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ABSTRACT 
 

Unified Payments Interface (UPI) transactions have become a crucial part of digital 

banking, making them a prime target for fraud. This project presents a machine 

learning-driven fraud detection system for UPI transactions, leveraging multiple 

classification models, including Logistic Regression, Decision Tree, XGBoost, 

SVM, KNN, and Naïve Bayes. We employ ensemble techniques such as Voting and 

Stacking Classifiers to enhance accuracy. The dataset undergoes preprocessing, 

feature selection, and exploratory data analysis before model training. Our results 

show that while XGBoost achieves 98.2% accuracy, the Stacking Classifier 

surpasses it with 99.4% accuracy. The system integrates a Flask-based frontend with 

user authentication using SQLite, allowing real-time fraud detection. User inputs are 

preprocessed and classified using the trained model, with predictions displayed 

through the interface. This project demonstrates the effectiveness of ensemble 

learning in fraud detection, providing a robust and scalable approach to securing 

digital transactions. 
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1. INTRODUCTION 

The rapid growth of digital banking has led to the widespread adoption of the Unified 

Payments Interface (UPI), a real-time payment system that enables seamless 

transactions between banks. However, the increasing volume of UPI transactions has 

also attracted cybercriminals, making fraud detection a critical concern. Traditional 

rule-based fraud detection systems often fail to adapt to evolving fraudulent tactics, 

necessitating the use of machine learning-based solutions to identify and mitigate 

fraudulent activities effectively. 

This project presents a comprehensive machine learning-driven fraud detection 

system for UPI transactions, employing multiple classification models to enhance 

detection accuracy. The models used include Logistic Regression, Decision Tree, 

XGBoost, Support Vector Machine (SVM), K-Nearest Neighbors (KNN), and Naïve 

Bayes. To further improve performance, ensemble techniques such as Voting and 

Stacking Classifiers are implemented. Through rigorous experimentation, we find 

that while XGBoost achieves an impressive accuracy of 98.2%, the Stacking 

Classifier surpasses it with a remarkable 99.4% accuracy, demonstrating the 

effectiveness of combining multiple models. 

The dataset undergoes extensive preprocessing, including handling missing values, 

feature selection, and exploratory data analysis (EDA) to ensure high-quality input 

for model training. By leveraging advanced feature engineering techniques, we 

enhance the predictive capability of the models, improving fraud detection 

efficiency. 

To provide a user-friendly interface, the system is integrated with a Flask-based web 

application that allows real-time fraud detection. Users can input transaction details, 

which are then preprocessed and classified using the trained model. The interface 
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also incorporates authentication mechanisms using SQLite, ensuring secure access 

to the system. 

Overall, this project highlights the power of ensemble learning in fraud detection 

and offers a scalable solution to enhance the security of UPI transactions, reducing 

financial losses and building user trust in digital payments. 

1.1 Objective: 

 
The objective of this project is to develop a robust machine learning-based fraud 

detection system for UPI transactions. By leveraging multiple classification models 

and ensemble techniques, the system aims to achieve high accuracy, enhance 

security, and provide a real-time fraud detection mechanism through a Flask-based 

user interface with secure authentication. 

1.2 Problem Statement: 

 
 Increasing UPI transaction frauds threaten digital banking security and trust. 

 Traditional fraud detection methods struggle to detect evolving fraudulent 

tactics. 

 Machine learning techniques improve fraud detection accuracy and 

efficiency. 

 Multiple classification models enhance fraud identification and minimize 

false positives. 

 Ensemble learning boosts model performance for better fraud detection 

accuracy. 

 Preprocessing and feature selection refine data quality for optimal training. 

 Real-time fraud detection is necessary for immediate transaction security. 

 A user-friendly interface ensures accessibility and ease of fraud analysis. 
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1.3 SOFTWARE REQUIREMENTS 

1) Software: Anaconda 

 
2) Primary Language: Python 

 
3) Frontend Framework: Flask 

 
4) Back-end Framework: Jupyter Notebook 

 
5) Database: Sqlite3 

 
6) Front-End Technologies: HTML, CSS, JavaScript and Bootstrap4 

 
1.4 HARDWARE REQUIREMENTS 

 
1) Operating System: Windows Only 

2) Processor: i5 and above 

3) Ram: 8GB and above 

4) Hard Disk: 25 GB in local drive 
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2. FEASIBILITY STUDY 
 

 
A feasibility study—sometimes called a feasibility analysis or feasibility report—is 

a way to evaluate whether or not a project plan could be successful. A feasibility 

study evaluates the practicality of your project plan in order to judge whether or not 

you’re able to move forward with the project. 

Types of feasibility studies: 

 
There are five main types of feasibility studies: technical feasibility, financial 

feasibility, market feasibility (or market fit), operational feasibility, and legal 

feasibility. Most comprehensive feasibility studies will include an assessment of all 

five of these areas. 

Technical feasibility: 

 
A technical feasibility study reviews the technical resources available for your 

project. This study determines if you have the right equipment, enough equipment, 

and the right technical knowledge to complete your project objectives. For example, 

if your project plan proposes creating 50,000 products per month, but you can only 

produce 30,000 products per month in your factories, this project isn’t technically 

feasible. 

Financial feasibility: 

 
Financial feasibility describes whether or not your project is fiscally viable. A 

financial feasibility report includes a cost-benefit analysis of the project. It also 

forecasts an expected return on investment (ROI) and outlines any financial risks. 
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The goal at the end of the financial feasibility study is to understand the economic 

benefits the project will drive. 

Market feasibility: 

 
The market feasibility study is an evaluation of how your team expects the project’s 

deliverables to perform in the market. This part of the report includes a market 

analysis, a market competition breakdown, and sales projections. 

Operational feasibility: 

 
An operational feasibility study evaluates whether or not your organization is able 

to complete this project. This includes staffing requirements, organizational 

structure, and any applicable legal requirements. At the end of the operational 

feasibility study, your team will have a sense of whether or not you have the 

resources, skills, and competencies to complete this work. 

Legal feasibility: 

 
A legal feasibility analysis assesses whether the proposed project complies with all 

relevant legal requirements and regulations. This includes examining legal and 

regulatory barriers, necessary permits, licenses, or certifications, potential legal 

liabilities or risks, and intellectual property considerations. The legal feasibility 

study ensures that the project can be completed without running afoul of any laws 

or incurring undue legal exposure for the organization. 
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3. LITERATURE SURVEY 

 
3.1 Fraud detection model for illegitimate transactions: 

https://kurj.kab.ac.ug/index.php/1/article/view/102 

Due to advancements in network technologies, digital security is becoming a top 

priority worldwide. This project aims to study how machine learning techniques can 

be used to learn patterns in fraudulent and legitimate transactions in order to detect 

fraudulent transactions using Python programming language on Jupyter notebook as 

the integrated development environment (IDE). Scikit-learn was used to process the 

algorithm, and Streamlit and Heroku platforms were used for deployment of the 

algorithms. This was incorporated into a web application that allows the user to 

upload data that is analyzed by the system to detect fraud. The Classification report 

and Confusion matrix are used to evaluate each model’s accuracy. The random forest 

model gave an accuracy of 99.95 %. At the end of this study, a web-based application 

was developed to allow users upload data and also to detect fraudulent online based 

transaction. 

3.2 Fraud detection with natural language processing: 

 
https://www.researchgate.net/publication/372466905_Fraud_detection_with_n 

atural_language_processing 

Automated fraud detection can assist organisations to safeguard user accounts, a task 

that is very challenging due to the great sparsity of known fraud transactions. Many 

approaches in the literature focus on credit card fraud and ignore the growing field 

of online banking. However, there is a lack of publicly available data for both. The 

lack of publicly available data hinders the progress of the field and limits the 

investigation of potential solutions. With this work, we: (a) introduce FraudNLP, the 
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first anonymised, publicly available dataset for online fraud detection, (b) 

benchmark machine and deep learning methods with multiple evaluation measures, 

(c) argue that online actions do follow rules similar to natural language and hence 

can be approached successfully by natural language processing methods. 

3.3 Application of Artificial Intelligence for Fraudulent Banking Operations 

Recognition: 

https://www.mdpi.com/2504-2289/7/2/93 

 
This study considers the task of applying artificial intelligence to recognize bank 

fraud. In recent years, due to the COVID-19 pandemic, bank fraud has become even 

more common due to the massive transition of many operations to online platforms 

and the creation of many charitable funds that criminals can use to deceive users. 

The present work focuses on machine learning algorithms as a tool well suited for 

analyzing and recognizing online banking transactions. The study’s scientific 

novelty is the development of machine learning models for identifying fraudulent 

banking transactions and techniques for preprocessing bank data for further 

comparison and selection of the best results. This paper also details various methods 

for improving detection accuracy, i.e., handling highly imbalanced datasets, feature 

transformation, and feature engineering. The proposed model, which is based on an 

artificial neural network, effectively improves the accuracy of fraudulent transaction 

detection. The results of the different algorithms are visualized, and the logistic 

regression algorithm performs the best, with an output AUC value of approximately 

0.946. The stacked generalization shows a better AUC of 0.954. The recognition of 

banking fraud using artificial intelligence algorithms is a topical issue in our digital 

society. 
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3.4 IMPLEMENTATION OF CASHLESS POLICY TO MINIMIZE FRAUD 

IN THE GOVERNMENT SECTOR: A SYSTEMATIC REVIEW: 

https://www.researchgate.net/publication/365182536_IMPLEMENTATION_ 

OF_CASHLESS_POLICY_TO_MINIMIZE_FRAUD_IN_THE_GOVERNM 

ENT_SECTOR_A_SYSTEMATIC_REVIEW 

Cashless financial transactions require information technology to transfer funds for 

the payment of needs, expenditures, and local government revenues. The potential 

that causes fraud and corruption can be minimized with non-cash transactions 

because financial transactions are more transparent. This study aims to identify fraud 

prevention strategies by implementing a cashless policy. This research was 

conducted systematically through an article search engine using the keywords 

"Cashless" and "Fraud," which was then entered into the Scopus journal search 

engine based on secondary data in the publish or perish application 8. Then, journals 

and articles were selected based on the title theme and looked at the quality of the 

article. The result of this study is that local government payment system innovations 

have led to changes in payment options by switching to non-cash transactions that 

are safer, more effective, and efficient. Cashless payments can prevent corrupt 

practices such as money laundering, bribery, and commissions for services or 

procurement. People will use non-cash transactions if the local government forces 

non-cash payments in urban and rural areas with the support of the internet and 

promising technology. Local governments must report further non-cash payments 

and prioritize non-cash payments and make policies and innovations such as 

payment of social assistance to the community using digital money and payment of 

retribution using non-cash to increase local revenue. Keywords: Cashless, 

Corruption, Fraud. 
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3.5 Digital payment fraud detection methods in digital ages and Industry 4.0: 

 
https://www.researchgate.net/publication/359099847_Digital_payment_fraud_ 

detection_methods_in_digital_ages_and_Industry_40 

The advent of the digital economy and Industry 4.0 enables financial organizations 

to adapt their processes and mitigate the risks and losses associated with the fraud. 

Machine learning algorithms facilitate effective predictive models for fraud 

detection for Industry 4.0. This study aims to identify an efficient and stable model 

for fraud detection platforms to be adapted for Industry 4.0. By leveraging a real 

credit card transaction dataset, this study proposes and compares five different 

learning models: logistic regression, decision tree, k-nearest neighbors, random 

forest, and autoencoder. Results show that random forest and logistic regression 

outperform the other algorithms. Besides, the undersampling method and feature 

reduction using principal component analysis could enhance the results of the 

proposed models. The outcomes of the studies positively ascertain the effectiveness 

of using features selection and sampling methods for tackling business problems in 

the new age of digital economy and industrial 4.0 to detect fraudulent activities. 
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     \Author(s) 
     & Year 

  
         Title 

 
     Methodology 

 
   Key Findings 

 
 Limitations 

Ibrahim Musibau 
Adekunle (2023) 

Fraud detection model 
for illegitimate 
transactions 

Data preprocessing, 
model training, 
evaluation, web app 
development, and 
deployment. 

High accuracy, 
effective fraud 
detection, web 
deployment, user-
friendly, real-time 
analysis. 
 

Limited dataset, 
potential biases, real-
time scalability, false 
positives, deployment 
dependencies. 

John Pavlopoulos, 
Alexandros Xenos 
(2023) 

Fraud detection with 
natural language 
processing 

Dataset creation, 
anonymization, 
benchmarking models, 
evaluation, NLP-based 
fraud detection 
approach. 
 

Public fraud dataset, 
effective NLP 
approach, strong 
benchmarks, evaluation 
metrics validated. 

Data sparsity, limited 
public datasets, NLP 
assumptions, evaluation 
constraints, fraud 
complexity. 

Oleksandr Tkachyk 
(2023) 

Application of 
Artificial Intelligence 
for Fraudulent Banking 
Operations Recognition 

Data preprocessing, 
feature engineering, 
model training, 
evaluation, ANN, 
logistic regression, 
stacking. 
 

AI improves fraud 
detection, stacked 
model excels, logistic 
regression performs 
well. 

Data imbalance, model 
biases, fraud 
complexity, real-time 
challenges, potential 
false positives. 

Jurnal Akuntans 
(2022) 

 

Implementation of 
cashless policy to 
minimize fraud in the 
government sector: A 
systematic review. 

Systematic review, 
keyword search, 
Scopus database, 
journal selection, 
secondary data 
analysis. 
 

Cashless transactions 
enhance transparency, 
reduce fraud, prevent 
corruption, and 
improve efficiency. 

Internet dependency, 
rural accessibility, 
policy enforcement, 
adoption challenges, 
potential cybersecurity 
risks. 

Alessandro Di Stefano 

 
 

Digital payment fraud 
detection methods in 
digital ages and 
Industry 4.0 

Dataset analysis, model 
selection, training, 
evaluation, under-
sampling, feature 
reduction, comparison. 
 

Random forest, logistic 
regression excel feature 
reduction, under-
sampling improve 
detection. 

Dataset bias, model 
limitations, real-time 
challenges, scalability, 
potential false 
positives. 
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4. SYSTEM ANALYSIS 

4.1 EXISTING SYSTEM: 
 

The existing system for UPI fraud detection relies on traditional rule-based methods, 

which often struggle to adapt to new fraud patterns and handle large-scale datasets 

efficiently. These systems typically use predefined thresholds to flag suspicious 

transactions based on transaction amount, frequency, or location. However, they can 

miss nuanced fraudulent behavior and are prone to high false-positive rates, leading 

to user inconvenience. Additionally, they may not handle imbalanced data 

effectively, resulting in poor fraud detection performance. The system often lacks 

the adaptability and precision that machine learning models, such as XGBoost, can 

provide in dynamic and complex fraud detection scenarios. 

 
4.1.1 DISADVANTAGES OF EXISTING SYSTEM: 

 
1. Limited adaptability to new and evolving fraud patterns, leading to missed 

detections. 

2. High false-positive rates, causing unnecessary alarms and user inconvenience. 

3. Inefficient handling of large, imbalanced datasets, resulting in poor detection 

accuracy. 

4. Predefined rules struggle to identify complex, sophisticated fraud schemes. 

5. Lack of real-time monitoring capabilities, delaying fraud detection and 

response. 
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4.2 PROPOSED SYSTEMs: 

 
The proposed system utilizes machine learning models to detect fraudulent UPI 

transactions efficiently. It integrates multiple classification techniques, including 

Logistic Regression, Decision Tree, XGBoost, SVM, KNN, and Naïve Bayes, with 

ensemble methods like Voting and Stacking Classifiers to improve accuracy. The 

dataset undergoes preprocessing, feature engineering, and exploratory data analysis 

for enhanced predictive performance. A Flask-based web interface enables real-time 

fraud detection, allowing users to input transaction details and receive immediate 

classification results. Secure authentication using SQLite ensures restricted access. 

This scalable and robust system effectively mitigates fraud risks, ensuring safe and 

reliable digital transactions. 

4.2.1 Advantages of proposed system: 

 
1. Improved fraud detection accuracy using multiple machine learning 

classification models. 

2. Real-time transaction monitoring ensures immediate fraud identification and 

prevention. 

3. Ensemble learning enhances system performance by combining multiple 

model predictions. 

4. Secure authentication mechanisms protect user data from unauthorized access 

attempts 

5. Scalable solution adapts to increasing digital transaction volumes efficiently 

and effectively. 
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4.2.2 Extension: 

 
As an extension we applied an ensemble method combining the predictions of 

multiple individual models to produce a more robust and accurate final prediction. 

However, we can further enhance the performance by exploring other ensemble 

techniques such as Stacking Classifier which got 99.4 of accuracy, As an extension 

we can build the front end using the flask framework for user testing and with user 

authentication. 

4.2.3 Advantages of Extension: 

 Stacking classifier improves fraud detection accuracy to an outstanding 

99.4%. 

 Flask-based front end ensures user-friendly interaction with fraud detection 

system. 

 Real-time fraud detection enables instant response to suspicious 

transactions efficiently. 

 Secure user authentication prevents unauthorized access to fraud detection 

features. 

 Scalable architecture allows easy integration with existing digital banking 

infrastructures. 

4.3 FUNCTIONALREQUIREMENTS 

1. Data Collection 

2. Data Pre-processing 

3. Training and Testing 

4. Modelling 

5. Predicting 
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4.4. NON FUNCTIONALREQUIREMENTS 

Performance 

The system should efficiently process large volumes of IoT traffic in real time, 

ensuring minimal latency in detection and response to intrusions, thereby 

maintaining smooth operation and user experience without significant delays. 

Scalability 

The architecture must support scalability to accommodate the increasing number of 

IoT devices and data traffic without degradation in performance. It should handle 

expansion easily, allowing for future growth in network size and complexity. 

Reliability 

The system should demonstrate high reliability, ensuring continuous operation and 

accurate detection of intrusions even in the presence of network fluctuations or 

system failures, thereby minimizing downtime and maintaining consistent security 

coverage. 

Usability 

The user interface should be intuitive and user-friendly, allowing administrators to 

easily configure settings, monitor alerts, and manage the system without extensive 

training, ensuring effective operation and quick decision-making in response to 

threats. 

Security 

The system must adhere to strong security protocols to protect sensitive data and 

configurations from unauthorized access and tampering. Robust authentication and 

encryption mechanisms should be implemented to safeguard the integrity of the IDS. 
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5. SYSTEM DESIGN 

5.1 SYSTEM ARCHITECTURE: 
 

 
Fig.5.1.1 System architecture 
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DATA FLOW DIAGRAM: 

A Data Flow Diagram (DFD) represents the flow of data within a system, illustrating 

how data moves between processes, data stores, and external entities. It helps in 

understanding system functionalities and identifying potential inefficiencies. The 

DFD of this fraud detection system consists of input data from users, preprocessing 

and feature extraction, classification using machine learning models, and the final 

fraud prediction output. The system also integrates real-time monitoring, secure 

authentication, and a Flask-based interface. By visualizing these processes, DFDs 

aid in designing efficient, structured, and scalable fraud detection solutions for 

digital banking security. 

Goals of DFD 

 
 To visually represent the flow of data within the fraud detection system. 

 
 To identify key processes, data inputs, and outputs for system analysis 

 
 To ensure a structured approach in designing fraud detection workflows. 

 
 To highlight interactions between users, databases, and machine learning 

models. 

 To facilitate better understanding, optimization, and scalability of the system 

architecture. 
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5.2 UML DIAGRAMS 

UML (Unified Modeling Language) diagrams visually represent the structure and 

behavior of a system. In the context of the fraud detection system, key UML 

diagrams include use case diagrams to depict user interactions, class diagrams for 

system components like the Flask frontend, SQLite for user authentication, and 

machine learning models. Sequence diagrams can illustrate the flow of data during 

transaction processing, while activity diagrams show the steps in fraud detection. 

These diagrams provide clarity on system architecture and functionality. 

Characteristics of UML 

 
UML provides a standardized set of notations and symbols for creating diagrams, 

ensuring consistency across projects. 

UML diagrams offer a clear visual representation of system components, 

interactions, and workflows. 

It covers both structural (e.g., class, component, deployment diagrams) and 

behavioral (e.g., use case, sequence, activity diagrams) aspects of a system. 

UML can be applied to various types of software systems and domains, from object- 

oriented design to business processes. 

UML allows for different levels of abstraction, from high-level overviews to detailed 

specifications. 

UML is widely supported by various tools, allowing easy integration into different 

stages of software development. 
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UPI transaction data 

Preprocessing of Input 

 

 

 

Use Case Diagram 

 
The Use Case Diagram for the UPI fraud detection system illustrates the interactions between users and 

the system. Key actors include the "User" and the "System." The "User" can perform actions like logging 

in, entering transaction details, and receiving fraud detection results. The "System" handles user 

authentication, transaction data preprocessing, model classification, and fraud prediction. It also displays 

results through the frontend. The diagram highlights the system's focus on real-time fraud detection, 

ensuring secure UPI transactions through seamless user interactions. 

 

 

Register and log 

 

User 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
View Prediction 
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Class Diagram 

 
The Class Diagram for the UPI fraud detection system includes key classes like User, 

Transaction, Model, and Prediction. The User class manages user authentication and 

stores user details. The Transaction class contains transaction attributes such as 

amount, merchant, and timestamp. The Model class handles different classification 

models (Logistic Regression, XGBoost, etc.) and model training. The Prediction 

class processes input data and outputs fraud detection results. Relationships between 

these classes show dependencies for data flow and functionality within the system. 
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Activity Diagram 

 
The Activity Diagram for the UPI fraud detection system outlines the flow of 

activities from user interaction to fraud prediction. The process begins with user 

login and authentication, followed by entering transaction details. The system 

preprocesses the data, selects features, and passes it through trained classification 

models. The models predict whether the transaction is fraudulent or not. The result 

is displayed to the user, completing the transaction flow. The diagram also includes 

error handling and ensures smooth system operations for real-time fraud detection. 
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Sequence Diagram 

 
The Sequence Diagram for the UPI fraud detection system illustrates the interactions 

between the User, Frontend, Backend, and Model classes. The User initiates the 

process by logging in, followed by entering transaction details via the Frontend. The 

Frontend sends the data to the Backend, which handles data preprocessing and 

invokes the trained Model for classification. The Model predicts the fraud status, 

and the result is sent back to the Frontend, which then displays the fraud detection 

outcome to the User. 

 

 

 

User Flask App Model Data Processor Database 

 

 

 
 

 

 
Return authentication 
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Collaboration Diagram 

 
The Collaboration Diagram for the UPI fraud detection system depicts the 

interactions between key objects: User, Frontend, Backend, and Model. The User 

initiates the process by logging in and entering transaction details via the Frontend. 

The Frontend collaborates with the Backend to send the transaction data for 

preprocessing. The Backend then interacts with the Model to perform classification 

and generate fraud predictions. Finally, the Backend sends the prediction result back 

to the Frontend, which presents it to the User. 

 
 

2: Login/Register 
5: Provide Transaction Data (Features) 

3: Check credentials 
6: Preprocess Data 
8: Pass to Model 9: Make Prediction 

 
11: Display Prediction 4: Return authentication 7: Clean, Normalize, etc. 

10: Prediction 

 
1: Stores data 

12: Final Outcome 

 

Data  
Processor 

Model Flask  
App 

User 

Databas 
e 
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Component Diagram 

 
The Component Diagram for the UPI fraud detection system illustrates the system's 

main components and their relationships. It includes components like User Interface 

(Frontend), Authentication Service, Transaction Service, Model Service, and 

Database. The Frontend component handles user interactions, sending transaction 

data to the Backend. The Backend includes Authentication for user login and 

Transaction Service for data preprocessing. The Model Service performs fraud 

detection using trained models, and the Database stores user and transaction details, 

supporting the entire system’s functionality. 
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Deployment Diagram 
 

The Deployment Diagram for the UPI fraud detection system depicts the physical 

deployment of software components on hardware nodes. It includes a User Device 

(mobile or web) running the Frontend application, connected to a Server hosting the 

Backend, which manages user authentication, transaction processing, and model 

interactions. The Database is deployed on a separate server, storing user and 

transaction data. The Model service resides on the same server as the Backend, 

handling fraud detection through the trained models. The entire system operates in a 

cloud-based environment for scalability and security. 
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6. IMPLEMENTATION 

 
6.1 MODULES: 

 
 Importing the packages: Import necessary libraries and packages for data 

manipulation, visualization, and machine learning tasks. 

 Exploring the dataset – Diabetes data: Analyze the Diabetes data to 

understand its structure, features, and potential issues. 

 Data Processing: Remove duplicate records and perform data cleaning to 

ensure quality data for training.. 

 Feature Selection: Select important features based on correlation, 

importance, or other criteria to reduce dimensionality. 

 Splitting the dataset in train and validation: Divide the dataset into training 

and validation sets to evaluate model performance accurately. 

 Building the model for all data: Design machine learning models for both 

binary and multi-class classification tasks using deep learning. 

- - Logistic Regression - Decision Tree - XGBoost - SVM - KNN - Naive 

Bayes - Voting Classifier (Decision Tree + XGBoost + KNN + ExtraTree) 

 Training and Building the model: Train the model using the training dataset, 

optimizing parameters for performance. 

 Evaluation of all the models with accuracy, precision, recall, F1 score: 

Assess model performance using evaluation metrics like accuracy, precision, 

recall, and F1 score. 

 Comparison graphs are generated with scores of all models: Generate 

comparison graphs to visualize the performance metrics of each model for 

analysis. 
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 Frontend is developed with help of Flask Framework, along with 

Registration and Login setup: Build a user-friendly frontend using Flask, 

with features like user registration and login. 

 User gives input as Feature Values: User provides feature values through 

the frontend interface for model prediction. 

 The given input is preprocessed for prediction: Preprocess user input, 

including normalization and encoding, for compatibility with the trained 

model. 

 Trained model is used for prediction: Use the trained model to predict the 

outcome based on the user's input features. 

 Final outcome is displayed through frontend: Display the model's 

prediction result to the user via the Flask frontend interface. 

Algorithms: 

 
1. Multi-class Classification Algorithms 

Logistic Regression 

Logistic Regression is a linear model used for binary classification tasks. It predicts 

the probability of an outcome using the logistic function, which maps any real- 

valued number into a probability between 0 and 1. The model estimates the 

parameters by minimizing a cost function, typically using gradient descent. It works 

well when the relationship between features and the target is linear and is often used 

in situations like spam detection and medical diagnosis. 
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Decision Tree 

 
A Decision Tree is a non-linear model used for both classification and regression. It 

splits data into subsets based on feature values, creating a tree-like structure where 

each node represents a feature test, and each leaf represents a class label or value. 

Trees are built by choosing the feature that maximizes information gain (for 

classification) or minimizes variance (for regression). Decision trees are 

interpretable but prone to overfitting without pruning or regularization techniques. 

XGBoost 

 
XGBoost (Extreme Gradient Boosting) is a highly efficient implementation of 

gradient boosting for classification and regression tasks. It builds a series of decision 

trees, each correcting the errors of the previous one, by minimizing a loss function 

using gradient descent. XGBoost incorporates regularization (L1 and L2) to prevent 

overfitting and can handle sparse data efficiently. It’s widely used in competitive 

machine learning for its speed, accuracy, and ability to handle large datasets. 

SVM (Support Vector Machine) 

 
SVM is a supervised machine learning algorithm used for classification and 

regression tasks. It works by finding the hyperplane that best separates data points 

of different classes in a high-dimensional space, maximizing the margin between 

them. SVM can efficiently handle non-linear data using the kernel trick, which maps 

data into higher dimensions where it becomes linearly separable. It's effective in 

high-dimensional spaces and often used in text classification and image recognition 

tasks. 
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KNN (K-Nearest Neighbors) 

 
KNN is a simple, non-parametric algorithm used for classification and regression. It 

works by assigning the class or value of a sample based on the majority vote or 

average of its nearest neighbors. The number of neighbors (k) is a key parameter. 

KNN is effective in non-linear data but can be computationally expensive with large 

datasets. It is sensitive to the choice of distance metric and performs poorly with 

high-dimensional data (curse of dimensionality). 

Naive Bayes 

 
Naive Bayes is a probabilistic classifier based on Bayes' Theorem, assuming that 

features are conditionally independent given the class label. It calculates the 

probability of a sample belonging to each class and selects the class with the highest 

probability. Naive Bayes is particularly efficient with text classification tasks, such 

as spam detection or sentiment analysis. Despite its simplifying assumption of 

independence, it often performs surprisingly well in practice, especially with high- 

dimensional data. 

Voting Classifier (Decision Tree + XGBoost + KNN + ExtraTree) 

 
A Voting Classifier combines multiple base classifiers (e.g., Decision Tree, 

XGBoost, KNN, Extra Trees) to make predictions based on a majority or weighted 

vote. It can be used for classification tasks, where each model independently makes 

predictions, and the final decision is based on the consensus of the models. This 

approach enhances accuracy by reducing the risk of overfitting from individual 

models and is particularly effective when base models complement each other. 
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Stacking Classifier (BaggingClassifier with RF + DT with LightGBM) 

 
Stacking Classifier is an ensemble technique that combines multiple models (e.g., 

BaggingClassifier with Random Forest and Decision Tree with LightGBM). The 

idea is to train base models on the training data and then use a meta-model to learn 

how to combine their predictions for improved performance. The base models are 

often trained on different subsets of the data, and the meta-model combines their 

predictions. Stacking is powerful for complex datasets, often outperforming 

individual models. 

6.2 SAMPLE CODE: 
 

# 1. Importing the packages 

import pandas as pd 

import numpy as np 

from sklearn.model_selection import train_test_split 

from sklearn.preprocessing import StandardScaler 

from sklearn.impute import KNNImputer 

from sklearn.linear_model import LogisticRegression 

from sklearn.tree import DecisionTreeClassifier 

from xgboost import XGBClassifier 

from sklearn.svm import SVC 

from sklearn.neighbors import KNeighborsClassifier 

from sklearn.naive_bayes import GaussianNB 

from sklearn.ensemble import VotingClassifier, BaggingClassifier, 
ExtraTreesClassifier, RandomForestClassifier 

from sklearn.metrics import accuracy_score, precision_score, 
recall_score, f1_score 

from sklearn.ensemble import StackingClassifier 

from flask import Flask, render_template, request 
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import sqlite3 
 

 
# 2. Exploring the dataset (Assuming diabetes dataset) 

df = pd.read_csv('diabetes.csv') # Change the file name as required 

print(df.head()) 

 
# 3. Data Processing - Removing Duplicate Data and Drop Cleaning 

df = df.drop_duplicates() # Removing duplicate rows 

df = df.dropna() # Handling missing values 
 

 
# 4. EDA of Data 

import seaborn as sns 

import matplotlib.pyplot as plt 
 

 
# Correlation Matrix 

correlation_matrix = df.corr() 

plt.figure(figsize=(12, 8)) 

sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm') 

plt.title("Correlation Matrix") 

plt.show() 
 

 
# Sample Outcome 

sns.countplot(x='Outcome', data=df) 

plt.title("Sample Outcome Distribution") 

plt.show() 

 
# 5. Feature Selection (Selecting the X and y Data) 

X = df.drop(columns=['Outcome']) # Features 
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y = df['Outcome'] # Target variable 
 

 
# 6. Split the Dataset into Train and Test 

X_train, X_test, y_train, y_test = train_test_split(X, y, 
test_size=0.3, random_state=42) 

 
 

# 7. Feature Scaling 

scaler = StandardScaler() 

X_train_scaled = scaler.fit_transform(X_train) 

X_test_scaled = scaler.transform(X_test) 

 
# 8. Building the models 

models = { 

'Logistic Regression': LogisticRegression(), 

'Decision Tree': DecisionTreeClassifier(), 

'XGBoost': XGBClassifier(), 

 'SVM': 

'KNN': 

SVC(), 

KNeighborsClassifier(), 

 
} 

'Naive Bayes': GaussianNB() 

 

 
# 9. Voting Classifier (Decision Tree + XGBoost + KNN + ExtraTrees) 

voting_clf = VotingClassifier(estimators=[ 

('dt', DecisionTreeClassifier()), 

('xgb', XGBClassifier()), 

('knn', KNeighborsClassifier()), 

('et', ExtraTreesClassifier()) 

], voting='hard') 
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# 10. Stacking Classifier (BaggingClassifier with RF + DT with 
LightGBM) 

stacking_clf = StackingClassifier( 

estimators=[ 

('rf', 
BaggingClassifier(base_estimator=RandomForestClassifier())), 

('dt', DecisionTreeClassifier()) 

], 

final_estimator=XGBClassifier() 

) 
 

 
# 11. Training and Comparing Models 

results = {} 

 
for name, model in models.items(): 

model.fit(X_train_scaled, y_train) 

y_pred = model.predict(X_test_scaled) 

results[name] = { 

'accuracy': accuracy_score(y_test, y_pred), 

'precision': precision_score(y_test, y_pred), 

'recall': recall_score(y_test, y_pred), 

'f1score': f1_score(y_test, y_pred) 

} 
 

 
# Evaluate Voting and Stacking Classifier 

voting_clf.fit(X_train_scaled, y_train) 

y_pred_voting = voting_clf.predict(X_test_scaled) 

results['Voting Classifier'] = { 
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'accuracy': accuracy_score(y_test, y_pred_voting), 

'precision': precision_score(y_test, y_pred_voting), 

'recall': recall_score(y_test, y_pred_voting), 

'f1score': f1_score(y_test, y_pred_voting) 

} 
 

 
stacking_clf.fit(X_train_scaled, y_train) 

y_pred_stacking = stacking_clf.predict(X_test_scaled) 

results['Stacking Classifier'] = { 

'accuracy': accuracy_score(y_test, y_pred_stacking), 

'precision': precision_score(y_test, y_pred_stacking), 

'recall': recall_score(y_test, y_pred_stacking), 

'f1score': f1_score(y_test, y_pred_stacking) 

} 
 

 
# 12. Compare Models (Graph) 

results_df = pd.DataFrame(results).T 

results_df.plot(kind='bar', figsize=(10, 6)) 

plt.title("Comparison of Models") 

plt.ylabel("Score") 

plt.xticks(rotation=45) 

plt.show() 

 
# 13. Save the Best Model (Stacking Classifier) 

import joblib 

joblib.dump(stacking_clf, 'stacking_classifier_model.pkl') 
 

 
# 14. Frontend Development with Flask (basic setup) 
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app = Flask( name ) 
 

 
# 15. User input for prediction 

@app.route('/') 

def home(): 

return render_template('index.html') 
 

 
@app.route('/predict', methods=['POST']) 

def predict(): 

if request.method == 'POST': 

features = [float(x) for x in request.form.values()] 

features = np.array(features).reshape(1, -1) 

features_scaled = scaler.transform(features) 

 
model = joblib.load('stacking_classifier_model.pkl') 

prediction = model.predict(features_scaled) 

 
return render_template('index.html', 

prediction_text=f'Predicted Outcome: {prediction[0]}') 
 
 

# 16. User Authentication and SQLite setup 

@app.route('/register', methods=['GET', 'POST']) 

def register(): 

if request.method == 'POST': 

username = request.form['username'] 

password = request.form['password'] 

 
conn = sqlite3.connect('user_data.db') 
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c = conn.cursor() 

c.execute('CREATE TABLE IF NOT EXISTS users (username TEXT, 
password TEXT)') 

c.execute('INSERT INTO users (username, password) VALUES (?, 
?)', (username, password)) 

conn.commit() 

conn.close() 

 
return render_template('index.html', prediction_text='User 

Registered Successfully!') 

return render_template('register.html') 
 

 
if  name  == ' main ': 

app.run(debug=True) 
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7. SOFTWARE ENVIRONMENT 
 
 

 
Machine Learning: 

 
What is Machine Learning? 

 
Machine learning is a branch of artificial intelligence that enables algorithms to 

uncover hidden patterns within datasets, allowing them to make predictions on new, 

similar data without explicit programming for each task. Traditional machine 

learning combines data with statistical tools to predict outputs, yielding actionable 

insights. This technology finds applications in diverse fields such as image and 

speech recognition, natural language processing, recommendation systems, fraud 

detection, portfolio optimization, and automating tasks. 
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Types of Machine Learning: 

 

 
1. Supervised Machine Learning: 

 
Supervised learning is a type of machine learning in which the algorithm is trained 

on the labeled dataset. It learns to map input features to targets based on labeled 

training data. In supervised learning, the algorithm is provided with input features 

and corresponding output labels, and it learns to generalize from this data to make 

predictions on new, unseen data. 

There are two main types of supervised learning: 

 
Regression: Regression is a type of supervised learning where the algorithm learns 

to predict continuous values based on input features. The output labels in regression 

are continuous values, such as stock prices, and housing prices. The different 

regression algorithms in machine learning are: Linear Regression, Polynomial 
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Regression, Ridge Regression, Decision Tree Regression, Random Forest 

Regression, Support Vector Regression, etc 

Classification: Classification is a type of supervised learning where the algorithm 

learns to assign input data to a specific category or class based on input features. The 

output labels in classification are discrete values. Classification algorithms can be 

binary, where the output is one of two possible classes, or multiclass, where the 

output can be one of several classes. The different Classification algorithms in 

machine learning are: Logistic Regression, Naive Bayes, Decision Tree, Support 

Vector Machine (SVM), K-Nearest Neighbors (KNN), etc 

2. Unsupervised Machine Learning: 

 
Unsupervised learning is a type of machine learning where the algorithm learns to 

recognize patterns in data without being explicitly trained using labeled examples. 

The goal of unsupervised learning is to discover the underlying structure or 

distribution in the data. 

There are two main types of unsupervised learning: 

 
Clustering: Clustering algorithms group similar data points together based on their 

characteristics. The goal is to identify groups, or clusters, of data points that are 

similar to each other, while being distinct from other groups. Some popular 

clustering algorithms include K-means, Hierarchical clustering, and DBSCAN. 

Dimensionality reduction: Dimensionality reduction algorithms reduce the number 

of input variables in a dataset while preserving as much of the original information 

as possible. This is useful for reducing the complexity of a dataset and making it 

easier to visualize and analyze. Some popular dimensionality reduction algorithms 

include Principal Component Analysis (PCA), t-SNE, and Auto encoders. 
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3. Reinforcement Machine Learning: 

 
Reinforcement learning is a type of machine learning where an agent learns to 

interact with an environment by performing actions and receiving rewards or 

penalties based on its actions. The goal of reinforcement learning is to learn a policy, 

which is a mapping from states to actions, that maximizes the expected cumulative 

reward over time. 

There are two main types of reinforcement learning: 

 
Model-based reinforcement learning: In model-based reinforcement learning, the 

agent learns a model of the environment, including the transition probabilities 

between states and the rewards associated with each state-action pair. The agent then 

uses this model to plan its actions in order to maximize its expected reward. Some 

popular model-based reinforcement learning algorithms include Value Iteration and 

Policy Iteration. 

Model-free reinforcement learning: In model-free reinforcement learning, the 

agent learns a policy directly from experience without explicitly building a model of 

the environment. The agent interacts with the environment and updates its policy 

based on the rewards it receives. Some popular model-free reinforcement learning 

algorithms include Q-Learning, SARSA, and Deep Reinforcement Learning. 
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Applications of Machine Learning: 

 

 
1. Automation: Machine learning, which works entirely autonomously in any 

field without the need for any human intervention. For example, robots 

perform the essential process steps in manufacturing plants. 

2. Finance Industry: Machine learning is growing in popularity in the finance 

industry. Banks are mainly using ML to find patterns inside the data but also 

to prevent fraud. 

3. Government organization: The government makes use of ML to manage 

public safety and utilities. Take the example of China with its massive face 

recognition. The government uses Artificial intelligence to prevent 

jaywalking. 

4. Healthcare industry: Healthcare was one of the first industries to use machine 

learning with image detection. 

5. Marketing: Broad use of AI is done in marketing thanks to abundant access to 

data. Before the age of mass data, researchers develop advanced mathematical 
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tools like Bayesian analysis to estimate the value of a customer. With the 

boom of data, the marketing department relies on AI to optimize customer 

relationships and marketing campaigns. 

6. Retail industry: Machine learning is used in the retail industry to analyze 

customer behavior, predict demand, and manage inventory. It also helps 

retailers to personalize the shopping experience for each customer by 

recommending products based on their past purchases and preferences. 

7. Transportation: Machine learning is used in the transportation industry to 

optimize routes, reduce fuel consumption, and improve the overall efficiency 

of transportation systems. It also plays a role in autonomous vehicles, where 

ML algorithms are used to make decisions about navigation and safety. 

Advantages of Machine Learning: 

 
1. Improved Accuracy and Precision: One of the most significant benefits of 

machine learning is its ability to improve accuracy and precision in various tasks. 

ML models can process vast amounts of data and identify patterns that might be 

overlooked by humans. For instance, in medical diagnostics, ML algorithms can 

analyze medical images or patient data to detect diseases with a high degree of 

accuracy. 

2. Automation of Repetitive Tasks: Machine learning enables the automation of 

repetitive and mundane tasks, freeing up human resources for more complex and 

creative endeavors. In industries like manufacturing and customer service, ML- 

driven automation can handle routine tasks such as quality control, data entry, and 

customer inquiries, resulting in increased productivity and efficiency. 

3. Enhanced Decision-Making: ML models can analyze large datasets and provide 

insights that aid in decision-making. By identifying trends, correlations, and 
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anomalies, machine learning helps businesses and organizations make data-driven 

decisions. This is particularly valuable in sectors like finance, where ML can be used 

for risk assessment, fraud detection, and investment strategies. 

4. Personalization and Customer Experience: Machine learning enables the 

personalization of products and services, enhancing customer experience. In e- 

commerce, ML algorithms analyze customer behavior and preferences to 

recommend products tailored to individual needs. Similarly, streaming services use 

ML to suggest content based on user viewing history, improving user engagement 

and satisfaction. 

5. Predictive Analytics: Predictive analytics is a powerful application of machine 

learning that helps forecast future events based on historical data. Businesses use 

predictive models to anticipate customer demand, optimize inventory, and improve 

supply chain management. In healthcare, predictive analytics can identify potential 

outbreaks of diseases and help in preventive measures. 

Disadvantages of Machine Learning: 

 
1. Data Dependency: Machine learning models require vast amounts of data to train 

effectively. The quality, quantity, and diversity of the data significantly impact the 

model’s performance. Insufficient or biased data can lead to inaccurate predictions 

and poor decision-making. Additionally, obtaining and curating large datasets can 

be time-consuming and costly. 

2. High Computational Costs: Training ML models, especially deep learning 

algorithms, demands significant computational resources. High-performance 

hardware such as GPUs and TPUs are often required, which can be expensive. The 
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energy consumption associated with training large models is also substantial, raising 

concerns about the environmental impact. 

3. Complexity and Interpretability: Many machine learning models, particularly 

deep neural networks, function as black boxes. Their complexity makes it difficult 

to interpret how they arrive at specific decisions. This lack of transparency poses 

challenges in fields where understanding the decision-making process is critical, 

such as healthcare and finance. 

4. Overfitting and Underfitting: Machine learning models can suffer from overfitting 

or underfitting. Overfitting occurs when a model learns the training data too well, 

capturing noise and anomalies, which reduces its generalization ability to new data. 

Underfitting happens when a model is too simple to capture the underlying patterns 

in the data, leading to poor performance on both training and test data. 

5. Ethical Concerns: ML applications can raise ethical issues, particularly 

concerning privacy and bias. Data privacy is a significant concern, as ML models 

often require access to sensitive and personal information. Bias in training data can 

lead to biased models, perpetuating existing inequalities and unfair treatment of 

certain groups. 
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Python Anaconda Installation 

 
1. Go to this link and download Anaconda for Windows, Mac, or Linux: – Download 

anaconda 

 

 

 
You can download the installer for Python 3.7 or for Python 2.7 (at the time of 

writing). And you can download it for a 32-bit or 64-bit machine. 

2. Click on the downloaded .exe to open it. This is the Anaconda setup. Click next. 
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3. Now, you’ll see the license agreement. Click on ‘I Agree’. 
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4. You can install it for all users or just for yourself. If you want to install it for all 

users, you need administrator privileges. 

 
 
 

 

 
5. Choose where you want to install it. Here, you can see the available space and 

how much you need. 
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6. Now, you’ll get some advanced options. You can add Anaconda to your system’s 

PATH environment variable, and register it as the primary system Python 3.7. If you 

add it to PATH, it will be found before any other installation. Click on ‘Install’. 

 

 
 

 
7. It will unpack some packages and extract some files on your machine. This will 

take a few minutes. 
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8. The installation is complete. Click Next. 

 

 
9. This screen will inform you about PyCharm. Click Next. 
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10. The installation is complete. You can choose to get more information about 

Anaconda cloud and how to get started with Anaconda. Click Finish. 

 

 
11. If you search for Anaconda now, you will see the following options: 
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LIBRARIES/PACKGES :- 

 
1. NumPy: 

 
Provides support for large, multi-dimensional arrays and matrices. Includes a vast 

collection of mathematical functions to operate on these arrays. 

2. Pandas: 

 
Offers data structures like DataFrames for efficient data manipulation and analysis. 

Simplifies data cleaning, preparation, and munging tasks for data science projects. 

3. SciPy: 

 
Builds on NumPy by adding a collection of algorithms for scientific and technical 

computing.Covers areas such as integration, optimization, interpolation, eigenvalue 

problems, and others. 

4. Matplotlib: 

 
Enables the creation of static, animated, and interactive visualizations in Python. 

Commonly used for plotting graphs and charts, making it a staple for data 

visualization. 

5. Scikit-learn: 

 
Provides simple and efficient tools for data mining and data analysis. Supports 

various machine learning algorithms, including classification, regression, and 

clustering. 
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6. TensorFlow: 

 
An open-source library for numerical computation and large-scale machine learning. 

Used for building and deploying machine learning models, especially deep neural 

networks. 

7. Keras: 

 
A high-level neural networks API, written in Python and capable of running on top 

of TensorFlow. Facilitates fast experimentation with deep neural networks due to its 

user-friendly, modular nature. 
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8. SYSTEM TESTING 

System testing, also called black box testing, focuses on the external parts of the 

system and tests and validates the fully integrated software system. Computer 

systems are typically made with software integration, although the software is just a 

single element of any computer system. Software is usually developed in units and 

interfaced with other software elements and hardware, creating the complete 

computer system. So, computer systems consist of a set of different software 

applications, each designed to perform a different task, but only if they are interfaced 

with compatible hardware. System testing is a series of tests that examine the entire 

workings and behavior of the integrated software computer system against the end 

user’s needs and requirements. 

System Testing Levels 

 
Four levels of software testing make up the hierarchy of the testing process. They 

are: 

Unit testing: Unit testing tests a single software application. 

Integration testing: Integration testing tests a group of software units. 

System testing: System testing tests the entire system and is our focus for today. 

 
Acceptance testing: Acceptance testing tests the business requirements’ 

acceptability. 

So, we see that system testing occurs after integration testing but before the 

acceptance testing. The testing process evaluates the end-to-end system 

specifications. 
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8.1 Different Types of System Testing in Software Testing 

 
Although there are over 50 different types of system testing, the following seven 

types are the most often used. 

Usability Testing: As the name implies, usability testing chiefly focuses on how easy 

it is for the end user to use the application, flexibility in handling controls, and the 

system’s ability to achieve its objectives. 

Load Testing: Load testing shows how a software solution will perform under real- 

life loads. 

Regression Testing: Regression testing ensures that no changes made during 

development have created new bugs. Additionally, regression testing ensures no old 

bugs resurface after adding software modules. 

Recovery Testing: Software is prone to crashing, so recovery testing is done to 

ascertain whether a software solution is trustworthy and can successfully recover 

from possible crashes. 

Migration Testing: Migration testing ensures that the software can be shifted from 

an older system infrastructure to the current one without spawning any issues. 

Functional Testing: Also called functional completeness testing, functional testing 

involves brainstorming any possible missing functions. For example, testers might 

create a list of additional functionalities to be incorporated into the application to 

improve it during functional testing. 

Hardware/Software Testing: IBM calls Hardware/Software testing “HW/SW 

Testing.” This testing involves focusing attention on the interactions between the 

hardware and software. 
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System Testing Process 

 
There are two kinds of software testing: Black Box and White Box.White box testing 

tests a software application’s internal workings or code. On the other hand, black 

box (or system testing) does the opposite, focusing on externals. System testing deals 

with the software’s external workings from the user’s perspective. 

The system testing process is broken down into the following steps: 

 
Test Planning: First, there needs to be a plan. The test plan is a document with all 

the testing information, such as strategies, objectives, entry-exit criteria, testing 

tools, software requirements, guidelines, etc. 

Test Case Design and Execution: Next, the testers create a test case for every feature, 

including the test scenarios, process, description, etc. The testers then perform and 

execute the tests. 

Defect Tracking and Defect Management: The testers then track and record any 

defects using the defect-tracking tools like Bugzilla, JIRA, Trello, etc. Also, the 

testers must document the defects so the developers can deal with and resolve them. 

Reporting and Communication: Finally, the testers create bug and defect reports and 

send them to the developers. 
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8.2 TEST CASES: 
 

 

 
S.NO 

 

 
INPUT 

 

 
If available 

 

 
If not available 

1 User signup User get registered into 

the application 

There is no process 

2 User sign in User get login into the 

application 

There is no process 

3 Enter input for prediction Prediction result 

displayed 

There is no process 
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9. SCREENSHOTS 

Tables: 

DATASET 
 

Performance Evaluation – Multi Class 
 

Algorithm Name Accuracy Precision Recall FSCORE 

XG Boost 0.934 0.936 0.934 0.935 

Decision Tree 0.906 0.907 0.906 0.907 

Navie Bayes 0.588 1.000 0.588 0.741 

Logistic Regression 0.588 1.000 0.588 0.741 
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SVM 0.588 1.000 0.588 0.741 

KNN 0.843 0.847 0.843 0.844 

Voting Classifier 0.921 0.922 0.921 0.922 

Stacking Classifier 0.994 0.994 0.994 0.994 

 
Comparison Graphs 
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User Interface 

Step 1 
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Step 2 
 

Step 3 
 

 

 
Step 4 
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Step - 5 
 

 
Step - 6 

 

Step - 7 
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Step - 8 
 

Step – 9 
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Step – 10 
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10. CONCLUSION 

In conclusion, the machine learning-based fraud detection system for UPI 

transactions effectively enhances digital banking security. By employing multiple 

classification models, including Logistic Regression, Decision Tree, XGBoost, 

SVM, KNN, and Naïve Bayes, and utilizing ensemble techniques like Voting and 

Stacking Classifiers, the system provides high accuracy in fraud detection. The 

results show that XGBoost performs well with 98.2% accuracy, but the Stacking 

Classifier further improves this to 99.4%. The system’s integration with a Flask- 

based frontend and SQLite-based user authentication allows for real-time fraud 

detection, ensuring robust and scalable protection for digital transactions. This 

project highlights the potential of machine learning and ensemble learning in 

building efficient, reliable, and secure fraud detection solutions for digital payment 

systems. 

The future scope of this fraud detection system includes expanding the dataset to 

include more diverse transaction patterns, improving model generalization with 

additional feature engineering, and exploring deep learning techniques like neural 

networks for enhanced performance. Implementing real-time anomaly detection 

with continuous model updates could further improve accuracy. Additionally, 

integrating the system with other payment platforms and adopting advanced 

encryption for security would strengthen its robustness and scalability, making it 

adaptable for wider financial applications. 
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