

soil moisture, and nutrients, while drones and satellites provide real-time aerial crop health 

assessments. 

2. Machine Learning-Based Predictive Analytics – ML algorithms analyze historical data to 

predict optimal irrigation schedules, early disease signs, and precise fertilizer use. Deep learning 
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models classify crop health and detect abnormalities through image analysis. 

3. Automated Decision Support System (DSS) – A cloud-based AI platform provides real-

time insights and recommendations via mobile or web applications, optimizing resource 

management and yield forecasting. 

4. Autonomous Farming Operations – AI-driven robots and autonomous tractors perform 

precision tasks like targeted spraying, weeding, and harvesting, reducing labor costs and 

environmental impact. 

5. Supply Chain and Market Integration – The system includes a smart marketplace 

connecting farmers with buyers, optimizing storage, transportation, and pricing strategies 

through demand forecasting. Blockchain technology ensures secure and transparent transactions. 

 

Fig 4.1.1 Block Diagram of Precision Agriculture 

4.2 ADVANTAGES 

➢ High Prediction Accuracy: Uses ML and DL techniques for accurate crop health 

monitoring and yield prediction. 

➢ Effective Feature Selection: Random Forest ensures only important parameters (soil 

moisture, temperature, etc.) are used, improving efficiency. 

➢ Deep Feature Extraction: CNN helps detect crop diseases and pest infestations from 

satellite and drone images. 

➢ Soft Voting Mechanism: Uses multiple classifiers to enhance decision stability. 

➢ Improved Handling of Noisy Data: Reduces the impact of inconsistent sensor data, 

making predictions more reliable 

➢ Better Generalization: Works well across different climates, soil types, and farming 
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regions. 

➢ Real-Time Monitoring & Prediction: Processes live sensor data for immediate 

corrective actions 

➢ Enhanced Crop Disease Detection: Identifies early signs of infections to reduce crop 

loss. 

➢ Optimized Resource Utilization: Provides smart irrigation and fertilization 

recommendations to minimize waste. 

➢ Scalability: Can be adapted to different crops, soil conditions, and environmental factors. 

➢ Reduced Computational Complexity: Eliminates redundant data, improving efficiency. 

➢ Improved Yield Forecasting: Helps farmers make better harvesting and supply chain 

decisions. 

➢ Integration with IoT: Works with smart farming devices for real-time monitoring and 

automation 

➢ Supports Sustainable Farming: Promotes eco-friendly agricultural practices. 

➢ Facilitates Precision Agriculture: Enables location-based insights for better resource 

use. 

➢ Automated Weed and Pest Control: Can be used with robotic farming solutions for 

pesticide application.
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5.SYSTEM DESIGN 

 

5.1 ARCHITECTURE DESIGN 

The RF model integrates machine learning and deep learning to enhance Smart Farming 

severity prediction. The architecture is structured in multiple stages, including data 

preprocessing, feature selection, model fusion, and prediction output. 

 

Fig 5.1.1 System Architecture of RF Model 

5.2 UML DIAGRAMS 

UML stands for Unified Modeling Language. UML is a standardized general-purpose 

modeling language in the field of object-oriented software engineering. The standard is 

managed, and was created by, the Object Management Group. The goal is for UML to become a 

common language for creating models of object-oriented computer software. In its current form 

UML is comprised of two major components: a Meta-model and annotation. In the future, some 

form of method or process may also be added to; or associated with, UML. 

The Unified Modeling Language is a standard language for specifying, Visualization, 
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Constructing and documenting the artifacts of software system, as well as for business modeling 

and other non-software systems. The UML represents a collection of best engineering practices 

that have proven successful in the modeling of large and complex systems. The UML is a very 

important part of developing objects-oriented software and the software development process. 

The UML uses mostly graphical notations to express the design of software projects 

5.2.1 Class diagram 

A class diagram is a UML diagram that visually represents the structure of a system by 

showing its classes, attributes, methods, and relationships. 

The UML class diagram represents a user interacting with a dataset in an Smart Farming 

severity prediction system. The user begins by uploading a US road Smart Farming dataset, 

which is then processed to extract full or selected features. The dataset is split into training and 

testing sets, ensuring that the model can learn from one portion and be evaluated on another. 

Classifiers are run on both full and selected features to analyze their effectiveness in predicting 

Smart Farming severity. To evaluate performance, the system generates a comparison graph and 

a table, visually and numerically comparing different classifier results. Finally, the trained model 

predicts Smart Farming severity based on the test data, classifying Smart Farmings into different 

severity levels. This structured workflow enhances the efficiency of Smart Farming analysis and 

prediction using machine learning techniques. 

 

 

 

Fig 5.2.1 Class Diagram Smart Farming
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5.2.2 Use case Diagram 

 

The UML use case diagram illustrates the interaction between a user and a dataset in an 

Smart Farming severity prediction system. The user performs multiple actions, starting with 

uploading a US road dataset, which is then processed to extract full or selected features. The 

dataset is subsequently split into training and testing sets to ensure proper model evaluation. 

Various classifiers are applied to both the complete and selected features, allowing comparison 

of their performance. The system provides both a comparison graph and a comparison table, 

visually and numerically presenting the results of different classifiers. Finally, the model is used 

to predict Smart Farming severity from test data, classifying Smart Farmings based on severity 

levels. This structured workflow ensures efficient Smart Farming severity prediction using 

machine learning techniques. 

 

 

Fig 5.2.2 Use case Diagram for Smart Farming
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5.2.3 Collaboration Diagram 

A collaboration diagram (or communication diagram) is a UML diagram that shows object 

interactions and their relationships, focusing on the structural organization and message flow. 

The Collaboration diagram represents the interaction between a user and a dataset in an 

Smart Farming severity prediction system. The process starts with the user uploading a US road 

dataset, followed by extracting full and selected features for analysis. The dataset is then split 

into training and testing sets to train machine learning models effectively. The user runs 

classifiers on both full and selected features, allowing a comparative analysis of their 

performance. 

 

Fig 5.2.3 Collaboration Diagram of Smart Farming
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5.2.4 Sequence Diagram 

The sequence diagram illustrates the interaction between a user and the dataset in an Smart 

Farming severity prediction system. The process starts with the user uploading a US road 

dataset, followed by extracting full and selected features for further analysis. The dataset is 

then split into training and testing sets to facilitate model evaluation. The user runs classifiers 

on full features as well as on selected features, enabling a comparative analysis of their 

effectiveness. To visualize performance, the system generates a comparison graph and a 

comparison table, providing insights into the classifier results. Finally, the model is utilized to 

predict Smart Farming severity from the test data, classifying Smart Farmings into different 

severity levels. This structured workflow ensures a systematic and data-driven approach to 

Smart Farming severity prediction using machine learning techniques. 

 

 

 

 

 

Fig 5.2.4 Sequence Diagram of Smart Farming
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6.REQUIREMENT SPECIFICATIONS 

 

6.1 REQUIREMENT ANALYSIS 

Software Requirements 

The functional requirements or the overall description documents include the product 

perspective and features, operating system and operating environment, graphics requirements, 

design constraints and user documentation. 

Operating system : Minimum Windows 7 or above 

Coding Language : python 3.0 or above 

Hardware Requirements 

Minimum hardware requirements are very dependent on the particular software being 

developed by a given Enthought Python / Canopy / VS Code user. Applications that need to 

store large arrays/objects in memory will require more RAM, whereas applications that need to 

perform numerous calculations or tasks more quickly will require a faster processor. 

 

System : intel processor i3 or above. 

 

Ram : Minimum 8 GB. 

 

Hard Disk : Minimum 40 GB 

6.2 SPECIFICATION PRINCIPLES 

 

PYTHON 

Python is currently the most widely used multi-purpose, high-level programming 

language. It supports both Object-Oriented and Procedural paradigms, making it versatile and 

easy to use. Python programs are generally smaller than those written in other languages like 

Java, requiring less typing and enforcing indentation for improved readability. Due to its 

simplicity and efficiency, Python is widely adopted by major tech companies such as Google, 

Amazon, Facebook, Instagram, Dropbox, and Uber. One of Python’s biggest strengths is its 

extensive collection of standard libraries, which support various applications, including Machine 

Learning, GUI development (Kivy, Tkinter, PyQt), web frameworks like Django (used by 

YouTube, Instagram, and Dropbox), image processing (OpenCV, Pillow), web scraping (Scrapy, 

BeautifulSoup, Selenium), test frameworks, and multimedia applications. 
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ADVANTAGESOF PYTHON 

Extensible 

As we have seen earlier, Python can be extended to other languages. You can write some 

of your code in languages like C++ or C. This comes in handy, especially in projects. 

Embeddable 

Complimentary to extensibility, Python is embeddable as well. You can put your Python 

code in your source code of a different language, like C++. 

IOT Opportunities 

Since Python forms the basis of new platforms like Raspberry Pi, it finds the future bright 

for the Internet of Things. This is a way to connect the language with the real world. 

Simple and Easy 

When working with Java, you may have to create a class to print ‘Hello World’. But in 

Python, just a print statement will do. It is also quite easy to learn, understand, and code. This is 

why when people pick up Python, they have a hard time adjusting toother more verbose 

languages like Java. 

Readable 

Because it is not such a verbose language, reading Python is much like reading English. This is 

the reason why it is so easy to learn, understand, and code. It also does not need curly braces to 

define blocks, and indentation is mandatory. These further aids the readability of the code. 

Free and Open-Source 

 Like we said earlier, Python is freely available. But not only can you download Python for free, 

but you can also download its source code, make changes to it, and even distribute it. It 

downloads with an extensive collection of libraries to help you with your tasks. 

Portable 

When you code your project in a language like C++, you may need to make some changes to it if 

you want to run it on another platform. But it isn’t the same with Python. Here, you need to code 

only once, and you can run it anywhere. This is called Write Once Run Anywhere (WORA). 

However, you need to be careful enough not to include any system-dependent features. 

DISADVANTAGESOF PYTHON 

So far, we’ve seen why Python is a great choice for your project. But if you choose it, you 
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should be aware of its consequences as well. Let’s now see the downsides of choosing Python 

over another language. 

 Speed Limitations 

We have seen that Python code is executed line by line. But since Python is interpreted, it 

often results in slow execution. This, however, isn’t a problem unless speed is a focal point for 

the project. In other words, unless high speed is a requirement, the benefits offered by Python 

are enough to distract us from its speed limitations. 

1. Weak in Mobile Computing and Browsers 

While it serves as an excellent server-side language, Python is much rarely seen on the 

client- side. Besides that, it is rarely ever used to implement smartphone-based applications. 

One such application is called Carbonnelle. 

2. Design  Restrictions 

As you know, Python is dynamically-typed. This means that you don’t need to declare the 

type of variable while writing the code. It uses duck-typing. But wait, what’s that? Well, it just 

means that if it looks like a duck, it must be a duck. While this is easy on the programmers 

during coding, it can raise run-time errors. 

3. Under developed Database Access Layers 

Compared to more widely used technologies like JDBC (Java Database Connectivity) and 

ODBC (Open Data Base Connectivity), Python’s database access layers are a bit 

underdeveloped. Consequently, it is less often applied in huge enterprises. 

History of P ython 

What do the alphabet and the programming language Python have in common? Right, both 

start with ABC. If we are talking about ABC in the Python context, it's clear that the 

programming language ABC is meant. ABC is a general-purpose programming language and 

programming environment, which had been developed in the Netherlands, Amsterdam, at the 

CWI (Centrum Wiskunde & Informatica). The greatest achievement of ABC was to influence 

the design of Python. Python was conceptualized in the late1980s. Guidovan Rossum worked 

that time in a project at the CWI, called Amoeba, a distributed operating system. In an interview 

with Bill Venners1, Guido van Rossum said: "In the early 1980s, I worked as an implementer on 

a team building a language called ABC at Centrum voorWiskundeen Informatica (CWI). I don't 

know how well people know ABC's influence on Python. I try to mention ABC's influence 

because I'm indebted to everything I learned during that project and to the people who worked on 

it. "Later on in the same Interview, Guido van Rossum continued: "I remembered all my 
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experience and some of my frustration with ABC. I decided to try to design a simple scripting 

language that possessed some of ABC's better properties, but without its problems. So, I started 

typing. I created a simple virtual machine, a simple parser, and a simple runtime. I made my own 

version of the various ABC parts that I liked. I created a basic syntax, used indentation for 

statement grouping instead of curly braces or begin-end blocks, and developed a small number 

of powerful data types. 

Python Development Steps 

Guido Van Rossum published the first version of Python code (version 0.9.0) at alt. sources in 

February 1991. This release included already exception handling, functions, and the core 

datatypes of lists, dict, str and others. It was also object oriented and had a module system. 

Python version 1.0 was released in January 1994. The major new features included in this release 

were the functional programming tools lambda, map, filter and reduce, which Guido Van 

Rossumn ever liked. Six and a half years later in October 2000, Python2.0was introduced. This 

release included list comprehensions, a full garbage collector and it was supporting Unicode 

Purpose 

We demonstrated that our approach enables successful segmentation of intra-retinal 

layers— even with low-quality images containing speckle noise, low contrast, and different 

intensity ranges throughout—with the assistance of the ANIS feature. 

Python 

Python is an interpreted high-level programming language for general-purpose 

programming. Created by Guido van Rossum and first released in 1991, Python has a design 

philosophy that emphasizes code readability, notably using significant whitespace. 

Python features a dynamic type system and automatic memory management. It supports 

multiple programming paradigms, including object-oriented, imperative, functional and 

procedural, and has a large and comprehensive standard library. 

Python also acknowledges that speed of development is important. Readable and terse 

code is part of this, and so is access to powerful constructs that avoid tedious repetition of code. 

Maintainability also ties into this may be an all but useless metric, but it does say something 

about how much code you have to scan, read and/or understand to troubleshoot problems or 

tweak behaviors. This speed of development, the ease with which a programmer of other 

languages can pick up basic Python skills and the huge standard library is key to another area 

where Python excels. All its tools have been quick to implement, saved a lot of time, and several 

of them have later been patched and updated by people with no Python background - without 

breaking. 
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 Modules 

1. TensorFlow 

TensorFlow is a free and open-source software library for dataflow and differentiable 

programming across a range of tasks. It is asymbolic math library and is also used for machine 

learning applications such as neural networks. It is used for both research and production at 

Google. 

2. NumPy 

NumPy is a general-purpose array-processing package. It provides a high-performance 

multidimensional array object, and tools for working with these arrays. It is the fundamental 

package for scientific computing with Python 

3. Pandas 

Pandas is an open-source Python Library providing high-performance data manipulation 

and analysis tool using its powerful data structures. Python was majorly used for data munging 

and preparation. It had very little contribution towards data analysis. Pandas solved this problem. 

Using Pandas, we can accomplish five typical steps in the processing and analysis of data, 

regardless of the origin of data load, prepare, manipulate, model, and analyze. Python with 

Pandas is used in a wide range of fields including academic and commercial domains including 

finance, economics, Statistics, analytics, etc. 

4. Matplotlib 

Matplotlib is a Python 2D plotting library which produces publication quality figures in a 

variety of hard copy formats and interactive environments across platforms. Matplotlib can be 

used in Python scripts, the Python and IPython shells, the Jupyter Notebook, web application 

servers, and four graphical user interface toolkits. Matplotlib tries to make easy things easy and 

hard things possible. You can generate plots, histograms, power spectra, bar charts, error charts, 

scatterplots, etc., with just a few lines of code. For examples, see the sample plots and thumbnail 

gallery 

For simple plotting the pyplot module provides a MATLAB-like interface, particularly 

when combined with IPython. For the power user, you have full control of line styles, font 

properties, axes properties, etc., via an object-oriented interface or via a set of functions familiar 

to MATLAB users. 

5. Scikit– learn 
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Scikit-learn provides a range of supervised and unsupervised learning algorithms via a 

consistent interface in Python. 

It is licensed under a permissive simplified BSD license and is distributed under many 

Linux distributions, encouraging academic and commercial use. Python 

Python is an interpreted high-level programming language for general-purpose 

programming. Created by Guido van Rossumand first released in 1991, Python has a design 

philosophy that emphasizes code readability, notably using significant whitespace. 

Python features a dynamic type system and automatic memory management. It supports 

multiple programming paradigms, including object-oriented, imperative, functional and 

procedural, and has a large and comprehensive standard library. 

Python supports multiple programming paradigms, including object-oriented, imperative, 

functional, and procedural programming, making it versatile for different application needs. The 

object-oriented paradigm enables code reusability through classes and objects, while the 

functional programming paradigm supports higher-order functions and lambda expressions. The 

imperative and procedural styles allow developers to write clear and structured  

Python also acknowledges that speed of development is important. Readable and terse 

code is part of this, and so is access to powerful constructs that avoid tedious repetition of code. 

Maintainability also ties into this may be an all but useless metric, but it does say something 

about how much code you have to scan, read and/or understand to troubleshoot problems or 

tweak behaviors.  

Python also acknowledges that speed of development is important. Readable and terse 

code is part of this, and so is access to powerful constructs that avoid tedious repetition of code. 

Maintainability also ties into this may be an all but useless metric, but it does say something 

about how much code you have to scan, read and/or understand to troubleshoot problems or 

tweak behaviors. This speed of development, the ease with which a programmer of other 

languages can pick up basic Python skills and the huge standard library is key to another area 

where Python excels. All its tools have been quick to implement, saved a lot of time, and several 

of them have later been patched and updated by people with no Python background - without 

breaking. 

Install Python Step-by-Step in Windows and Mac 

Python a versatile programming language doesn’t come pre-installed on your computer 

devices. Python was first released in the year 1991 and until today it is a very popular high- level 

programming language. Its style philosophy emphasizes code readability with its notable use of 
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great whitespace. 

The object- oriented approach and language construct provided by Python enables 

programmers to write both clear and logical code for projects. This software does not come pre-

packaged with Windows. 

How to Install Python on Windows and Mac 

There have been several updates in the Python version over the years. The question is 

how to install Python? It might be confusing for the beginner who is willing to start learning 

Python but this tutorial will solve your query. The latest or the newest version of Python is 

version 3.7.4 or in other words, it is Python3. 

 

Note: The python version 3.7.4 cannot be used on Windows XP or earlier devices.Before you 

start with the installation process of Python. First, you need to know about your System 

Requirements. Based on your system type i.e., operating system and based processor, you must 

download the python version. My system type is a Windows 64-bit operating system. So, the 

steps below are to install pythonversion3.7.4onWindows7 device or to install Python 3. 

Download the Python Cheat sheet here. The steps on how to install Python on Windows 10, 8 

and 7 are divided into 4parts to help understand better. 

Download the Correct version into the system 

 

 Step1: Go to the official site to download and install python using Google Chrome or any 

other web browser. OR Click on the following link: https://www.python.org 

Fig 6.2.1 Python Official Site 

 

Now, check for the latest and the correct version for your operating system.  

http://www.python.org/
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Step 2: Click on the Download Tab. 

 

Fig 6.2.2 Download page of python
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Step3: You can either select the Download Python for windows 3.7.4 button in Yellow Color or 

you can scroll further down and click on download with respective to their version. Here, we are 

downloading the most recent python version for windows 3.7.4 

Step4: Scroll down the page until you find the Files option. 

Step5: Here you see a different version of python along with the operating system. 

 

To download Windows 32-bit python, you can select any one from the three options: Windows 

x86 embeddable zip file, Windows x86 executable installer or Windows x86 web-based installer. 

To download Windows 64-bit python, you can select any one from the three options: Windows 

x86-64 embeddable zip file, Windows x86-64 executable installer or Windows x86-64 web-

based installer 

Here we will install Windows x86-64 web-based installer. Here your first part regarding which 

version of python is to be downloaded is completed. Now we move a head with the second part 

in installing python i.e., Installation 

Note: To know the changes or updates that a remade in the version you can click on the 

Release Note Option. 

Installation of Python 

 

Step1: Goto Download and Open the downloaded python version to carry out the 

installation process. 

   

Fig 6.2.3 Python Installation 

 

Step2: Before you click on Install Now, make sure to put a tick on Add Python3.7 to PATH. 
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Fig 6.2.4 Python Installation 

 

 

 Fig 6.2.5 Python Set Up Completed 

 

With these above three steps on python installation, you have successfully and correctly 

installed Python. Now is the time to verify the installation. 

Note: The installation process might take a couple of minutes. Verify the Python Installation 

Step1: Click on Start 

 

Step2: In the Windows Run Command, type “cmd”. 

 

Step3: Click on Install NOW After the installation is successful. Click on Close. 
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 Step3: Open the Command prompt option. 

 

Step4: Let us test whether the python is correctly installed. Type python–V and press Enter. 

 

Step5: You will get the answer as 3.7.4 

 

Note: If you have any of the earlier versions of Python already installed. You must first  

uninstall the earlier version and then install the new one. 

Check how the Python IDLE works 
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7.IMPLEMENTATION 

 

7.1 PROJECT MODULES 

The implementation of the Smart Farming Precision Agriculture (SFPA) model involves data 

preprocessing, feature extraction, model training, evaluation, and real-time crop yield prediction. 

The system integrates machine learning (Random Forest) and deep learning (CNN) to enhance 

accuracy in crop yield prediction and resource management. Various classifiers are compared 

using performance metrics like accuracy, precision, recall, and F1-score, ensuring reliable and 

efficient agricultural decision-making. 

➢ Upload Agricultural Dataset 

Import data related to soil health, weather conditions, crop types, and sensor data. 

➢ Extract Full Set of Features 

Perform feature engineering to extract relevant parameters such as moisture levels, nutrient 

content, and temperature data. 

➢ Split Data into Training and Testing Sets 

Divide the dataset into training and testing subsets to validate model performance. 

➢ Run Classifiers on Full Features 

Apply machine learning models (e.g., Random Forest, SVM) using all extracted features to 

assess initial performance. 

➢ Run Classifiers on Selected Features 

Optimize model accuracy by selecting the most significant features through techniques like 

feature importance and dimensionality reduction. 

➢ Comparison Graph 

Visualize the performance of different classifiers using graphs that show accuracy, precision, 

recall, and F1-score. 

➢ Comparison Table 
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Tabulate the performance metrics of each classifier for easy comparison. 

➢ Predict Crop Yield from Table Data 

Use the trained model to predict crop yields based on new agricultural data inputs 

7.2 MODULE DESCRIPTION 

7.2.1 Data preprocessing 

Data Cleaning 

 

Duplicate Removal: Smart Farming data is often sourced from multiple platforms, leading to 

redundant entries. Eliminating duplicates ensures that each Smart Farming is counted only 

once, preventing bias in model predictions. 

Filtering Irrelevant Features: Certain attributes, such as Pesticide ID order descriptive 

location details, may not contribute to severity prediction. Removing such non-informative 

features, identified through exploratory data analysis, improves dataset efficiency. 

Handling Missing Data: Smart Farming frequently contain incomplete records, such as 

missing weather or vehicle details. Selecting appropriate imputation methods, such as replacing 

missing values with regional averages, or removing records with excessive gaps. 

 

7.2.2 Classification Models Used in the Proposed System 

Random Forest (RF): Feature Selection & Prediction Random Forest is an ensemble bagging 

technique that constructs multiple decision trees and predicts outcomes based on majority voting. 

RF is highly effective for Smart Farming severity prediction due to high accuracy in structured 

data classification is achieved by leveraging advanced machine learning techniques that 

effectively analyze patterns within organized datasets. The ability to identify significant features 

influencing Smart Farming severity enhances model interpretability, allowing for better 

decision- making and risk assessment. Additionally, the reduction in overfitting is ensured by 

averaging multiple tree predictions, which helps in improving generalization and ensuring that 

the model performs well on unseen data. 
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Fig 7.2.2.1 Random Forest Algorithm Diagram 

 

 

 

Fig 7.2.2.2 Ada Boost Classifier Diagram 

 

AdaBoost Classifier (AC): Boosting-Based Classification, particularly Adaptive Boosting 

(AdaBoost),is an ensemble learning technique that enhances the performance of weak classifiers 

by training them sequentially. Each new classifier in the sequence focuses more on the 
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misclassified instances from previous iterations, improving overall accuracy. The technique 

dynamically adjusts weights, giving more importance to difficult samples, ensuring that 

challenging cases receive more attention. AdaBoost is especially effective for imbalanced 

datasets, such as Smart Farming severity prediction, where severe Smart Farmings occur less 

frequently, thereby improving model robustness and reliability. 

 

 

 

Extra Trees Classifier (ETC): Extra Trees Classifier (ETC) enhances performance by 

introducing randomized node splitting while constructing decision trees. Unlike Random Forest 

(RF), ETC selects split points randomly, leading to faster training and reducing computational 

cost. This randomness helps in lowering variance while maintaining high accuracy, making it a 

more efficient alternative. Additionally, ETC achieves better generalization compared to 

standard RF classifiers, making it suitable for large datasets where both speed and accuracy are 

crucial. 

 

Fig 7.2.2.3 Extra Trees Classifier
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Gradient Boosting Machine (GBM): Gradient Boosting Machine (GBM) is a sequential learning 

model that builds decision trees iteratively, where each tree corrects the errors made by the 

previous ones. It employs gradient descent to minimize classification errors, making it highly 

effective in structured Smart Farming data analysis. GBM efficiently optimizes performance by 

capturing complex non-linear relationships, enhancing Smart Farming severity prediction 

accuracy. Its ability to learn from previous mistakes makes it a powerful technique for 

predictive modeling in agricultural Smart Farming analysis. 

 

 

 

 

 

 

Fig 7.2.2.4 Gradient Boosting Machine (GBM)
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Convolutional Neural Network (CNN): Convolutional Neural Networks (CNN) are deep 

learning models designed for high-dimensional feature extraction, making them highly effective 

in Smart Farming severity prediction. The CNN architecture used in this system includes 

convolutional layers that identify spatial patterns in Smart Farming data, pooling layers that 

reduce dimensionality while retaining essential information, dropout layers that prevent 

overfitting by randomly deactivating neurons, and flatten layers that prepare extracted features 

for classification. The ReLU activation function and a 0.2 dropout rate are applied to enhance 

performance and generalization. CNN effectively captures intricate relationships between Smart 

Farming severity, weather conditions, and road attributes, improving predictive accuracy. 

 

 

 

 

Fig 7.2.2.5 Convolutional Neural Network (CNN)



36  

Voting Classifier (LR+SGD): The Hybrid Model for structured data utilizes a Voting Classifier 

that integrates Logistic Regression (LR) and Stochastic Gradient Descent (SGD) to enhance 

classification accuracy. Logistic Regression employs logit functions to estimate Smart Farming 

severity probabilities, ensuring reliable probabilistic predictions. Meanwhile, Stochastic Gradient 

Descent optimizes the model by iteratively updating weights, leading to improved learning 

efficiency and reduced computational cost. By combining these approaches, the model achieves 

better generalization and robustness in Smart Farming severity prediction. 

 

 

 

 

Fig 7.2.2.6 Voting Classifier for RF Model
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Soft Voting Mechanism for Decision Making 

The proposed system employs a soft voting mechanism, which averages prediction 

probabilities from different models and selects the class with the highest probability score as the 

final output. This method enhances classification accuracy by ensuring that predictions from 

multiple models are combined to improve reliability. 

 

The formula for soft voting is: 

 

 

Fig 7.2.2.7 Working of the RF Model
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7.2.3 Performance Evaluation Metrics 

To assess the effectiveness of the Ensemble Fusion Classifier (EFC) model in predict in 

Smart Farming severity, several performance evaluation metrics are used. These metrics help 

determine how well the model classifies Smart Farming severity levels and compare its 

performance  with other models 

1. Precision 

 

Precision (also called Positive Predictive Value) evaluates how many of the predicted severe 

Smart Farmings were actually severe. It is given by: 

 

 

A high precision score means that false positives (mis classifications of non-severe Smart 

Farmings as severe) are minimized, making the model more reliable for decision-making. 

 

2. Recall(Sensitivity) 

Recall(also known as True Positive Rate)measures how well the model identifies actual severe 

Smart Farmings. It is calculated as: 

       Ahighrecall value ensures that the model correctly captures most severe Smart Farming 

cases,     reducing therisk of underestimating dangerous situations. 

 

3. F1-Score 

 

F1-score is the harmonic mean of precision and recall,balancing both metrics when the dataset 

is imbalanced. It is computed as: 
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7.3 SOURCE CODE 

 

from fastapi import FastAPI, File, UploadFile 

from pydantic import BaseModel 

import numpy as np 

import tensorflow as tf 

from tensorflow.keras.models import load_model 

from tensorflow.keras.preprocessing import image 

from sklearn.preprocessing import LabelEncoder 

import io 

import torch 

import torchvision.transforms as transforms 

from torchvision import models 

import joblib  # Import for loading the crop recommendation model 

from PIL import Image 

app = FastAPI() 

# Load the trained models 

modelWeed = load_model("weed_detection_model.h5") 

modelPest = load_model("pestIdentification.h5") 

#modelCrop = joblib.load("CropRecommendetion_RF_Model.pkl")  # Using 

joblib to load the .pkl file 

modelCrop = joblib.load("random_forest_model1.pkl") 

modelCropNuts = joblib.load("random_forest_model_soil_Nutrients.pkl") 

modelFerti = joblib.load("bagging_model_Fertilizer.pkl") 

# Device Configuration 

device = torch.device("cuda" if torch.cuda.is_available() else "cpu") 

print(f"Using device: {device}") 

# Define transformations (same as training) 

transform = transforms.Compose([ 

transforms.Resize((224, 224)), 

transforms.ToTensor(), 

transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 

0.225])  # ResNet normalization 

]) 
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# Load the trained ResNet model for maize disease detection 

num_classes_maize = 7  # Update this based on the number of classes 

in your dataset 

modelMaize = models.resnet18(pretrained=False)  # Use the correct 

torchvision model 

modelMaize.fc = torch.nn.Linear(modelMaize.fc.in_features, 

num_classes_maize)  # Adjust output layer 

modelMaize.load_state_dict(torch.load("maize_classifier1.pth", 

map_location=device))  # Load trained weights 

modelMaize.to(device) 

modelMaize.eval()  # Set model to evaluation mode 

# Load the trained ResNet model for Tomato disease detection 

num_classes_tomato = 5  # Update this based on the number of classes 

in your dataset 

modelTomato = models.resnet18(pretrained=False)  # Use the correct 

torchvision model 

modelTomato.fc = torch.nn.Linear(modelTomato.fc.in_features, 

num_classes_tomato)  # Adjust output layer 

modelTomato.load_state_dict(torch.load("Tomato_model_25.pth", 

map_location=device))  # Load trained weights 

modelTomato.to(device) 

modelTomato.eval()  # Set model to evaluation mode 

# Define class names (ensure this matches your training dataset) 

class_names_maize = [ 

    "fall armyworm", "grasshopper", "healthy", "leaf beetle", 

    "leaf blight", "leaf spot", "streak virus" 

] 

# Define class names (ensure this matches your training dataset) 

class_names_tomato = [ 

    "verticulium wilt", "healthy", "leaf blight",  

    "leaf curl", "septoria leaf spot" 

] 

# Function to preprocess image 
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def preprocess_image_torch(img_bytes): 

img = Image.open(io.BytesIO(img_bytes)).convert("RGB")  # Ensure RGB 

format 

img = transform(img).unsqueeze(0)  # Apply transformations and add 

batch dimension 

    return img.to(device) 

#class DummyModel: 

#    def predict(self, X): 

#        return [0]  # Always returns 0 for testing (index of "Urea") 

 

#modelFerti = DummyModel() 

 

# Define class names 

class_names_weed = [ 

    "Black-grass", "Charlock", "Cleavers", "Common Chickweed", 

"Common wheat", 

    "Fat Hen", "Loose Silky-bent", "Maize", "Scentless Mayweed", 

    "Shepherd’s Purse", "Small-flowered Cranesbill", "Sugar beet" 

] 

 

class_names_pest = [ 

    "aphids", "armyworm", "beetle", "bollworm", "grasshopper", 

    "mites", "mosquito", "sawfly", "stem_borer" 

] 

 

crop_mapping = { 

    'rice': 1, 'maize': 2, 'chickpea': 3, 'kidneybeans': 4, 

'pigeonpeas': 5, 

    'mothbeans': 6, 'mungbean': 7, 'blackgram': 8, 'lentil': 9, 

'pomegranate': 10, 

    'banana': 11, 'mango': 12, 'grapes': 13, 'watermelon': 14, 

'muskmelon': 15, 

    'apple': 16, 'orange': 17, 'papaya': 18, 'coconut': 19, 'cotton': 

20, 



42  

    'jute': 21, 'coffee': 22 

} 

 

crop_Nuts_mapping = { 

    'pomegranate': 1, 'mango': 2, 'grapes': 3, 

    'mulberry': 4, 'ragi': 5, 'potato': 6 

} 

 

crop_classes = [ 

    'Maize', 'Sugarcane', 'Cotton', 'Tobacco', 'Paddy', 'Barley', 

'Wheat', 

    'Millets', 'Oil seeds', 'Pulses', 'Ground Nuts' 

] 

 

soil_classes = ['Sandy', 'Loamy', 'Black', 'Red', 'Clayey'] 

 

fertilizer_classes = ['Urea', 'DAP', '14-35-14', '28-28', '17-17-17', 

'20-20', '10-26-26'] 

 

 

# Create label encoders for crop and soil types 

crop_encoder = LabelEncoder() 

soil_encoder = LabelEncoder() 

 

# Fit the encoders with predefined classes 

crop_encoder.fit(crop_classes) 

soil_encoder.fit(soil_classes) 

 

# Reverse the crop mapping to get names from numerical predictions 

crop_labels = {v: k for k, v in crop_mapping.items()} 

 

# Reverse the crop mapping for nutrients to get names from numerical 

predictions 

crop_Nuts_labels = {v: k for k, v in crop_Nuts_mapping.items()} 
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# Reverse mapping for fertilizer names if needed 

fertilizer_labels = {0: "Urea", 1: "DAP", 2: "14-35-14", 3: "28-28-

28", 4: "Urea"}  # Adjust based on training data 

 

# Define input schema using Pydantic 

class CropInput(BaseModel): 

    n: float 

    p: float 

    k: float 

    temp: float 

    humidity: float 

ph: float 

    rainfall: float 

soilType: int 

 

class CropNutsInput(BaseModel): 

    n: float 

    p: float 

    k: float 

ph: float 

ec: float 

    s: float 

    cu: float 

fe: float 

mn: float 

zn: float   

    b: float 

 

class FertilizerInput(BaseModel): 

    temperature: float 

    humidity: float 

    moisture: float 

soil_type: str 
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crop_type: str 

    nitrogen: float 

    potassium: float 

    phosphorous: float    

 

 

def preprocess_image(img_bytes): 

    """Convert image bytes to a preprocessed model input.""" 

img = Image.open(io.BytesIO(img_bytes)).convert("RGB")  # Convert to 

RGB 

img = img.resize((224, 224))  # Resize to match model input size 

img_array = np.array(img) / 255.0  # Normalize 

img_array = np.expand_dims(img_array, axis=0)  # Add batch dimension 

    return img_array 

 

 

@app.post("/predict-weed") 

async def predict_weed(file: UploadFile = File(...)): 

    try: 

img_bytes = await file.read() 

processed_img = preprocess_image(img_bytes) 

 

        # Get prediction 

        prediction = modelWeed.predict(processed_img) 

predicted_class = np.argmax(prediction) 

        confidence = float(np.max(prediction)) 

 

        return {"predicted_class": class_names_weed[predicted_class], 

"confidence": confidence} 

    except Exception as e: 

        return {"error": str(e)} 

 

 

@app.post("/predict-pest") 
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async def predict_pest(file: UploadFile = File(...)):  # Changed 

function name 

    try: 

img_bytes = await file.read() 

processed_img = preprocess_image(img_bytes) 

 

        # Get prediction 

        prediction = modelPest.predict(processed_img) 

predicted_class = np.argmax(prediction) 

        confidence = float(np.max(prediction)) 

 

        return {"predicted_class": class_names_pest[predicted_class], 

"confidence": confidence} 

    except Exception as e: 

        return {"error": str(e)} 

 

@app.post("/predict-maize") 

async def predict_maize(file: UploadFile = File(...)): 

    try: 

img_bytes = await file.read() 

processed_img = preprocess_image_torch(img_bytes) 

 

        # Perform inference 

        with torch.no_grad(): 

            prediction = modelMaize(processed_img) 

 

predicted_class = torch.argmax(prediction, dim=1).item() 

        confidence = torch.softmax(prediction, 

dim=1)[0][predicted_class].item() 

 

        return {"predicted_class": 

class_names_maize[predicted_class], "confidence": round(confidence, 

4)} 
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    except Exception as e: 

        return {"error": str(e)} 

 

@app.post("/predict-tomato") 

async def predict_tomato(file: UploadFile = File(...)): 

    try: 

img_bytes = await file.read() 

processed_img = preprocess_image_torch(img_bytes) 

 

        # Perform inference 

        with torch.no_grad(): 

            prediction = modelTomato(processed_img) 

 

predicted_class = torch.argmax(prediction, dim=1).item() 

        confidence = torch.softmax(prediction, 

dim=1)[0][predicted_class].item() 

 

        return {"predicted_class": 

class_names_tomato[predicted_class], "confidence": round(confidence, 

4)} 

 

    except Exception as e: 

        return {"error": str(e)} 

 

@app.post("/predict") 

def predict_best_crops(input_data: CropInput): 

    try: 

        # Convert input to numpy array 

input_features = np.array([ 

input_data.n, input_data.p, input_data.k,  

input_data.temp, input_data.humidity,  

            input_data.ph, input_data.rainfall, input_data.soilType 

        ]).reshape(1, -1) 
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        # Predict probabilities for all crops 

        probabilities = modelCrop.predict_proba(input_features)[0] 

 

        # Get top 5 crop indices with highest probabilities 

        top_5_indices = np.argsort(probabilities)[::-1][:5] 

 

        # Filter crops with probability > 0% 

        top_5_crops = [{"crop": crop_labels[i+1], "probability": 

round(probabilities[i], 4)} 

                    for i in top_5_indices if probabilities[i] > 0] 

 

        return {"recommended_crops": top_5_crops} 

    except Exception as e: 

        return {"error": str(e)} 

 

 

 

@app.post("/predictCropNuts") 

def predict_best_crops(input_data: CropNutsInput): 

    try: 

        # Convert input to numpy array 

input_features = np.array([ 

input_data.n, input_data.p, input_data.k,  

            input_data.ph, input_data.ec, input_data.fe, 

input_data.s, input_data.cu, input_data.mn, input_data.zn, 

input_data.b, 

        ]).reshape(1, -1) 

 

        # Predict probabilities for all crops 

        probabilities = 

modelCropNuts.predict_proba(input_features)[0] 

 

        # Get top 5 crop indices with highest probabilities 

        top_5_indices = np.argsort(probabilities)[::-1][:5] 
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        # Filter crops with probability > 0% 

        top_5_crops = [{"crop": crop_Nuts_labels[i+1], "probability": 

round(probabilities[i], 4)} 

                    for i in top_5_indices if probabilities[i] > 0] 

 

        return {"recommended_crops": top_5_crops} 

    except Exception as e: 

        return {"error": str(e)} 

 

 

@app.post("/predict-fertilizer") 

def predict_fertilizer(input_data: FertilizerInput): 

    try: 

        # Validate Crop Type 

        if input_data.crop_type not in crop_classes: 

            return {"error": f"Invalid Crop Type: 

{input_data.crop_type}. Must be one of {crop_classes}"} 

 

        # Validate Soil Type 

        if input_data.soil_type not in soil_classes: 

            return {"error": f"Invalid Soil Type: 

{input_data.soil_type}. Must be one of {soil_classes}"} 

 

        # Encode categorical variables 

encoded_crop = crop_classes.index(input_data.crop_type) 

encoded_soil = soil_classes.index(input_data.soil_type) 

 

        # Prepare input feature array 

input_features = np.array([ 

input_data.temperature, input_data.humidity, input_data.moisture, 

input_data.nitrogen, input_data.potassium, 

input_data.phosphorous, encoded_soil, encoded_crop 

        ]).reshape(1, -1) 



49  

 

        # Predict fertilizer 

recommended_fertilizer = modelFerti.predict(input_features)[0] 

 

 

        #predicted_fertilizer = fertilizer_classes[prediction_index] 

        return {"recommended_fertilizer": recommended_fertilizer} 

 

 

    except Exception as e: 

        return {"error": str(e)}
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8. SYSTEMTEST 

 

SYSTEM TEST 

The purpose of testing is to discover errors. Testing is the process of trying to discover 

every conceivable fault or weakness in a work product. It provides a way to check the 

functionality of components, sub-assemblies, assemblies and/or a finished product It is the 

process of exercising software with the intent of ensuring that the Software system meets its 

requirements and user expectations and does not fail in an unacceptable manner.  

 

8.1 Unit Testing 

Unit testing involves testing individual components of the software to ensure they function 

correctly. It verifies that internal logic works as expected, with valid inputs producing valid 

outputs. In RF: Agricultural Smart Farming Severity Prediction, unit tests check the correctness 

of feature extraction, data preprocessing, and individual classifier implementations before 

integration. 

 

8.2 Integration Testing 

Integration testing validates that multiple components of the software interact correctly 

when combined. It ensures that integrated modules work as expected. In RF, this testing 

ensures that machine learning models, data processing pipelines, and UI components integrate 

seamlessly without conflicts. 

8.3 Functional Testing 

Functional testing ensures that the software meets business and technical requirements. It 

validates the correctness of input handling, expected outputs, and feature execution. In RF, this 

involves testing functions such as dataset loading, feature extraction, classifier execution, and 

result visualization to ensure expected behavior. 

 

8.4 System Testing 

System testing verifies that the complete, integrated system meets all functional and non-
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functional requirements. It ensures correct system configuration and end-to-end workflows. In 

RF, this involves checking whether the full model pipeline—from data input to severity 

prediction—operates without issues and produces accurate results. 

8.5 White Box Testing 

White box testing examines the internal logic and structure of the code. It helps in 

identifying logical errors and optimizing the implementation. In RF, white box testing focuses 

on the implementation of classifiers, data processing logic, and feature selection methods to 

verify proper execution. 

 

8.6 Black Box Testing 

Black box testing validates the software without knowledge of its internal workings. It 

focuses on user interactions and expected results. In RF, this includes testing the user interface, 

verifying input data formats, and ensuring correct predictions without inspecting the internal 

model structures.
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9.RESULTS AND DISCUSSION 

The proposed work is a web interface through which the user can access the models 

efficiently. Represents the login page through which the user needs to login with their credentials 

to access the models. shows the user dashboard after logging in, thus enabling users to access the 

models. The results of each model are discussed in each section. 

Crop recommendation 

Ten Algorithms were used for crop recommendation. The accuracy score above 90% was 

selected as shown in figure. The accuracy drifts are been clearly observed using For these 

selected algorithms Hyperparameter Tuning was applied from which best model with highest 

accuracy was obtained as shown in figure.  

According to the Random Forest classifier hyper tuned with Randomized CV is opted as 

best model since its accuracy is 95.45% and stored as a pickle file for further analysis. 

 

 

 

Fig 9.1 Training and validation accuracy 
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Training and Validation Accuracy 

This section presents the training and validation accuracy trends observed during model 

training. The figure below illustrates how the accuracy evolved over the epochs for both training 

and validation data. 

Observations 

• The training accuracy (blue line) shows a steady increase over the epochs, indicating 

that the model is learning from the training data effectively. 

• The validation accuracy (red line), however, fluctuates significantly, which suggests 

possible overfitting. While it initially improves, the variations indicate that the model 

may not generalize well to unseen data. 

• Around the middle epochs, the validation accuracy does not show a consistent upward 

trend, which could be a sign of model complexity or insufficient regularization. 

 

Fig 9.2 Accuracy and validation loss 

 

Accuracy Plot (Left Graph) 

• The blue line represents training accuracy, and the orange line represents validation 

accuracy. 

• Training accuracy shows a steady increase, indicating that the model is learning from 

the training data.
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• Validation accuracy starts higher than training accuracy and continues to increase, but it 

seems to stabilize toward the later epochs. 

• The fact that validation accuracy is consistently higher than training accuracy may 

indicate the use of data augmentation or regularization techniques that improve 

generalization. 

Loss Plot (Right Graph) 

• The blue line represents training loss, and the orange line represents validation loss. o 

Both training and validation loss decrease over time, which is a good sign that the 

model is learning effectively. 

• The gap between training and validation loss is small, suggesting that the model is not 

heavily over fitting. 

• There is a slight fluctuation in validation loss towards the later epochs, which may 

indicate some variability in generalization but not necessarily overfitting. 

Key Takeaways: 

• The model appears to be well-trained with a good balance between training and 

validation accuracy. 

• There is no major sign of over fitting, as validation performance remains strong and 

loss continues to decrease. 

• If further optimization is needed, consider fine-tuning hyperparameters like learning 

rate, batch size, or adding early stopping to prevent unnecessary training beyond the 

optimal point. 
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 Fig 9.3 Model Performance Comparison 

 

The image presents a Model Performance Comparison chart, displaying the training and testing 

accuracy of various machine learning models. Here’s a breakdown of the insights: 

Key Observations: 

 

Models with High Performance: 

⮚ Random Forest, KNN, Naïve Bayes, Decision Tree, Gradient Boosting, and XGBoost 

exhibit high accuracy in both training and testing, indicating good generalization. 

⮚ Their training and testing accuracy values are close to 1.0 (or 100%), meaning they 

perform well without significant overfitting. 

Overfitting & Generalization Issues: 

⮚ Bagging Classifier shows a slight drop in testing accuracy compared to training accuracy, 

but the difference is not substantial. 

Poor Performance of AdaBoost: 

⮚ AdaBoost shows a significant drop in accuracy, with testing accuracy around 0.4 (40%). 
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⮚ This suggests that AdaBoost may not be performing well on this dataset, potentially due 

to underfitting or sensitivity to noisy data. 

⮚ Further investigation, such as tuning hyperparameters or feature selection, might be 

needed to improve its performance. 

Key Takeaways: 

⮚ Most models show high training and testing accuracy, meaning they generalize well. 

⮚ AdaBoost performs poorly, indicating potential underfitting or dataset incompatibility. 

⮚ If overfitting is a concern in some models (e.g., Decision Tree or Random Forest), 

⮚ regularization techniques like pruning or hyper parameter tuning might help. 

 

Fig 9.4 Six factors of various crop types 

The image contains six-line plots comparing different environmental and soil-related factors 

across various crop types. Here’s a detailed explanation of each plot:
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Key Observations from the Graphs 

N vs Crop Type (Top Left)  

⮚ The nitrogen (N) content varies significantly across different crops.  

⮚ Some crops, like rice and maize, have higher nitrogen requirements, while others, like 

coffee, have lower nitrogen levels. 

P vs Crop Type (Top Middle) 

⮚ Phosphorus (P) levels also fluctuate depending on the crop.  

⮚ Some crops like papaya and banana appear to need higher phosphorus, while others 

require relatively low amounts. 

K vs Crop Type (Top Right) 

⮚ Potassium (K) levels show significant variation, with some crops requiring very high 

amounts (e.g., coconut) while others require minimal potassium. 

⮚ This suggests that potassium plays a crucial role in specific crop growth.
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Temperature vs Crop Type (Middle Left)  

⮚ Temperature preferences vary widely among crops.  

⮚ Some crops, such as pomegranate and banana, prefer warmer conditions, while others, 

like coffee, thrive at lower temperatures. 

Humidity vs Crop Type (Middle Right)  

⮚ Humidity levels show clear distinctions among different crops.  

⮚ Certain crops require high humidity (e.g., tropical crops like banana), while others can 

grow in lower humidity conditions. 

pH vs Crop Type (Bottom Middle) 

⮚ The soil pH levels vary, but most crops appear to thrive in a range between 6.0 and 7.5, 

indicating slightly acidic to neutral soil conditions. 

Rain fall vs Crop Type (Bottom Left) 

⮚ Rain fall requirements are diverse, with some crops needing significant water supply 

(e.g., rice and banana) and others thriving in relatively dry conditions (e.g., mustard). 

Key Takeaways: 

⮚ Different crops have unique environmental and nutrient requirements, emphasizing the 

importance of precision agriculture and soil testing before planting. 

⮚ Understanding these variations can optimize fertilizer application, irrigation, and land 

management for better yield. 

⮚ If a crop has high nutrient or water requirements, farmers must ensure sufficient supply 

through 

⮚ fertilization and irrigation techniques. 
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Fram Tech APP: 

The FarmTech is an AI-driven application designed to enhance farming efficiency and crop 

management using machine learning. The FarmTech application designed to help farmers make 

informed decisions using machine learning. The system integrates advanced ML models to 

analyze real-time data, predict agricultural outcomes, and provide actionable recommendations. 

The system collects sensor data and stores it in a cloud database (Firebase/MySQL). APIs 

facilitate real-time data transfer over Wi-Fi using HTTP or MQTT. The central module 

aggregates sensor data and calculates optimized watering schedules. If internet connectivity is 

available, cloud-based ML models analyze data for precise recommendations. In offline mode, 

the system uses pre-defined logic for automated irrigation. Alerts (via SMS, email, or app 

notifications) notify farmers of potential risks. Built with a React frontend, a Spring Boot 

backend, and an H2 database, the platform leverages Python- based ML models for predictive 

analytics and decision-making. The system integrates powerful ML models such as Random 

Forest, ResNet152V2, MobileNet, and Bagging Classifier, utilizing TensorFlow and PyTorch to 

deliver accurate insights. The app consists of seven key modules, each addressing a critical 

aspect of agricultural management: 

1) Crop Predictor, 

2) Weeds Identification, 

3) Pest Identification, 

   4)Crop Nutrient Requirements,  

5)Fertilizer Recommendation 

6) Maize disease prediction, 

7) Pest Control Recommendation. 

Dashboard: 

This smart farming application empowers farmers with data driven insights, improving 

agricultural productivity, reducing losses, and optimizing resource usage through ai-

powered recommendation. 
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Screenshot 9.1 Dashboard 

 

 

       

 

 

Screenshot 9.2 Dashboard 
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1) Crop Predictor: 

Predicts suitable crops based on environmental factors. Predicts the best crops to 

grow based on environmental conditions. 

 

 

Screenshot 9.3 Crop Predictor 

 

 

 

Screenshot 9.4 Crop Predictor 
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2) Weeds Identification: 

Detects and classifies weeds for better weed management. 

 

  

Screenshot 9.5 Weeds Identification 

 

 

Screenshot 9.6 Weeds Identification 
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3) Pest Identification: 

Identifies pests affecting crops using deep learning models. Identifies pests using deep 

learning for early intervention. 

 

 

 

 

Screenshot 9.7 Pest Identification 

 

 

Screenshot 9.8 Pest Identification



64  

4) Crop Nutrient Requirement: 

Recommends necessary nutrients for optimal crop growth. 

 

   

 

 Screenshot 9.9 Crop Nutrient Requirements 

 

 

 

Screenshot 9.10 Crop Nutrient Requirements 
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5) Fertilizer Recommendation: 

Suggests the best fertilizers based on soil and crop conditions. 

 

 

 

Screenshot 9.11 Fertilizer Recommendation 

 

 

 

   

Screenshot 9.12 Fertilizer Recommendation 
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6) Maize Disease Prediction: 

Detects and classifies maize plant diseases. Detects and predicts maize plant 

diseases with high accuracy. 

 

  

Screenshot 9.13 Maize disease prediction  

 

 

Screenshot 9.14 Maize disease prediction 
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7) Pest Control Recommendation: 

Provides AI-based pest control solutions for better yield protection. 

 

   

Screenshot 9.15 Pest Control Recommendation 

 

 

 

Screenshot 9.16 Pest Control Recommendation 

 



68  

10.CONCLUSION AND FUTURE SCOPE 

 

10.1 CONCLUSION 

 

The Precision Agriculture System using Machine Learning presents a transformative 

approach to modern farming by integrating IoT sensors, machine learning, and automation to 

enhance productivity, optimize resource utilization, and promote sustainable agricultural 

practices. By collecting real-time environmental and crop data, the system enables data-

driven decision-making, providing farmers with actionable insights through predictive 

analytics and smart recommendations. The automation of key farming operations, such as 

irrigation, fertilization, and pest control, reduces manual labor, minimizes resource wastage, 

and increases efficiency. Additionally, the integration of a user-friendly dashboard and alert 

system ensure that farmers receive timely updates and can take necessary actions to protect 

their crops and maximize yields. 

 

Furthermore, the system enhances farm monitoring and market integration, allowing 

farmers to plan their production based on demand forecasts, reducing post-harvest losses, and 

improving profitability. With built-insecurity measures and scalability, the system can be 

adapted for different farm sizes and agricultural needs. Ultimately, this project demonstrates 

how machine learning and IoT can revolutionize farming, making it more efficient, cost-

effective, and environmentally friendly. The successful implementation of this system can 

contribute to global food security and support sustainable agriculture for future generations. 

 

10.2 FUTURESCOPE 

Google Earth Engine (GEE) and UAV-based remote sensing play a crucial role in modern 

precision agriculture by enabling efficient monitoring and analysis of soil and vegetation 

health. These technologies help in soil pH and nutrient detection, allowing farmers to 

optimize fertilizer usage by identifying nutrient deficiencies through advanced spectral 

analysis. Vegetation health monitoring is enhanced using multispectral imaging, which 

detects plant stress, pest infestations, and disease outbreaks, ensuring timely interventions. 

Additionally, drought and irrigation planning benefit from real-time satellite data, helping 

farmers make informed decisions to conserve water and improve crop resilience. 
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Furthermore, yield prediction and climate impact analysis leverage AI-powered geospatial 

analytics to assess crop productivity, forecast potential losses, and understand climate 

variations affecting agriculture. By integrating GEE and UAV-based sensing, farmers can 

achieve higher efficiency, reduce resource wastage, and enhance overall agricultural 

sustainability.
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