
A

Major Project Report

On

UPI FRAUD DETECTION USING MACHINE LEARING

Submitted to CMREC, HYDERABAD

BACHELOR OF TECHNOLOGY IN COMPUTER SCIENCE AND
ENGINEERING (DATA SCIENCE)

Submitted By

K.NIHALINI (218R1A6793)

K.SAICHARAN (218R1A6790)

MERAJ AHMED (218R1A67A9)

Under the Esteemed guidance of

Mrs. A.Shravani

Assistant Professor, Department of CSE (Data Science)

Department of Computer Science & Engineering (Data Science)

CMR ENGINEERING COLLEGE

UGC AUTONOMOUS
(Approved by AICTE, NEW DELHI, Affiliated to JNTU, Hyderabad) Kandlakoya, Medchal Road, R.R. Dist.
Hyderabad501 401.

2024-2025

CMR ENGINEERING COLLEGE UGC

AUTONOMOUS

(Accredited by NBA Approved by AICTE NEW DELHI, Affiliated to JNTU,
Hyderabad) Kandlakoya, Medchal Road, Hyderabad-501 401

Department of Computer Science & Engineering(Data Science)

CERTIFICATE

This is to certify that the project entitled “UPI Fraud Detection using Machine Learning” is a
Bonafide work carried out by

K.NIHALINI (218R1A6793)

K.SAICHARAN (218R1A6790)

MERAJ AHMED (218R1A67A9)

in partial fulfillment of the requirement for the award of the degree of BACHELOR OF
TECHNOLOGY in COMPUTER SCIENCE AND ENGINEERING (DATA SCIENCE) from CMR
Engineering College, affiliated to JNTU, Hyderabad, under our guidance and supervision.

The results presented in this Major project have been verified and are found to be satisfactory. The
results embodied in this Major project have not been submitted to any other university for the award
of any other degree or diploma.

Internal Guide Major Project

Coordinator
Head of the Department External

Examiner

Mrs. A. Shravani Mr. B. Kumara
Swamy

Dr. M. Laxmaiah

Assistant Professor
CSE (Data Science),
CMREC

Assistant Professor CSE
(Data Science),
CMREC

Professor & H.O.D CSE
(Data Science),
CMREC

DECLARATION

This is to certify that the work reported in the present Major project entitled " UPI Fraud
Detection using Machine Learning” is a record of Bonafide work done by us in the
Department of Computer Science and Engineering (Data Science), CMR Engineering College,
UGC Autonomous, JNTU Hyderabad. The reports are based on the project work done entirely
by us and not copied from any other source. We submit our project for further development by
any interested students who share similar interests to improve the project in the future
The results embodied in this Major project report have not been submitted to any other University or
Institute for the award of any degree or diploma to the best of our knowledge and belief.

K.NIHALINI (218R1A6793)

K.SAICHARAN (218R1A6790)

MERAJ AHMED (218R1A67A9)

ACKNOWLEDGMENT

We are extremely grateful to Dr. A. Srinivasula Reddy, Principal and Dr. M. Laxmaiah, HOD,

Department of CSE (Data Science), CMR Engineering College for their constant support.

We are extremely thankful to Mrs. A.Shravani , Assistant Professor, Internal Guide, Department of
CSE(DS), for his/ her constant guidance, encouragement and moral support throughout the project.

We will be failing in duty if We do not acknowledge with grateful thanks to the authors of the references
and other literatures referred in this Project.

We thank Mr. B .Kumara Swamy Assistant Professor ,CSE(DS) Department , Minor Project
Coordinator for his constant support in carrying out the project activities and reviews.

We express my thanks to all staff members and friends for all the help and co-ordination extended in
bringing out this project successfully in time.

Finally, We are very much thankful to our parents who guided me for every step.

K.NIHALINI (218R1A6793)

K.SAICHARAN (218R1A6790)

MERAJ AHMED (218R1A67A9)

ABSTRACT

Unified Payments Interface (UPI) transactions have become a crucial part of digital

banking, making them a prime target for fraud. This project presents a machine

learning-driven fraud detection system for UPI transactions, leveraging multiple

classification models, including Logistic Regression, Decision Tree, XGBoost,

SVM, KNN, and Naïve Bayes. We employ ensemble techniques such as Voting and

Stacking Classifiers to enhance accuracy. The dataset undergoes preprocessing,

feature selection, and exploratory data analysis before model training. Our results

show that while XGBoost achieves 98.2% accuracy, the Stacking Classifier

surpasses it with 99.4% accuracy. The system integrates a Flask-based frontend with

user authentication using SQLite, allowing real-time fraud detection. User inputs are

preprocessed and classified using the trained model, with predictions displayed

through the interface. This project demonstrates the effectiveness of ensemble

learning in fraud detection, providing a robust and scalable approach to securing

digital transactions.

TABLE OF CONTENTS

S.NO CONTENT PGNO

1 Introduction

1.1 Objective

1.2 Problem Statement

1.3 Software requirements

1.4 Hardware requirements

1

2

3

3

3

2 Feasibility study 4

3 Literature survey 6

4 System analysis

4.1 Existing system

4.1.1 Disadvantages of existing system

4.2 Proposed system

4.2.1 Advantages of proposed system

4.3 Functional requirements

4.4 Non-Functional requirements

10

10

11

11

11

12

13

5 System design

5.1 System architecture

5.2 UML diagrams

14

14

17

6 Implementation

6.1 Modules

6.2 Sample code

25

25

29

7 Software environment 36

8 System testing

8.1 Testing strategies

8.2 Test cases

52

53

55

9 Screenshots 56

10 Conclusion 64

11 References 65

1

1. INTRODUCTION

The rapid growth of digital banking has led to the widespread adoption of the Unified

Payments Interface (UPI), a real-time payment system that enables seamless

transactions between banks. However, the increasing volume of UPI transactions has

also attracted cybercriminals, making fraud detection a critical concern. Traditional

rule-based fraud detection systems often fail to adapt to evolving fraudulent tactics,

necessitating the use of machine learning-based solutions to identify and mitigate

fraudulent activities effectively.

This project presents a comprehensive machine learning-driven fraud detection

system for UPI transactions, employing multiple classification models to enhance

detection accuracy. The models used include Logistic Regression, Decision Tree,

XGBoost, Support Vector Machine (SVM), K-Nearest Neighbors (KNN), and Naïve

Bayes. To further improve performance, ensemble techniques such as Voting and

Stacking Classifiers are implemented. Through rigorous experimentation, we find

that while XGBoost achieves an impressive accuracy of 98.2%, the Stacking

Classifier surpasses it with a remarkable 99.4% accuracy, demonstrating the

effectiveness of combining multiple models.

The dataset undergoes extensive preprocessing, including handling missing values,

feature selection, and exploratory data analysis (EDA) to ensure high-quality input

for model training. By leveraging advanced feature engineering techniques, we

enhance the predictive capability of the models, improving fraud detection

efficiency.

To provide a user-friendly interface, the system is integrated with a Flask-based web

application that allows real-time fraud detection. Users can input transaction details,

which are then preprocessed and classified using the trained model. The interface

2

also incorporates authentication mechanisms using SQLite, ensuring secure access

to the system.

Overall, this project highlights the power of ensemble learning in fraud detection

and offers a scalable solution to enhance the security of UPI transactions, reducing

financial losses and building user trust in digital payments.

1.1 Objective:

The objective of this project is to develop a robust machine learning-based fraud

detection system for UPI transactions. By leveraging multiple classification models

and ensemble techniques, the system aims to achieve high accuracy, enhance

security, and provide a real-time fraud detection mechanism through a Flask-based

user interface with secure authentication.

1.2 Problem Statement:

 Increasing UPI transaction frauds threaten digital banking security and trust.

 Traditional fraud detection methods struggle to detect evolving fraudulent

tactics.

 Machine learning techniques improve fraud detection accuracy and

efficiency.

 Multiple classification models enhance fraud identification and minimize

false positives.

 Ensemble learning boosts model performance for better fraud detection

accuracy.

 Preprocessing and feature selection refine data quality for optimal training.

 Real-time fraud detection is necessary for immediate transaction security.

 A user-friendly interface ensures accessibility and ease of fraud analysis.

3

1.3 SOFTWARE REQUIREMENTS

1) Software: Anaconda

2) Primary Language: Python

3) Frontend Framework: Flask

4) Back-end Framework: Jupyter Notebook

5) Database: Sqlite3

6) Front-End Technologies: HTML, CSS, JavaScript and Bootstrap4

1.4 HARDWARE REQUIREMENTS

1) Operating System: Windows Only

2) Processor: i5 and above

3) Ram: 8GB and above

4) Hard Disk: 25 GB in local drive

4

2. FEASIBILITY STUDY

A feasibility study—sometimes called a feasibility analysis or feasibility report—is

a way to evaluate whether or not a project plan could be successful. A feasibility

study evaluates the practicality of your project plan in order to judge whether or not

you’re able to move forward with the project.

Types of feasibility studies:

There are five main types of feasibility studies: technical feasibility, financial

feasibility, market feasibility (or market fit), operational feasibility, and legal

feasibility. Most comprehensive feasibility studies will include an assessment of all

five of these areas.

Technical feasibility:

A technical feasibility study reviews the technical resources available for your

project. This study determines if you have the right equipment, enough equipment,

and the right technical knowledge to complete your project objectives. For example,

if your project plan proposes creating 50,000 products per month, but you can only

produce 30,000 products per month in your factories, this project isn’t technically

feasible.

Financial feasibility:

Financial feasibility describes whether or not your project is fiscally viable. A

financial feasibility report includes a cost-benefit analysis of the project. It also

forecasts an expected return on investment (ROI) and outlines any financial risks.

5

The goal at the end of the financial feasibility study is to understand the economic

benefits the project will drive.

Market feasibility:

The market feasibility study is an evaluation of how your team expects the project’s

deliverables to perform in the market. This part of the report includes a market

analysis, a market competition breakdown, and sales projections.

Operational feasibility:

An operational feasibility study evaluates whether or not your organization is able

to complete this project. This includes staffing requirements, organizational

structure, and any applicable legal requirements. At the end of the operational

feasibility study, your team will have a sense of whether or not you have the

resources, skills, and competencies to complete this work.

Legal feasibility:

A legal feasibility analysis assesses whether the proposed project complies with all

relevant legal requirements and regulations. This includes examining legal and

regulatory barriers, necessary permits, licenses, or certifications, potential legal

liabilities or risks, and intellectual property considerations. The legal feasibility

study ensures that the project can be completed without running afoul of any laws

or incurring undue legal exposure for the organization.

6

3. LITERATURE SURVEY

3.1 Fraud detection model for illegitimate transactions:

https://kurj.kab.ac.ug/index.php/1/article/view/102

Due to advancements in network technologies, digital security is becoming a top

priority worldwide. This project aims to study how machine learning techniques can

be used to learn patterns in fraudulent and legitimate transactions in order to detect

fraudulent transactions using Python programming language on Jupyter notebook as

the integrated development environment (IDE). Scikit-learn was used to process the

algorithm, and Streamlit and Heroku platforms were used for deployment of the

algorithms. This was incorporated into a web application that allows the user to

upload data that is analyzed by the system to detect fraud. The Classification report

and Confusion matrix are used to evaluate each model’s accuracy. The random forest

model gave an accuracy of 99.95 %. At the end of this study, a web-based application

was developed to allow users upload data and also to detect fraudulent online based

transaction.

3.2 Fraud detection with natural language processing:

https://www.researchgate.net/publication/372466905_Fraud_detection_with_n

atural_language_processing

Automated fraud detection can assist organisations to safeguard user accounts, a task

that is very challenging due to the great sparsity of known fraud transactions. Many

approaches in the literature focus on credit card fraud and ignore the growing field

of online banking. However, there is a lack of publicly available data for both. The

lack of publicly available data hinders the progress of the field and limits the

investigation of potential solutions. With this work, we: (a) introduce FraudNLP, the

7

first anonymised, publicly available dataset for online fraud detection, (b)

benchmark machine and deep learning methods with multiple evaluation measures,

(c) argue that online actions do follow rules similar to natural language and hence

can be approached successfully by natural language processing methods.

3.3 Application of Artificial Intelligence for Fraudulent Banking Operations

Recognition:

https://www.mdpi.com/2504-2289/7/2/93

This study considers the task of applying artificial intelligence to recognize bank

fraud. In recent years, due to the COVID-19 pandemic, bank fraud has become even

more common due to the massive transition of many operations to online platforms

and the creation of many charitable funds that criminals can use to deceive users.

The present work focuses on machine learning algorithms as a tool well suited for

analyzing and recognizing online banking transactions. The study’s scientific

novelty is the development of machine learning models for identifying fraudulent

banking transactions and techniques for preprocessing bank data for further

comparison and selection of the best results. This paper also details various methods

for improving detection accuracy, i.e., handling highly imbalanced datasets, feature

transformation, and feature engineering. The proposed model, which is based on an

artificial neural network, effectively improves the accuracy of fraudulent transaction

detection. The results of the different algorithms are visualized, and the logistic

regression algorithm performs the best, with an output AUC value of approximately

0.946. The stacked generalization shows a better AUC of 0.954. The recognition of

banking fraud using artificial intelligence algorithms is a topical issue in our digital

society.

8

3.4 IMPLEMENTATION OF CASHLESS POLICY TO MINIMIZE FRAUD

IN THE GOVERNMENT SECTOR: A SYSTEMATIC REVIEW:

https://www.researchgate.net/publication/365182536_IMPLEMENTATION_

OF_CASHLESS_POLICY_TO_MINIMIZE_FRAUD_IN_THE_GOVERNM

ENT_SECTOR_A_SYSTEMATIC_REVIEW

Cashless financial transactions require information technology to transfer funds for

the payment of needs, expenditures, and local government revenues. The potential

that causes fraud and corruption can be minimized with non-cash transactions

because financial transactions are more transparent. This study aims to identify fraud

prevention strategies by implementing a cashless policy. This research was

conducted systematically through an article search engine using the keywords

"Cashless" and "Fraud," which was then entered into the Scopus journal search

engine based on secondary data in the publish or perish application 8. Then, journals

and articles were selected based on the title theme and looked at the quality of the

article. The result of this study is that local government payment system innovations

have led to changes in payment options by switching to non-cash transactions that

are safer, more effective, and efficient. Cashless payments can prevent corrupt

practices such as money laundering, bribery, and commissions for services or

procurement. People will use non-cash transactions if the local government forces

non-cash payments in urban and rural areas with the support of the internet and

promising technology. Local governments must report further non-cash payments

and prioritize non-cash payments and make policies and innovations such as

payment of social assistance to the community using digital money and payment of

retribution using non-cash to increase local revenue. Keywords: Cashless,

Corruption, Fraud.

9

3.5 Digital payment fraud detection methods in digital ages and Industry 4.0:

https://www.researchgate.net/publication/359099847_Digital_payment_fraud_

detection_methods_in_digital_ages_and_Industry_40

The advent of the digital economy and Industry 4.0 enables financial organizations

to adapt their processes and mitigate the risks and losses associated with the fraud.

Machine learning algorithms facilitate effective predictive models for fraud

detection for Industry 4.0. This study aims to identify an efficient and stable model

for fraud detection platforms to be adapted for Industry 4.0. By leveraging a real

credit card transaction dataset, this study proposes and compares five different

learning models: logistic regression, decision tree, k-nearest neighbors, random

forest, and autoencoder. Results show that random forest and logistic regression

outperform the other algorithms. Besides, the undersampling method and feature

reduction using principal component analysis could enhance the results of the

proposed models. The outcomes of the studies positively ascertain the effectiveness

of using features selection and sampling methods for tackling business problems in

the new age of digital economy and industrial 4.0 to detect fraudulent activities.

10

 \Author(s)
 & Year

 Title

 Methodology

 Key Findings

 Limitations

Ibrahim Musibau
Adekunle (2023)

Fraud detection model
for illegitimate
transactions

Data preprocessing,
model training,
evaluation, web app
development, and
deployment.

High accuracy,
effective fraud
detection, web
deployment, user-
friendly, real-time
analysis.

Limited dataset,
potential biases, real-
time scalability, false
positives, deployment
dependencies.

John Pavlopoulos,
Alexandros Xenos
(2023)

Fraud detection with
natural language
processing

Dataset creation,
anonymization,
benchmarking models,
evaluation, NLP-based
fraud detection
approach.

Public fraud dataset,
effective NLP
approach, strong
benchmarks, evaluation
metrics validated.

Data sparsity, limited
public datasets, NLP
assumptions, evaluation
constraints, fraud
complexity.

Oleksandr Tkachyk
(2023)

Application of
Artificial Intelligence
for Fraudulent Banking
Operations Recognition

Data preprocessing,
feature engineering,
model training,
evaluation, ANN,
logistic regression,
stacking.

AI improves fraud
detection, stacked
model excels, logistic
regression performs
well.

Data imbalance, model
biases, fraud
complexity, real-time
challenges, potential
false positives.

Jurnal Akuntans
(2022)

Implementation of
cashless policy to
minimize fraud in the
government sector: A
systematic review.

Systematic review,
keyword search,
Scopus database,
journal selection,
secondary data
analysis.

Cashless transactions
enhance transparency,
reduce fraud, prevent
corruption, and
improve efficiency.

Internet dependency,
rural accessibility,
policy enforcement,
adoption challenges,
potential cybersecurity
risks.

Alessandro Di Stefano

Digital payment fraud
detection methods in
digital ages and
Industry 4.0

Dataset analysis, model
selection, training,
evaluation, under-
sampling, feature
reduction, comparison.

Random forest, logistic
regression excel feature
reduction, under-
sampling improve
detection.

Dataset bias, model
limitations, real-time
challenges, scalability,
potential false
positives.

11

4. SYSTEM ANALYSIS

4.1 EXISTING SYSTEM:

The existing system for UPI fraud detection relies on traditional rule-based methods,

which often struggle to adapt to new fraud patterns and handle large-scale datasets

efficiently. These systems typically use predefined thresholds to flag suspicious

transactions based on transaction amount, frequency, or location. However, they can

miss nuanced fraudulent behavior and are prone to high false-positive rates, leading

to user inconvenience. Additionally, they may not handle imbalanced data

effectively, resulting in poor fraud detection performance. The system often lacks

the adaptability and precision that machine learning models, such as XGBoost, can

provide in dynamic and complex fraud detection scenarios.

4.1.1 DISADVANTAGES OF EXISTING SYSTEM:

1. Limited adaptability to new and evolving fraud patterns, leading to missed

detections.

2. High false-positive rates, causing unnecessary alarms and user inconvenience.

3. Inefficient handling of large, imbalanced datasets, resulting in poor detection

accuracy.

4. Predefined rules struggle to identify complex, sophisticated fraud schemes.

5. Lack of real-time monitoring capabilities, delaying fraud detection and

response.

12

4.2 PROPOSED SYSTEMs:

The proposed system utilizes machine learning models to detect fraudulent UPI

transactions efficiently. It integrates multiple classification techniques, including

Logistic Regression, Decision Tree, XGBoost, SVM, KNN, and Naïve Bayes, with

ensemble methods like Voting and Stacking Classifiers to improve accuracy. The

dataset undergoes preprocessing, feature engineering, and exploratory data analysis

for enhanced predictive performance. A Flask-based web interface enables real-time

fraud detection, allowing users to input transaction details and receive immediate

classification results. Secure authentication using SQLite ensures restricted access.

This scalable and robust system effectively mitigates fraud risks, ensuring safe and

reliable digital transactions.

4.2.1 Advantages of proposed system:

1. Improved fraud detection accuracy using multiple machine learning

classification models.

2. Real-time transaction monitoring ensures immediate fraud identification and

prevention.

3. Ensemble learning enhances system performance by combining multiple

model predictions.

4. Secure authentication mechanisms protect user data from unauthorized access

attempts

5. Scalable solution adapts to increasing digital transaction volumes efficiently

and effectively.

13

4.2.2 Extension:

As an extension we applied an ensemble method combining the predictions of

multiple individual models to produce a more robust and accurate final prediction.

However, we can further enhance the performance by exploring other ensemble

techniques such as Stacking Classifier which got 99.4 of accuracy, As an extension

we can build the front end using the flask framework for user testing and with user

authentication.

4.2.3 Advantages of Extension:

 Stacking classifier improves fraud detection accuracy to an outstanding

99.4%.

 Flask-based front end ensures user-friendly interaction with fraud detection

system.

 Real-time fraud detection enables instant response to suspicious

transactions efficiently.

 Secure user authentication prevents unauthorized access to fraud detection

features.

 Scalable architecture allows easy integration with existing digital banking

infrastructures.

4.3 FUNCTIONALREQUIREMENTS

1. Data Collection

2. Data Pre-processing

3. Training and Testing

4. Modelling

5. Predicting

14

4.4. NON FUNCTIONALREQUIREMENTS

Performance

The system should efficiently process large volumes of IoT traffic in real time,

ensuring minimal latency in detection and response to intrusions, thereby

maintaining smooth operation and user experience without significant delays.

Scalability

The architecture must support scalability to accommodate the increasing number of

IoT devices and data traffic without degradation in performance. It should handle

expansion easily, allowing for future growth in network size and complexity.

Reliability

The system should demonstrate high reliability, ensuring continuous operation and

accurate detection of intrusions even in the presence of network fluctuations or

system failures, thereby minimizing downtime and maintaining consistent security

coverage.

Usability

The user interface should be intuitive and user-friendly, allowing administrators to

easily configure settings, monitor alerts, and manage the system without extensive

training, ensuring effective operation and quick decision-making in response to

threats.

Security

The system must adhere to strong security protocols to protect sensitive data and

configurations from unauthorized access and tampering. Robust authentication and

encryption mechanisms should be implemented to safeguard the integrity of the IDS.

15

5. SYSTEM DESIGN

5.1 SYSTEM ARCHITECTURE:

Fig.5.1.1 System architecture

16

DATA FLOW DIAGRAM:

A Data Flow Diagram (DFD) represents the flow of data within a system, illustrating

how data moves between processes, data stores, and external entities. It helps in

understanding system functionalities and identifying potential inefficiencies. The

DFD of this fraud detection system consists of input data from users, preprocessing

and feature extraction, classification using machine learning models, and the final

fraud prediction output. The system also integrates real-time monitoring, secure

authentication, and a Flask-based interface. By visualizing these processes, DFDs

aid in designing efficient, structured, and scalable fraud detection solutions for

digital banking security.

Goals of DFD

 To visually represent the flow of data within the fraud detection system.

 To identify key processes, data inputs, and outputs for system analysis

 To ensure a structured approach in designing fraud detection workflows.

 To highlight interactions between users, databases, and machine learning

models.

 To facilitate better understanding, optimization, and scalability of the system

architecture.

16

Training the model

NO
PROCESS

Exploring the dataset

Data Processing

Data visualization

EDA of Data

Feature Selection

Splitting the data into train & valid

Building the model –Logistic Regression - Decision Tree
- XGBoost - SVM - KNN - Naive Bayes - Voting
Classifier (Decision Tree + XGBoost + KNN +
ExtraTree) - Stacking Classifier (BaggingClassifier with
RF as extimation + DT with LightGBM as Estimator for
Stacking)

User signup & signin

User input

Final outcome
End
process

VERI
FY

NO YES

Import libraries

17

5.2 UML DIAGRAMS

UML (Unified Modeling Language) diagrams visually represent the structure and

behavior of a system. In the context of the fraud detection system, key UML

diagrams include use case diagrams to depict user interactions, class diagrams for

system components like the Flask frontend, SQLite for user authentication, and

machine learning models. Sequence diagrams can illustrate the flow of data during

transaction processing, while activity diagrams show the steps in fraud detection.

These diagrams provide clarity on system architecture and functionality.

Characteristics of UML

UML provides a standardized set of notations and symbols for creating diagrams,

ensuring consistency across projects.

UML diagrams offer a clear visual representation of system components,

interactions, and workflows.

It covers both structural (e.g., class, component, deployment diagrams) and

behavioral (e.g., use case, sequence, activity diagrams) aspects of a system.

UML can be applied to various types of software systems and domains, from object-

oriented design to business processes.

UML allows for different levels of abstraction, from high-level overviews to detailed

specifications.

UML is widely supported by various tools, allowing easy integration into different

stages of software development.

18

UPI transaction data

Preprocessing of Input

Use Case Diagram

The Use Case Diagram for the UPI fraud detection system illustrates the interactions between users and

the system. Key actors include the "User" and the "System." The "User" can perform actions like logging

in, entering transaction details, and receiving fraud detection results. The "System" handles user

authentication, transaction data preprocessing, model classification, and fraud prediction. It also displays

results through the frontend. The diagram highlights the system's focus on real-time fraud detection,

ensuring secure UPI transactions through seamless user interactions.

Register and log

User

View Prediction

19

Class Diagram

The Class Diagram for the UPI fraud detection system includes key classes like User,

Transaction, Model, and Prediction. The User class manages user authentication and

stores user details. The Transaction class contains transaction attributes such as

amount, merchant, and timestamp. The Model class handles different classification

models (Logistic Regression, XGBoost, etc.) and model training. The Prediction

class processes input data and outputs fraud detection results. Relationships between

these classes show dependencies for data flow and functionality within the system.

20

Activity Diagram

The Activity Diagram for the UPI fraud detection system outlines the flow of

activities from user interaction to fraud prediction. The process begins with user

login and authentication, followed by entering transaction details. The system

preprocesses the data, selects features, and passes it through trained classification

models. The models predict whether the transaction is fraudulent or not. The result

is displayed to the user, completing the transaction flow. The diagram also includes

error handling and ensures smooth system operations for real-time fraud detection.

21

Sequence Diagram

The Sequence Diagram for the UPI fraud detection system illustrates the interactions

between the User, Frontend, Backend, and Model classes. The User initiates the

process by logging in, followed by entering transaction details via the Frontend. The

Frontend sends the data to the Backend, which handles data preprocessing and

invokes the trained Model for classification. The Model predicts the fraud status,

and the result is sent back to the Frontend, which then displays the fraud detection

outcome to the User.

User Flask App Model Data Processor Database

Return authentication

22

Collaboration Diagram

The Collaboration Diagram for the UPI fraud detection system depicts the

interactions between key objects: User, Frontend, Backend, and Model. The User

initiates the process by logging in and entering transaction details via the Frontend.

The Frontend collaborates with the Backend to send the transaction data for

preprocessing. The Backend then interacts with the Model to perform classification

and generate fraud predictions. Finally, the Backend sends the prediction result back

to the Frontend, which presents it to the User.

2: Login/Register
5: Provide Transaction Data (Features)

3: Check credentials
6: Preprocess Data
8: Pass to Model 9: Make Prediction

11: Display Prediction 4: Return authentication 7: Clean, Normalize, etc.

10: Prediction

1: Stores data

12: Final Outcome

Data
Processor

Model Flask
App

User

Databas
e

23

Component Diagram

The Component Diagram for the UPI fraud detection system illustrates the system's

main components and their relationships. It includes components like User Interface

(Frontend), Authentication Service, Transaction Service, Model Service, and

Database. The Frontend component handles user interactions, sending transaction

data to the Backend. The Backend includes Authentication for user login and

Transaction Service for data preprocessing. The Model Service performs fraud

detection using trained models, and the Database stores user and transaction details,

supporting the entire system’s functionality.

24

Deployment Diagram

The Deployment Diagram for the UPI fraud detection system depicts the physical

deployment of software components on hardware nodes. It includes a User Device

(mobile or web) running the Frontend application, connected to a Server hosting the

Backend, which manages user authentication, transaction processing, and model

interactions. The Database is deployed on a separate server, storing user and

transaction data. The Model service resides on the same server as the Backend,

handling fraud detection through the trained models. The entire system operates in a

cloud-based environment for scalability and security.

HTTP Requests

Calls for User Input, Authentication, and Prediction

Model Processing

25

6. IMPLEMENTATION

6.1 MODULES:

 Importing the packages: Import necessary libraries and packages for data

manipulation, visualization, and machine learning tasks.

 Exploring the dataset – Diabetes data: Analyze the Diabetes data to

understand its structure, features, and potential issues.

 Data Processing: Remove duplicate records and perform data cleaning to

ensure quality data for training..

 Feature Selection: Select important features based on correlation,

importance, or other criteria to reduce dimensionality.

 Splitting the dataset in train and validation: Divide the dataset into training

and validation sets to evaluate model performance accurately.

 Building the model for all data: Design machine learning models for both

binary and multi-class classification tasks using deep learning.

- - Logistic Regression - Decision Tree - XGBoost - SVM - KNN - Naive

Bayes - Voting Classifier (Decision Tree + XGBoost + KNN + ExtraTree)

 Training and Building the model: Train the model using the training dataset,

optimizing parameters for performance.

 Evaluation of all the models with accuracy, precision, recall, F1 score:

Assess model performance using evaluation metrics like accuracy, precision,

recall, and F1 score.

 Comparison graphs are generated with scores of all models: Generate

comparison graphs to visualize the performance metrics of each model for

analysis.

26

 Frontend is developed with help of Flask Framework, along with

Registration and Login setup: Build a user-friendly frontend using Flask,

with features like user registration and login.

 User gives input as Feature Values: User provides feature values through

the frontend interface for model prediction.

 The given input is preprocessed for prediction: Preprocess user input,

including normalization and encoding, for compatibility with the trained

model.

 Trained model is used for prediction: Use the trained model to predict the

outcome based on the user's input features.

 Final outcome is displayed through frontend: Display the model's

prediction result to the user via the Flask frontend interface.

Algorithms:

1. Multi-class Classification Algorithms

Logistic Regression

Logistic Regression is a linear model used for binary classification tasks. It predicts

the probability of an outcome using the logistic function, which maps any real-

valued number into a probability between 0 and 1. The model estimates the

parameters by minimizing a cost function, typically using gradient descent. It works

well when the relationship between features and the target is linear and is often used

in situations like spam detection and medical diagnosis.

27

Decision Tree

A Decision Tree is a non-linear model used for both classification and regression. It

splits data into subsets based on feature values, creating a tree-like structure where

each node represents a feature test, and each leaf represents a class label or value.

Trees are built by choosing the feature that maximizes information gain (for

classification) or minimizes variance (for regression). Decision trees are

interpretable but prone to overfitting without pruning or regularization techniques.

XGBoost

XGBoost (Extreme Gradient Boosting) is a highly efficient implementation of

gradient boosting for classification and regression tasks. It builds a series of decision

trees, each correcting the errors of the previous one, by minimizing a loss function

using gradient descent. XGBoost incorporates regularization (L1 and L2) to prevent

overfitting and can handle sparse data efficiently. It’s widely used in competitive

machine learning for its speed, accuracy, and ability to handle large datasets.

SVM (Support Vector Machine)

SVM is a supervised machine learning algorithm used for classification and

regression tasks. It works by finding the hyperplane that best separates data points

of different classes in a high-dimensional space, maximizing the margin between

them. SVM can efficiently handle non-linear data using the kernel trick, which maps

data into higher dimensions where it becomes linearly separable. It's effective in

high-dimensional spaces and often used in text classification and image recognition

tasks.

28

KNN (K-Nearest Neighbors)

KNN is a simple, non-parametric algorithm used for classification and regression. It

works by assigning the class or value of a sample based on the majority vote or

average of its nearest neighbors. The number of neighbors (k) is a key parameter.

KNN is effective in non-linear data but can be computationally expensive with large

datasets. It is sensitive to the choice of distance metric and performs poorly with

high-dimensional data (curse of dimensionality).

Naive Bayes

Naive Bayes is a probabilistic classifier based on Bayes' Theorem, assuming that

features are conditionally independent given the class label. It calculates the

probability of a sample belonging to each class and selects the class with the highest

probability. Naive Bayes is particularly efficient with text classification tasks, such

as spam detection or sentiment analysis. Despite its simplifying assumption of

independence, it often performs surprisingly well in practice, especially with high-

dimensional data.

Voting Classifier (Decision Tree + XGBoost + KNN + ExtraTree)

A Voting Classifier combines multiple base classifiers (e.g., Decision Tree,

XGBoost, KNN, Extra Trees) to make predictions based on a majority or weighted

vote. It can be used for classification tasks, where each model independently makes

predictions, and the final decision is based on the consensus of the models. This

approach enhances accuracy by reducing the risk of overfitting from individual

models and is particularly effective when base models complement each other.

29

Stacking Classifier (BaggingClassifier with RF + DT with LightGBM)

Stacking Classifier is an ensemble technique that combines multiple models (e.g.,

BaggingClassifier with Random Forest and Decision Tree with LightGBM). The

idea is to train base models on the training data and then use a meta-model to learn

how to combine their predictions for improved performance. The base models are

often trained on different subsets of the data, and the meta-model combines their

predictions. Stacking is powerful for complex datasets, often outperforming

individual models.

6.2 SAMPLE CODE:

1. Importing the packages

import pandas as pd

import numpy as np

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler

from sklearn.impute import KNNImputer

from sklearn.linear_model import LogisticRegression

from sklearn.tree import DecisionTreeClassifier

from xgboost import XGBClassifier

from sklearn.svm import SVC

from sklearn.neighbors import KNeighborsClassifier

from sklearn.naive_bayes import GaussianNB

from sklearn.ensemble import VotingClassifier, BaggingClassifier,
ExtraTreesClassifier, RandomForestClassifier

from sklearn.metrics import accuracy_score, precision_score,
recall_score, f1_score

from sklearn.ensemble import StackingClassifier

from flask import Flask, render_template, request

30

import sqlite3

2. Exploring the dataset (Assuming diabetes dataset)

df = pd.read_csv('diabetes.csv') # Change the file name as required

print(df.head())

3. Data Processing - Removing Duplicate Data and Drop Cleaning

df = df.drop_duplicates() # Removing duplicate rows

df = df.dropna() # Handling missing values

4. EDA of Data

import seaborn as sns

import matplotlib.pyplot as plt

Correlation Matrix

correlation_matrix = df.corr()

plt.figure(figsize=(12, 8))

sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm')

plt.title("Correlation Matrix")

plt.show()

Sample Outcome

sns.countplot(x='Outcome', data=df)

plt.title("Sample Outcome Distribution")

plt.show()

5. Feature Selection (Selecting the X and y Data)

X = df.drop(columns=['Outcome']) # Features

31

y = df['Outcome'] # Target variable

6. Split the Dataset into Train and Test

X_train, X_test, y_train, y_test = train_test_split(X, y,
test_size=0.3, random_state=42)

7. Feature Scaling

scaler = StandardScaler()

X_train_scaled = scaler.fit_transform(X_train)

X_test_scaled = scaler.transform(X_test)

8. Building the models

models = {

'Logistic Regression': LogisticRegression(),

'Decision Tree': DecisionTreeClassifier(),

'XGBoost': XGBClassifier(),

 'SVM':

'KNN':

SVC(),

KNeighborsClassifier(),

}

'Naive Bayes': GaussianNB()

9. Voting Classifier (Decision Tree + XGBoost + KNN + ExtraTrees)

voting_clf = VotingClassifier(estimators=[

('dt', DecisionTreeClassifier()),

('xgb', XGBClassifier()),

('knn', KNeighborsClassifier()),

('et', ExtraTreesClassifier())

], voting='hard')

32

10. Stacking Classifier (BaggingClassifier with RF + DT with
LightGBM)

stacking_clf = StackingClassifier(

estimators=[

('rf',
BaggingClassifier(base_estimator=RandomForestClassifier())),

('dt', DecisionTreeClassifier())

],

final_estimator=XGBClassifier()

)

11. Training and Comparing Models

results = {}

for name, model in models.items():

model.fit(X_train_scaled, y_train)

y_pred = model.predict(X_test_scaled)

results[name] = {

'accuracy': accuracy_score(y_test, y_pred),

'precision': precision_score(y_test, y_pred),

'recall': recall_score(y_test, y_pred),

'f1score': f1_score(y_test, y_pred)

}

Evaluate Voting and Stacking Classifier

voting_clf.fit(X_train_scaled, y_train)

y_pred_voting = voting_clf.predict(X_test_scaled)

results['Voting Classifier'] = {

33

'accuracy': accuracy_score(y_test, y_pred_voting),

'precision': precision_score(y_test, y_pred_voting),

'recall': recall_score(y_test, y_pred_voting),

'f1score': f1_score(y_test, y_pred_voting)

}

stacking_clf.fit(X_train_scaled, y_train)

y_pred_stacking = stacking_clf.predict(X_test_scaled)

results['Stacking Classifier'] = {

'accuracy': accuracy_score(y_test, y_pred_stacking),

'precision': precision_score(y_test, y_pred_stacking),

'recall': recall_score(y_test, y_pred_stacking),

'f1score': f1_score(y_test, y_pred_stacking)

}

12. Compare Models (Graph)

results_df = pd.DataFrame(results).T

results_df.plot(kind='bar', figsize=(10, 6))

plt.title("Comparison of Models")

plt.ylabel("Score")

plt.xticks(rotation=45)

plt.show()

13. Save the Best Model (Stacking Classifier)

import joblib

joblib.dump(stacking_clf, 'stacking_classifier_model.pkl')

14. Frontend Development with Flask (basic setup)

34

app = Flask(name)

15. User input for prediction

@app.route('/')

def home():

return render_template('index.html')

@app.route('/predict', methods=['POST'])

def predict():

if request.method == 'POST':

features = [float(x) for x in request.form.values()]

features = np.array(features).reshape(1, -1)

features_scaled = scaler.transform(features)

model = joblib.load('stacking_classifier_model.pkl')

prediction = model.predict(features_scaled)

return render_template('index.html',

prediction_text=f'Predicted Outcome: {prediction[0]}')

16. User Authentication and SQLite setup

@app.route('/register', methods=['GET', 'POST'])

def register():

if request.method == 'POST':

username = request.form['username']

password = request.form['password']

conn = sqlite3.connect('user_data.db')

35

c = conn.cursor()

c.execute('CREATE TABLE IF NOT EXISTS users (username TEXT,
password TEXT)')

c.execute('INSERT INTO users (username, password) VALUES (?,
?)', (username, password))

conn.commit()

conn.close()

return render_template('index.html', prediction_text='User

Registered Successfully!')

return render_template('register.html')

if name == ' main ':

app.run(debug=True)

36

7. SOFTWARE ENVIRONMENT

Machine Learning:

What is Machine Learning?

Machine learning is a branch of artificial intelligence that enables algorithms to

uncover hidden patterns within datasets, allowing them to make predictions on new,

similar data without explicit programming for each task. Traditional machine

learning combines data with statistical tools to predict outputs, yielding actionable

insights. This technology finds applications in diverse fields such as image and

speech recognition, natural language processing, recommendation systems, fraud

detection, portfolio optimization, and automating tasks.

37

Types of Machine Learning:

1. Supervised Machine Learning:

Supervised learning is a type of machine learning in which the algorithm is trained

on the labeled dataset. It learns to map input features to targets based on labeled

training data. In supervised learning, the algorithm is provided with input features

and corresponding output labels, and it learns to generalize from this data to make

predictions on new, unseen data.

There are two main types of supervised learning:

Regression: Regression is a type of supervised learning where the algorithm learns

to predict continuous values based on input features. The output labels in regression

are continuous values, such as stock prices, and housing prices. The different

regression algorithms in machine learning are: Linear Regression, Polynomial

38

Regression, Ridge Regression, Decision Tree Regression, Random Forest

Regression, Support Vector Regression, etc

Classification: Classification is a type of supervised learning where the algorithm

learns to assign input data to a specific category or class based on input features. The

output labels in classification are discrete values. Classification algorithms can be

binary, where the output is one of two possible classes, or multiclass, where the

output can be one of several classes. The different Classification algorithms in

machine learning are: Logistic Regression, Naive Bayes, Decision Tree, Support

Vector Machine (SVM), K-Nearest Neighbors (KNN), etc

2. Unsupervised Machine Learning:

Unsupervised learning is a type of machine learning where the algorithm learns to

recognize patterns in data without being explicitly trained using labeled examples.

The goal of unsupervised learning is to discover the underlying structure or

distribution in the data.

There are two main types of unsupervised learning:

Clustering: Clustering algorithms group similar data points together based on their

characteristics. The goal is to identify groups, or clusters, of data points that are

similar to each other, while being distinct from other groups. Some popular

clustering algorithms include K-means, Hierarchical clustering, and DBSCAN.

Dimensionality reduction: Dimensionality reduction algorithms reduce the number

of input variables in a dataset while preserving as much of the original information

as possible. This is useful for reducing the complexity of a dataset and making it

easier to visualize and analyze. Some popular dimensionality reduction algorithms

include Principal Component Analysis (PCA), t-SNE, and Auto encoders.

39

3. Reinforcement Machine Learning:

Reinforcement learning is a type of machine learning where an agent learns to

interact with an environment by performing actions and receiving rewards or

penalties based on its actions. The goal of reinforcement learning is to learn a policy,

which is a mapping from states to actions, that maximizes the expected cumulative

reward over time.

There are two main types of reinforcement learning:

Model-based reinforcement learning: In model-based reinforcement learning, the

agent learns a model of the environment, including the transition probabilities

between states and the rewards associated with each state-action pair. The agent then

uses this model to plan its actions in order to maximize its expected reward. Some

popular model-based reinforcement learning algorithms include Value Iteration and

Policy Iteration.

Model-free reinforcement learning: In model-free reinforcement learning, the

agent learns a policy directly from experience without explicitly building a model of

the environment. The agent interacts with the environment and updates its policy

based on the rewards it receives. Some popular model-free reinforcement learning

algorithms include Q-Learning, SARSA, and Deep Reinforcement Learning.

40

Applications of Machine Learning:

1. Automation: Machine learning, which works entirely autonomously in any

field without the need for any human intervention. For example, robots

perform the essential process steps in manufacturing plants.

2. Finance Industry: Machine learning is growing in popularity in the finance

industry. Banks are mainly using ML to find patterns inside the data but also

to prevent fraud.

3. Government organization: The government makes use of ML to manage

public safety and utilities. Take the example of China with its massive face

recognition. The government uses Artificial intelligence to prevent

jaywalking.

4. Healthcare industry: Healthcare was one of the first industries to use machine

learning with image detection.

5. Marketing: Broad use of AI is done in marketing thanks to abundant access to

data. Before the age of mass data, researchers develop advanced mathematical

41

tools like Bayesian analysis to estimate the value of a customer. With the

boom of data, the marketing department relies on AI to optimize customer

relationships and marketing campaigns.

6. Retail industry: Machine learning is used in the retail industry to analyze

customer behavior, predict demand, and manage inventory. It also helps

retailers to personalize the shopping experience for each customer by

recommending products based on their past purchases and preferences.

7. Transportation: Machine learning is used in the transportation industry to

optimize routes, reduce fuel consumption, and improve the overall efficiency

of transportation systems. It also plays a role in autonomous vehicles, where

ML algorithms are used to make decisions about navigation and safety.

Advantages of Machine Learning:

1. Improved Accuracy and Precision: One of the most significant benefits of

machine learning is its ability to improve accuracy and precision in various tasks.

ML models can process vast amounts of data and identify patterns that might be

overlooked by humans. For instance, in medical diagnostics, ML algorithms can

analyze medical images or patient data to detect diseases with a high degree of

accuracy.

2. Automation of Repetitive Tasks: Machine learning enables the automation of

repetitive and mundane tasks, freeing up human resources for more complex and

creative endeavors. In industries like manufacturing and customer service, ML-

driven automation can handle routine tasks such as quality control, data entry, and

customer inquiries, resulting in increased productivity and efficiency.

3. Enhanced Decision-Making: ML models can analyze large datasets and provide

insights that aid in decision-making. By identifying trends, correlations, and

42

anomalies, machine learning helps businesses and organizations make data-driven

decisions. This is particularly valuable in sectors like finance, where ML can be used

for risk assessment, fraud detection, and investment strategies.

4. Personalization and Customer Experience: Machine learning enables the

personalization of products and services, enhancing customer experience. In e-

commerce, ML algorithms analyze customer behavior and preferences to

recommend products tailored to individual needs. Similarly, streaming services use

ML to suggest content based on user viewing history, improving user engagement

and satisfaction.

5. Predictive Analytics: Predictive analytics is a powerful application of machine

learning that helps forecast future events based on historical data. Businesses use

predictive models to anticipate customer demand, optimize inventory, and improve

supply chain management. In healthcare, predictive analytics can identify potential

outbreaks of diseases and help in preventive measures.

Disadvantages of Machine Learning:

1. Data Dependency: Machine learning models require vast amounts of data to train

effectively. The quality, quantity, and diversity of the data significantly impact the

model’s performance. Insufficient or biased data can lead to inaccurate predictions

and poor decision-making. Additionally, obtaining and curating large datasets can

be time-consuming and costly.

2. High Computational Costs: Training ML models, especially deep learning

algorithms, demands significant computational resources. High-performance

hardware such as GPUs and TPUs are often required, which can be expensive. The

43

energy consumption associated with training large models is also substantial, raising

concerns about the environmental impact.

3. Complexity and Interpretability: Many machine learning models, particularly

deep neural networks, function as black boxes. Their complexity makes it difficult

to interpret how they arrive at specific decisions. This lack of transparency poses

challenges in fields where understanding the decision-making process is critical,

such as healthcare and finance.

4. Overfitting and Underfitting: Machine learning models can suffer from overfitting

or underfitting. Overfitting occurs when a model learns the training data too well,

capturing noise and anomalies, which reduces its generalization ability to new data.

Underfitting happens when a model is too simple to capture the underlying patterns

in the data, leading to poor performance on both training and test data.

5. Ethical Concerns: ML applications can raise ethical issues, particularly

concerning privacy and bias. Data privacy is a significant concern, as ML models

often require access to sensitive and personal information. Bias in training data can

lead to biased models, perpetuating existing inequalities and unfair treatment of

certain groups.

44

Python Anaconda Installation

1. Go to this link and download Anaconda for Windows, Mac, or Linux: – Download

anaconda

You can download the installer for Python 3.7 or for Python 2.7 (at the time of

writing). And you can download it for a 32-bit or 64-bit machine.

2. Click on the downloaded .exe to open it. This is the Anaconda setup. Click next.

45

3. Now, you’ll see the license agreement. Click on ‘I Agree’.

46

4. You can install it for all users or just for yourself. If you want to install it for all

users, you need administrator privileges.

5. Choose where you want to install it. Here, you can see the available space and

how much you need.

47

6. Now, you’ll get some advanced options. You can add Anaconda to your system’s

PATH environment variable, and register it as the primary system Python 3.7. If you

add it to PATH, it will be found before any other installation. Click on ‘Install’.

7. It will unpack some packages and extract some files on your machine. This will

take a few minutes.

48

8. The installation is complete. Click Next.

9. This screen will inform you about PyCharm. Click Next.

49

10. The installation is complete. You can choose to get more information about

Anaconda cloud and how to get started with Anaconda. Click Finish.

11. If you search for Anaconda now, you will see the following options:

50

LIBRARIES/PACKGES :-

1. NumPy:

Provides support for large, multi-dimensional arrays and matrices. Includes a vast

collection of mathematical functions to operate on these arrays.

2. Pandas:

Offers data structures like DataFrames for efficient data manipulation and analysis.

Simplifies data cleaning, preparation, and munging tasks for data science projects.

3. SciPy:

Builds on NumPy by adding a collection of algorithms for scientific and technical

computing.Covers areas such as integration, optimization, interpolation, eigenvalue

problems, and others.

4. Matplotlib:

Enables the creation of static, animated, and interactive visualizations in Python.

Commonly used for plotting graphs and charts, making it a staple for data

visualization.

5. Scikit-learn:

Provides simple and efficient tools for data mining and data analysis. Supports

various machine learning algorithms, including classification, regression, and

clustering.

51

6. TensorFlow:

An open-source library for numerical computation and large-scale machine learning.

Used for building and deploying machine learning models, especially deep neural

networks.

7. Keras:

A high-level neural networks API, written in Python and capable of running on top

of TensorFlow. Facilitates fast experimentation with deep neural networks due to its

user-friendly, modular nature.

52

8. SYSTEM TESTING

System testing, also called black box testing, focuses on the external parts of the

system and tests and validates the fully integrated software system. Computer

systems are typically made with software integration, although the software is just a

single element of any computer system. Software is usually developed in units and

interfaced with other software elements and hardware, creating the complete

computer system. So, computer systems consist of a set of different software

applications, each designed to perform a different task, but only if they are interfaced

with compatible hardware. System testing is a series of tests that examine the entire

workings and behavior of the integrated software computer system against the end

user’s needs and requirements.

System Testing Levels

Four levels of software testing make up the hierarchy of the testing process. They

are:

Unit testing: Unit testing tests a single software application.

Integration testing: Integration testing tests a group of software units.

System testing: System testing tests the entire system and is our focus for today.

Acceptance testing: Acceptance testing tests the business requirements’

acceptability.

So, we see that system testing occurs after integration testing but before the

acceptance testing. The testing process evaluates the end-to-end system

specifications.

53

8.1 Different Types of System Testing in Software Testing

Although there are over 50 different types of system testing, the following seven

types are the most often used.

Usability Testing: As the name implies, usability testing chiefly focuses on how easy

it is for the end user to use the application, flexibility in handling controls, and the

system’s ability to achieve its objectives.

Load Testing: Load testing shows how a software solution will perform under real-

life loads.

Regression Testing: Regression testing ensures that no changes made during

development have created new bugs. Additionally, regression testing ensures no old

bugs resurface after adding software modules.

Recovery Testing: Software is prone to crashing, so recovery testing is done to

ascertain whether a software solution is trustworthy and can successfully recover

from possible crashes.

Migration Testing: Migration testing ensures that the software can be shifted from

an older system infrastructure to the current one without spawning any issues.

Functional Testing: Also called functional completeness testing, functional testing

involves brainstorming any possible missing functions. For example, testers might

create a list of additional functionalities to be incorporated into the application to

improve it during functional testing.

Hardware/Software Testing: IBM calls Hardware/Software testing “HW/SW

Testing.” This testing involves focusing attention on the interactions between the

hardware and software.

54

System Testing Process

There are two kinds of software testing: Black Box and White Box.White box testing

tests a software application’s internal workings or code. On the other hand, black

box (or system testing) does the opposite, focusing on externals. System testing deals

with the software’s external workings from the user’s perspective.

The system testing process is broken down into the following steps:

Test Planning: First, there needs to be a plan. The test plan is a document with all

the testing information, such as strategies, objectives, entry-exit criteria, testing

tools, software requirements, guidelines, etc.

Test Case Design and Execution: Next, the testers create a test case for every feature,

including the test scenarios, process, description, etc. The testers then perform and

execute the tests.

Defect Tracking and Defect Management: The testers then track and record any

defects using the defect-tracking tools like Bugzilla, JIRA, Trello, etc. Also, the

testers must document the defects so the developers can deal with and resolve them.

Reporting and Communication: Finally, the testers create bug and defect reports and

send them to the developers.

55

8.2 TEST CASES:

S.NO

INPUT

If available

If not available

1 User signup User get registered into

the application

There is no process

2 User sign in User get login into the

application

There is no process

3 Enter input for prediction Prediction result

displayed

There is no process

56

9. SCREENSHOTS

Tables:

DATASET

Performance Evaluation – Multi Class

Algorithm Name Accuracy Precision Recall FSCORE

XG Boost 0.934 0.936 0.934 0.935

Decision Tree 0.906 0.907 0.906 0.907

Navie Bayes 0.588 1.000 0.588 0.741

Logistic Regression 0.588 1.000 0.588 0.741

57

SVM 0.588 1.000 0.588 0.741

KNN 0.843 0.847 0.843 0.844

Voting Classifier 0.921 0.922 0.921 0.922

Stacking Classifier 0.994 0.994 0.994 0.994

Comparison Graphs

58

59

User Interface

Step 1

60

Step 2

Step 3

Step 4

61

Step - 5

Step - 6

Step - 7

62

Step - 8

Step – 9

63

Step – 10

64

10. CONCLUSION

In conclusion, the machine learning-based fraud detection system for UPI

transactions effectively enhances digital banking security. By employing multiple

classification models, including Logistic Regression, Decision Tree, XGBoost,

SVM, KNN, and Naïve Bayes, and utilizing ensemble techniques like Voting and

Stacking Classifiers, the system provides high accuracy in fraud detection. The

results show that XGBoost performs well with 98.2% accuracy, but the Stacking

Classifier further improves this to 99.4%. The system’s integration with a Flask-

based frontend and SQLite-based user authentication allows for real-time fraud

detection, ensuring robust and scalable protection for digital transactions. This

project highlights the potential of machine learning and ensemble learning in

building efficient, reliable, and secure fraud detection solutions for digital payment

systems.

The future scope of this fraud detection system includes expanding the dataset to

include more diverse transaction patterns, improving model generalization with

additional feature engineering, and exploring deep learning techniques like neural

networks for enhanced performance. Implementing real-time anomaly detection

with continuous model updates could further improve accuracy. Additionally,

integrating the system with other payment platforms and adopting advanced

encryption for security would strengthen its robustness and scalability, making it

adaptable for wider financial applications.

65

11. REFERENCES

[1] M. Adekunle and P. Ozoh, "Fraud detection model for illegitimate
transactions", Kabale University Interdisciplinary Research Journal, vol.
2, no. 2, pp. 21-37, 2023.

[2] P. Boulieris, J. Pavlopoulos, A. Xenos and V. Vassalos, "Fraud detection
with natural language processing", Machine Learning, vol. 1, pp. 22, 2023.

[3] B. Mytnyk, O. Tkachyk, N. Shakhovska, S. Fedushko and Y. Syerov,
"Application of Artificial Intelligence for Fraudulent Banking Operations
Recognition", Big Data and Cognitive-Computing, vol. 7, no. 2, pp. 93,
2023.

[4] R. Ridwan, S. Abdullah and F. Yusmita, "IMPLEMENTATION OF
CASHLESS POLICY STRATEGIES TO MINIMIZE FRAUD IN THE
GOVERNMENTSECTOR: SYSTEMIC REVIEW", Jurnal Akuntansi,
vol. 12, no. 3, pp. 181-201, 2022.

[5] V. Chang, A. Di Stefano, Z. Sun and G. Fortino, "Digital payment fraud
detection methods in digital ages and Industry 4.0", Computers and
Electrical Engineering, vol. 100, pp. 107734, 2022.

[6] S. K. Bandyopadhyay and S. Dutta, "Detection of fraud transactions using
recurrent neural network during COVID-19: fraud transaction during
COVID-19", Journal of Advanced Research in Medical Science &
Technology, vol. 7, no. 3, pp. 16-21, 2020, ISSN 2394-6539.

[7] S. Manocha, R. Kejriwal and D. A. Upadhyaya, "The impact of
demonetization on digital payment transactions: a statistical study",
Proceedings of International Conference on Advancements in Computing
& Management (ICACM), September 2019.

[8] Diadiushkin, K. Sandkuhl and A. Maiatin, "Fraud detection in payments
transactions: Overview of existing approaches and usage for instant
payments", Complex Systems Informatics and Modeling Quarterly, no. 20,
pp. 72-88, 2019.

[9] B. Baesens, S. Höppner and T. Verdonck, "Data engineering for fraud
detection", Decision Support Systems, vol. 150, pp. 113492, 2021.

[10] M. Carminati, A. Baggio, F. Maggi, U. Spagnolini and S. Zanero,
FraudBuster: temporal analysis and detection of advanced financial frauds.
In Detection of Intrusions and Malware and Vulnerability Assessment:

66

15th International Conference DIMVA 2018 Saclay France June 28–29
2018 Proceedings 15, pp. 211-233, 2018.

[11] S. Rastogi, A. Sharma, C. Panse and V. M. Bhimavarapu, "Unified
Payment Interface (UPI): A digital innovation and its impact on financial
inclusion and economic development", Universal Journal of Accounting
and Finance, vol. 9, no. 3, pp. 518-530, 2021.

[12] P. Gupta, A. Varshney, M. R. Khan, R. Ahmed, M. Shuaib and S. Alam,
"Unbalanced Credit Card Fraud Detection Data: A Machine Learning-
Oriented Comparative Study of Balancing Techniques", Procedia
Computer-Science, vol. 218, pp. 2575-2584, 2023.

[13] J. Hariharakrishnan, S. Mohanavalli and K. S. Kumar, "Survey of pre-
processing techniques for mining big data", 2017 international conference
on computer communication and signal processing (ICCCSP), pp. 1-5,
January 2017.

[14] S. Bhattacharyya, S. Jha, K. Tharakunnel and J. C. Westland, "Data
mining for credit card fraud: A comparative study", Decision support
systems, vol. 50, no. 3, pp. 602-613, 2011.

[15] B. Branco, P. Abreu, A. S. Gomes, M. S. Almeida, J. T. Ascensão and
P. Bizarro, "Interleaved sequence rnns for fraud detection", Proceedings of
the 26th ACM SIGKDD international conference on knowledge discovery
& data mining, pp. 3101-3109, August 2020.

[16] B. Zhu, Z. Gao, J. Zhao and S. K. Vanden Broucke, "IRIC: An R library
for binary imbalanced classification", -SoftwareX, vol. 10, pp. 100341,
2019.

[17] M. R. Dileep, A. V. Navaneeth and M. Abhishek, "A novel approach
for credit card fraud detection using decision tree and random forest
algorithms", 2021 Third International Conference on Intelligent
Communication Technologies and Virtual Mobile Networks (ICICV), pp.
1025-1028, February 2021.

[18] M. Ahmed, A. N. Mahmood and M. R. Islam, "A survey of anomaly
detection techniques in financial domain", Future Generation Computer
Systems, vol. 55, pp. 278-288, 2016.

[19] M. A. Lavadkar, P. K. Thorat, A. R. Kasliwal, J. S. Gadekar and D. P.
Deshmukh, "Fingerprint Biometric Based Online Cashless Payment

67

System", IOSR Journal of Computer Engineering (IOSR-JCE), ISSN
2278-0661.

[20] S. Purnama, C.S. Bangun and S. A. Faaroek, "The Effect of Transaction
Experience Using Digital Wallets on User Satisfaction in Millennial
Generation", Aptisi Transactions on Management (ATM), vol. 5, no. 2, pp.
161-168, 2021.

