
i

A

Project Report On

IMPLEMENTATION OF TRUE RANDOM NUMBER GENERATOR FOR BIST

APPLICATIONS

Submitted in partial fulfilment of requirements for the

Award of the degree of

MASTER OF TECHNOLOGY

In

VLSI SYSTEM DESIGN

By

Malavath Mamatha

208R1D5703

Under the esteemed guidance of

Dr. Prithivirajan

Professor, Department of ECE

Department of Electronics and Communication Engineering

CMR ENGINEERING COLLEGE

UGC AUTONOMOUS

(Approved by AICTE & Affiliated by JNTU, Hyderabad)

Kandlakoya (V), Medchal (M), Hyderabad-501401.

ii

CMR ENGINEERING COLLEGE

UGC AUTONOMOUS

(Accredited by NBA, Approved by AICTE NEW DELHI, Affiliated to JNTU, Hyderabad)

Kandlakoya, Medchal Road, Hyderabad-501 401

Department of Electronics & Communication Engineering

CERTIFICATE

This is to certify that the dissertation entitled “IMPLEMENTATION OF TRUE RANDOM NUMBER

GENERATOR FOR BIST APPLICATIONS” is being carried out by Malavath Mamatha bearing

Roll Number 208R1D5703 in partial fulfilment of the academic requirements for the award

of the degree of MASTER OF TECHNOLOGY in VLSI SYSTEM DESIGN for the year

2021-22 submitted to the Department of ELECTRONICS AND COMMUNICATON

ENGINEERING, CMR ENGINEERING COLLEGE UGC AUTONOMOUS,

HYDERABAD.

Under the Guidance of Head of the Department

Dr. Prithivirajan Dr. Suman Mishra

External Examiner

iii

ACKNOWLEDGEMENT

Apart from the efforts of me, the success of this seminar depends largely on the

encouragement and guidelines of many others. I take this opportunity to express

my gratitude to the people who have been instrumental in the successful

completion of this seminar

I render my thanks to Sri. CH. NARASIMHA REDDY, Chairman CMR

Engineering College, for his encouragement.

I express my sincere gratitude to Dr. A.S REDDY, Principal, CMR Engineering

College, for providing excellent academic environment in the college.

I thank and express my gratitude to Dr. SUMAN MISHRA, Head of the

Department, ECE for providing with both time and amenities to make this project a

success within schedule

We take it a privilege to thank our project coordinator Dr. S. POONGODI,

Professor, Department of ECE for her continuous guidance, support and unfailing

patience throughout the project period.

I take unique privilege to express my thanks to Dr. PRITHIVIRAJAN, Professor,

Department of ECE, for her valuable guidance and encouragement given to me

throughout this project

I extend my thanks to all the people, who have helped me a lot directly or

indirectly in the completion of this project.

Malavath Mamatha

 208R1D5703

iv

DECLARATION

I hereby declare that the major project entitled " IMPLEMENTATION OF TRUE

RANDOM NUMBER GENERATOR FOR BIST APPLICATIONS" work done by me in

the Department of Electronics and Communication Engineering, CMR Engineering

College, JNTU Hyderabad. The reports are based on the project work done entirely by

me. I submitted my project for further development by any interested students who

share similar interests to improve the project in the future.

Malavath Mamatha
208R1D5703

v

 TABLE OF CONTENTS

CHAPTER

NO. TITLE PAGE NO.

 ABSTRACT 1

CHAPTER-1 INTRODUCTION 2
 1.1 OVERVIEW 2
 1.2 PROBLEM STATEMENT 5
 1.3 RANDOM NUMBER GENERATION: TYPES AND TECHNIQUES 8
 1.4 OBJECTIVE 13

CHAPTER 2 LITERATURE REVIEW 15
 2.1 SINGLE PHASE FSTR-TPG MODEL 19
 2.1 ONE OF THE LIMITATIONS OF THE FSTR-TPG

CHAPTER 3 RNG BASICS 24
 3.1. INTRODUCTION 24
 3.2. SELF-TIMED RING 25

 3.3. TPG BASED ON STR WITH FEEDBACK

STRUCTURE
27

CHAPTER 4 EXISTING SYSTEM 29
 4.1 INTRODUCTION 29
 4.2. PROPOSED IMPLEMENTATION FLOW 30

CHAPTER 5 PROPOSED SYSTEM 34
 5.1. INTRODUCTION 34
 5.2. PROPOSED METHOD 35

CHAPTER 6 XILINX-ISE 40

CHAPTER 7 SIMULATION RESULTS 48

 CONCLUSION 52
 FUTURE SCOPE 53
 REFERENCES 54

vi

TABLE OF FIGURES

Fig 2.1 Architecture of single-phase FSTR–TPG 19

Fig 2.2 8-bit LFSR 21

Fig 3.1 General structure of self-timed ring 24 24

Fig 3.2

(a) A state transition graph of a three-stage ring containing

two tokens (b) Schematic representation of a three-stage

ring with two tokens

25

Fig 3.3 Evenly-spaced and burst propagation modes in self-time 26

Fig 3.4 Architecture of the FSTR-TPG 27

Fig 3.5 Proposed entropy extractor with feedback structure 28

Fig 4.1 Implementation Flow 32

Fig 5.1 Proposed DCM-TRN-TPG block diagram 36

Fig 5.2 operation diagram of FCM-DRP controller 36

Fig 5.3 DCM-A operation 38

Fig 5.4 DCM-B operation 39

Fig 7.1 RTL schematic 48

Fig 7.2 Design summary 49

Fig 7.3 Time summary 49

Fig 7.4 Simulation outcome 49

Fig 7.5 Power summary 50

Fig 7.6 Graphical representation of performance evaluation 51

vii

LIST OF TABLES

Table7.1: Performance evaluation 50

viii

LIST OF ABREVATIONS

TRN-TPG TRUE RANDOM NUMBER TEST PATTERN GENERATOR

DCM DIGITAL CLOCK MANAGER

FFSR LINEAR feedback shift registers

Hdl hardware description language

LUT LOOK UP TABLE

SIPO SERIAL IN PARALLEL OUT

1

ABSTRACT

Built-In Self-Test (BIST) are the major building blocks in every integrated circuit, which

corrects the memory faults, stuck-at faults automatically by applying the random patterns.

The performance of BIST modules purely depends on randomization of patterns.

However, conventional liner feedback shift registers (LFSR) are failed to provide the

higher randomization with lower hardware resource utilization. Therefore, this work is

focused on implementation of True Random Number Test Pattern Generator (TRN-TPG)

frameworks to solve this problem. Further, the ring oscillators in the conventional

methods were replaced by Digital Clock Managers (DCM), which implements the

tuneability of phase, frequency of random numbers. Further, the beat frequency detection

operation is achieved by D-flip flop (D-FFs), post processing units, and counters. The

simulations revealed that the proposed method resulted in better area, delay, power

performance as compared to conventional approaches.

2

CHAPTER-1

INTRODUCTION

1.1 OVERVIEW

TPGs have evolved into an essential part of a wide variety of cryptographic systems,

including the production of PINs and passwords, authentication protocols, key

generation, random padding, and nonce generation. A non-deterministic random process,

which in TPG circuits takes the form of electrical noise most of the time, serves as the

primary source of randomization. Other essential components of the TPG include, in

addition to the noise source itself, a noise harvesting device that can isolate the noise, and

a post-processing step that can provide a statistical distribution that is consistent

throughout. Our primary objective is to develop an upgraded BIST-based TPG that is

comprised entirely of digital parts. The designs of TPGs created using digital building

blocks have the benefit of being relatively straightforward and well-suited to the BIST

design flow. This is because the designs are able to make optimal use of the CAD

software tools that are accessible for BIST design. However, digital circuits display a

very small number of sources of random noise. These include the metastability of the

circuit parts, the frequency of the free-running oscillators, and the jitters (random phase

changes) in the clock signals. As one would expect, the suggested TPG circuit of our

group makes use of oscillator jitter in addition to the frequency difference between the

two oscillators as a source of randomization.

Devices that can be reconfigured have become an essential component of a wide variety

of embedded digital systems, and it is anticipated that in the not-too-distant future,

reconfigurable platforms will be the platform of choice for general computing. After

having been used primarily for prototyping, reconfigurable systems such as BISTs are

now finding widespread use in cryptographic applications. This is due to the fact that

these systems are able to provide an acceptable to high processing rate at a significantly

lower cost and a much faster design cycle time. As a result, several embedded systems

that fall under the category of security call for a component that is capable of high-quality

TPG implementation on BIST. We offer a TPG for applications based on Xilinx BISTs

3

that has a configurable jitter control capability. This capability is based on the DPR

capabilities that are accessible on Xilinx BISTs. The construction of an architecture that

enables on-the-fly tunability of the statistical features of a TPG via the use of the DPR

capabilities of contemporary BISTs for the purpose of modifying the parameters of the

DCM modeling is the primary contribution that this study makes. Tunability was

previously unheard of in TPGs until our study, which we believe to be the first to report

doing so, was published.

This strategy can only be used with Xilinx BISTs because of its programmable clock

generating mechanism and DPR capabilities.

DPR is a relatively recent development in BIST technology that makes it possible to

make alterations to specific areas of the BIST logic fabric on the fly, without disrupting

the usual operation of the BIST. This is an improvement on an already impressive piece

of technology. Xilinx Clock Management Tiles (CMTs) have Dynamic Reconfiguration

Ports (DRP), which make it possible for DPR operations to be carried out using far less

complicated methods [1]. By modifying the appropriate DCM parameters in conjunction

with DPR, it is possible to alter the clock frequencies that are produced on the fly. DPR

through DRP is an extra benefit in BISTs since it gives the user the ability to control the

clock frequency according to the requirements of the application. There are design

strategies that may avoid any harmful manipulations through DPR, which, among other

things, might have a negative impact on the system's overall security [2].

Mersenne Twister (MT) is a fast TPG (PRNG) that was created by Matsumoto [8]. It has

found widespread use. Since more CPU time is needed for startup than for generation in

MT, Panneton [9] came up with the idea of introducing WELL generators in addition to

Mersenne Twisters. Later on, central processing units (CPUs) for personal computers

began to include additional capabilities such as SIMD operations (also known as 128-bit

operations) and multi-stage pipelines. There was a suggestion made for a 128-bit PRNG,

and it was given the moniker SIMD-oriented Fast Mersenne Twister (SFMT),

This is similar to MT and uses SIMD operations like what was suggested by Saito[7].

Tsoi[10] observed that if the function call is avoided, WELL may be slower than MT for

certain CPUs. This is true only if the function call is avoided. The SFMT TPG is a highly

quick generator that has a high-dimensional equidistribution feature that is to a

4

satisfactory degree. After that, TPGs were developed that were based on linear

recurrences modulo 2. TPGs, or linear feedback shift registers, are also known as

Tausworthe generators. These generators operate on linear recurrences modulo 2, and

they shift registers. Trinomial-based generators have significant statistical flaws, but

when combined, these generators may produce others that are reasonably quick and

resilient. These sorts of combinations have been suggested by Matsumoto and Wang [11,

12], who have also conducted research on them. The generators that are provided here are

suitable for use on 32-bit machines. These days, 64-bit computers are becoming more and

more widespread; thus, it is essential to have reliable generators that are developed to

make full advantage of the 64-bit words that were provided by P. L'Ecuyer [6]. Following

that, huge-period generators were considered, although they were not nearly the best

solution. It was necessary to develop new generators that have improved equidistribution

and bit-mixing features.

In contrast to the Mersenne twister, the state of these generators tends to become more

chaotic with time. In specific portions of the period of the Mersenne twister, which was

described by Saito [7], it is possible to see a lessening of the influence caused by

persistent dependencies among subsequent output values. This may be seen in action. A

generator with a period of may be built consisting of k flip-flops and k look-up tables

(LUTs), and it can produce k bits of random output on each cycle of operation. In spite of

these benefits, BIST-optimized generators are not generally utilized in practice. This is

due to the fact that the process of developing a generator for a given parameterization is

time demanding, both in terms of the number of developer man hours required and the

amount of CPU time required. It is conceivable to create all potential generators ahead of

time; however, the set of cores that would be produced as a consequence would need

several gigabytes, and it would be impossible to incorporate them into tools and design

processes that are already in place. When faced with these unappealing options, engineers

who are pressed for time naturally choose for alternatives that are less efficient, such as

coupled Tausworthe generators [3] or parallel linear feedback shift registers (LFSRs).

using low-cost bit-wise shift-registers to provide high-quality results over extended

periods of time without the need for costly resources. The quantity of bits produced

5

throughout each cycle is often decided upon with the intention of catering to the

requirements of the application.

The XOR gates receive a permutation of the outputs that arise from the operation. The

outputs of the XOR gates are then sent to the PIPO SRs, which cause the outputs of the

XOR gates to be shifted, ensuring that the production of random numbers goes off

without a hitch. The generation of random numbers is carried out in accordance with the

approach. Verilog is used to write the programming, and Model Sim 6.4a, which is a tool,

is used to run the simulations. The synthesized code is tested on the Spartan 3E kit, and

the Xilinx Plan Ahead Virtex5 kit is used to execute the synthesis.

The following table outlines the design overview that can be acquired using Xilinx 8.1i as

well as the results that can be received from the tools. As feedback is required, the first

seed will be issued. The seed undergoes a transformation.

The outcomes of the 8-bit RNG are detailed further down the page. The similar method is

used for the 64-bit random number generator. The output of the bits that have been

permuted is then supplied to the XOR gates. The number of XOR gates in an 8-bit RNG

is equal to eight (t=8). The idea of permutation is used in order to enhance the

randomness of the bits and, as a result, to implement unpredictability.

1.2 PROBLEM STATEMENT

The first and the last digits have been switched around. The various bit RNGs all employ

the same basic idea of permutation in their algorithms. The outputs of the permutation are

then sent into the XOR gates, and the round basis is utilized for the remaining inputs to

the XOR gates. Therefore, the bits of the XOR gate output that were acquired are fed into

the PIPO SR in a parallel fashion. The random number cycle is produced by the results of

the computation. The cycle is introduced into the SISO SR [FIFO] in a format that allows

for variable lengths (length = k). The length shouldn't be any longer than r. The value of

each bit will be set to zero as it passes through the flip-flop. Therefore, the production of

random numbers takes occur. The random numbers that are produced as a result are

created in such a way that their period is 2r -1. In the event when the number of bits is 16,

the period is equal to 216-1. The number of instances of the all zero state is decreased due

to the fact that the all zero state results in an idle situation. Random number generators

and random bit generators, abbreviated as RNGs and RBGs, respectively, are essential

6

pieces of equipment in a wide variety of fields. Stochastic simulation and cryptography

are the two primary areas of use for this technology. Random number generators (RNGs)

are put to use in stochastic simulation so that the behavior of a random variable with a

specified probability distribution may be simulated. These generators are used in the field

of cryptography to create secret keys, encrypt communications, or conceal the contents of

specific protocols by mixing the contents with a random sequence. A further use for

cryptographically secure random numbers can be found in the rapidly expanding field of

online gambling. This is due to the fact that online gambling games should very closely

imitate the distribution properties of their real-world equivalents, and they also must be

immune to being predicted or influenced by any adversary.

A TPG is an algorithm that generates a series of integers or bits based on an initial seed

or by means of continuous input. This sequence may be based on any input method. We

insist that any spectator should have the impression that this sequence is "random." This

brings up the issue, "What really constitutes randomness?" The vast majority of

individuals will claim that they are familiar with the concept of randomness;

nevertheless, if you press them for a precise description, they will struggle to provide

one. When attempting to define the essential qualities of random numbers, it is common

practice to include phrases such as unexpected or evenly distributed in the majority of

instances. Nevertheless, under what circumstances can a certain number or output string

be described as being either unexpected or evenly distributed? In this first part of our

discussion, we will examine three distinct ways to describe randomness or other similar

concepts.

The concepts of "genuine" random numbers and TPGs (Turning Point Generators)

emerge rather often in the context of random number generation and RNGs. TPGs are

generators that output the result of a physical experiment that is considered to be random,

such as radioactive decay or the noise of a semiconductor diode. Real random numbers

are the independent realizations of a uniformly distributed random variable. Real random

numbers are different from true random numbers, which are the results of a physical

experiment that is considered to be random. RNGs make use of TPGs in conjunction with

an extra algorithm in order to generate a sequence that, under certain conditions, has

characteristics that are very similar to those of genuine random numbers. But why would

7

we choose to employ RNGs when we could use TPGs? TPGs are often biased, which

means, for instance, that on average their output could include more ones than zeros and,

as a result, does not correspond to a uniformly distributed random variable. This is only

one example of how TPGs can be skewed. This impact may be mitigated by a variety of

techniques, but doing so will result in a decrease in the total number of bits that are of

any use and will also lower the generator's overall efficiency.

One other issue is that some TPGs might be prohibitively costly or need the use of an

additional piece of hardware. In addition, the speed of these generators is often

inadequate for the purposes for which they were designed. The output of a standard

random number generator does not need any extra hardware, is far quicker than that of a

TPG, and satisfies the essential characteristics, such as unbiasedness, that are anticipated

from random numbers. These requirements are necessary for producing high-quality

RNGs; nevertheless, it is not possible to generalize them to the large variety of generators

that are currently accessible. TPGs still have a role to play in the arsenal, notwithstanding

the considerations presented above. They are put to use in RNGs to either create the seed

for the system or the continuous input. The author of [Ell95] provides a list of several

hardware sources that may be used for the achievement of such a goal. Certain

requirements need to be met by a random number generator (RNG) in order for it to be

suitable for usage in cryptographic contexts or stochastic simulations. First and foremost,

the output should mimic the realization of a series of independent random variables that

are distributed equally over the whole sequence. See [Dev96] for some examples, or

[HL00], which provides a program library that allows the production of non-uniform

random numbers from uniform RNGs. Random variables that are not uniformly

distributed can be simulated by applying specific transformations on the output of

uniformly distributed generators. In this study, we restrict our discussion to generators

that replicate variables that are distributed equally throughout the population. In a binary

sequence that was generated by independent and identically (i.i.d) uniform random

variables, the ones and zeros, in addition to all binary n-tuples for n less than 1, are

distributed in a manner that is uniform over all n dimensions of the space.

Additionally, there is no association between the individual bits or n-tuples, whichever

comes first. We anticipate the same phenomenon to result from the operation of a RNG

8

of sufficiently good quality. In the case of certain generators, those requirements may be

verified by theoretical study; nevertheless, in the case of the vast majority of RNGs, they

are verified through empirical experiments. A decent random number generator (RNG)

should also operate effectively, which implies that it should be able to generate a

substantial quantity of random numbers in a relatively little length of time. Massive

volumes of random numbers are needed for applications such as stochastic simulation,

stream ciphers, the masking of protocols, and online gambling; hence, fast RNGs are

required for these applications. In addition to the criteria listed above, random number

generators (RNGs) used in cryptographic applications need to be resistant to assaults.

This is a situation that does not apply to stochastic simulation. This indicates that an

adversary should not be able to guess any current, future, or previous output of the

generator, even if the adversary has some information about the input, the inner state of

the RNG, or the current or previous output of the RNG. This is the case even if the

adversary has some information about the future output of the RNG.

Mathematicians and engineers are equally interested in the issue of cryptographic random

number generators (RNGs). Mathematicians are more concerned with the definitions of

randomness, the theoretical analysis of deterministic RNGs, and the interpretation of

empirical test results, while engineers are often more interested in the design of particular

RNGs or test suites. In this thesis, we make an attempt to address both fields by providing

a description of five real-world cryptographic RNGs as well as the essential mathematical

background. This is done in order to demonstrate our understanding of both fields. We

have high hopes that this thesis will be helpful in gaining a concise understanding of the

issue of cryptographic RNGs.

1.3 RANDOM NUMBER GENERATION: TYPES AND TECHNIQUES

The Various Methods and Categories of Producing Random Numbers The very nature of

reality contains a certain amount of unpredictable chance. It is not feasible to predict with

absolute certainty what a baby's personality will be like, how the temperature will change

over the course of the next week, or the outcome of the next throw of the dice. On a

world where everything could be foretold, there would be little interest, and much of the

thrill that comes with living would be taken away. Many academics have attempted to

either harvest or recreate the influence of randomness inside the digital environment as a

9

result of the fact that randomness is so ingrained in daily life. However, in order to

achieve this goal, it is necessary to find solutions to a great deal of significant issues.

What exactly does it mean to behave in a random manner? How does one go about

generating randomness, and what methods are available to them for recording the

unpredictability they experience? How is it possible for someone to determine whether or

not an occurrence or a numerical series is random? The responses to these questions have

gradually become more sophisticated over the course of many generations.

This article takes a look at the solutions that are now available and makes an effort to

categorize the several ways that chaos may be created. Defining Random It is difficult to

have any kind of appreciation for a TPG until one has a fundamental comprehension of

what it is to be random. A comprehensive understanding of randomness may be attained

by analyzing a random phenomenon, such as the roll of a dice, and determining what

characteristics contribute to the phenomenon's random nature. First, let's pretend that a

die is included in a game you play with your family so that things are more exciting. Five

is what comes up on the dice during the first turn. A roll of five dice, taken by itself, has

no discernible pattern or trend. However, as the game progresses, the sequence of rolls is

five, five, five, and five. This continues until the end of the game. The members of the

family who are participating in the game will quickly discover that the die they were

given is most likely not random.

As can be seen from this picture, the emphasis of the presentation of randomness need to

be a series of random numbers rather than the individual numbers on their own. This is

because randomness refers to a pattern that repeats itself (Kenny, 2005). They roll the die

two hundred times to ensure that the next die they purchase will have a random outcome.

This time, the dice did not always fall on the same face, but one was selected as the

winning number on fifty percent of the rolls. Because it favors one particular number to a

disproportionate degree compared to the others, this die cannot be deemed to be random

either. For the roll to be considered random, the die must have an equal chance of landing

on each of the potential values. A third possibility involves the dice maker providing a

guarantee that all of its products now fall equally often on each of the numbers. This new

die will be rolled 200 times to ensure it is cautious, a family role. The family noticed that

during the whole experiment, the numbers always followed the same pattern, which went

10

like this: five, six, one, two, etc. Despite the fact that the numbers were struck

consistently, the pattern remained the same. The roll of the die's randomness would be

called into doubt once again. In order for the die to be considered really random, it must

lack any discernible patterns when seen in the context of a series of dice rolls.

The roll of the dice cannot be considered completely random if it is possible to anticipate

what will happen next or anyplace else in the future. The outcomes of these dice

simulations may be used to develop a more precise definition of randomness. The

following is a simple and commonly recognized definition of a random number sequence:

a random number series contains numbers that are evenly dispersed throughout the whole

range of potential values, and each number in the sequence is independent of the numbers

that came before it (Marsaglia,2005). Any algorithm that generates random sequences in

the same manner as the one that was just described may be considered a TPG.

Regrettably, the passage of time has shown that the expectations for a TPG may shift

drastically depending on the setting in which it is used.

When a TPG is used in cryptography, it is very necessary that the previous sequences be

unable to be uncovered or duplicated. If this is not the case, then cybercriminals will be

able to breach security measures (Kenny, 2005). In simulations, on the other hand, using

a generator has the opposite effect. Given the circumstances, it is not only acceptable but

also desirable to get the same random sequence on several occasions. The ability to

conduct tests based on variations in individual values is made possible as a result of this.

A new and significant demand that is characteristic of simulations, in particular Monte

Carlo simulations, is that large quantities of random numbers need to be created as

rapidly as possible since these numbers are used up so quickly (Chan, 2009). For the

purpose of determining whether or not a soldier in a war simulator is successful in hitting

his target, for instance, a whole new random number may be required each time the

soldier shoots his weapon. It is not a simple task to devise a random number generator

that can keep up with a conflict that involves hundreds or thousands of warriors.

Numerous computer games, along with statistical sampling, make frequent use of random

number generators. In the last two categories, the only condition for the random numbers

is that they behave in a random manner. Other than that, there are very little restrictions

11

placed on them. It is possible that, within each of these settings, additional needs on top

of those mentioned below might be present, depending on the application in question.

There is a broad concept that can be used to describe a TPG; however, this definition has

to be adapted for every circumstance in which a generator is used. Different kinds of

TPGs Now that we have a definition of randomness, we can turn our attention to TPGs

themselves and the way in which they are put together. The output of a TPG is often

presented in binary format if the TPG itself is the topic of discussion. There are

generators out there that create outputs that are not binary, but everything that is

generated can be turned into binary after the fact. TPGs may be divided into two primary

categories. The first sort of sequencer makes an effort to recreate random occurrences in

the actual world when it generates its patterns. Because it is difficult for anybody to

correctly guess the next number in the series under normal conditions, it is known as a

Turing-complete generator (TPG). The second school of thought maintains that the

criteria for randomness may be adequately satisfied by using algorithms that produce

unexpected results (presuming that no one is aware of the beginning circumstances). The

generators that are created via the use of algorithmic approaches are referred to as

pseudo-random generators. This is due to the fact that in actuality, each value is chosen

based off of the state of the system, and is not really random. In order to acquire an

awareness of how these generators operate, particular instances hailing from either of the

two groups will be investigated.

Instead of creating their own entropy sources, a TPG makes use of those that already

exist in the world. Entropy is a measure of the degree of unpredictability associated with

a result. Encounters in the real world, such as flipping a coin, have a high degree of

entropy since it is difficult, if not impossible, to properly forecast what the outcome will

be. The unexpected behavior of a TPG may be traced back to the entropy source. Entropy

may be created for a generator in a variety of different ways, such as by rolling dice or

flipping coins; but, the pace at which random numbers could be generated using these

methods would be limited. The majority of TPGs suffer from the issue of having a low

production rate (Foley, 2001). The fact that these generators need some kind of gear is

still another significant drawback associated with using them. Because they employ

actual occurrences in the real world, they require a physical apparatus that is capable of

12

capturing the event. This may make the implementation of real random generators quite a

bit more costly, particularly in the case when the requisite equipment is not widely used.

This also implies that the generators are susceptible to physical assaults, which may cause

the number sequences to be biased. Last but not least, even when there are no adversaries

around, physical devices are often susceptible to wear and tear over time as well as

mistakes in their design, both of which might inherently bias the sequences that are

generated (Sunar, Martin, & Stinson, 2006).

The majority of TPGs are equipped with some kind of post-processing algorithm that can

adjust for bias in order to eliminate it. In spite of these drawbacks, there are a great many

situations in which the importance of having number sequences that are neither

manufactured intentionally nor repeatable is high enough to warrant putting up with the

problems. When it comes to security, having the knowledge that no mathematician can

crack a code that does not even exist might provide a sense of relief to those who work in

the field. There are four primary types of real random generators that will be discussed in

the following sections: random.org, hot bits, lasers, and oscillators. Random.org.

Random.org, a website that sees a lot of traffic, is the home of a popular TPG. The

random sequences that Random.org creates are made available for free distribution,

which has resulted in a diverse user base (Haahr, 2011). These numbers have been put to

use in a wide variety of contexts, from an online backgammon server to a business that

utilizes them for random drug testing (Kenny, 2005). Because the numbers are retrieved

through the internet, it would be imprudent to utilize them for reasons of security or in

circumstances when the sequence must remain completely confidential. There is never a

moment when the broadcast won't be subject to the possibility of being hacked. The

entropy that the TPG gets from this location comes from the background noise in the

atmosphere.

Radio equipment are able to pick up on the background noise and transmit it to a

postprocessor, which then transforms it into a stream of binary ones and zeroes.

Researchers have shown that the principles that regulate atmospheric noise are really

predictable, which means that the sequences created by this generator are not entirely

arbitrary (Random.org, 2012). It is the belief of those who support this argument that

only quantum phenomena may be said to be inherently nondeterministic. Random.org has

13

provided a rebuttal to this argument by pointing out that the number of variables that

would be required to predict the values of atmospheric noise are impossible for humans

to obtain. This assertion was made in response to the claim that it is impossible for

humans to obtain these variables. To precisely predict the next quantity that will be

created, it will be necessary to carefully record every broadcasting device and

atmospheric change in the region, maybe even down to the level of individual molecules.

It has been verified by a number of independent auditors that the number sequences on

this website are capable of passing the industry-standard test suites. As a result, the site is

now available as a cost-free and practical alternative for consumers of random numbers.

Hot Bits. Hot Bits is the name of the other well-known and widely used free TPG that is

based on the Internet. The random number sequences on this website are generated using

radioactive decay as the underlying principle. Since this is a process that occurs on the

quantum level, the question of whether or not the number sequences are genuinely non-

deterministic can no longer be asked. On the other hand, because of the technique that is

required to harvest this phenomena, Hot Bits can only produce numbers at a pace of 800

bits (100 bytes) per second (Hot Bits, 2012). In spite of the fact that the Hot Bits server

maintains a backlog of random numbers, the pace at which random sequences may be

derived from it is still restricted in contrast to that of other available choices. Because the

random numbers generated by this generator are also transmitted via the internet, much as

the random numbers generated by Random.org, there is always the chance that an

unauthorized third party is aware of the sequence. Because of this, it is not suited for

applications that are focused on security, although Hot bits may be beneficial when it is

vital to have data that is indisputably random. Lasers. TPGs that solve the challenge of

sluggish manufacturing are made possible with the use of lasers. Entropy may be

produced in laser-based generators via a variety of various channels and methods. Having

two photons compete to reach the same location is one way to.

1.4 OBJECTIVE

The purpose of this study is to develop, analyze, and implement a simple, improved, low-

overhead, and configurable TPG for the BIST platform. This aim will be accomplished

during the course of this research work. The following is a list of our most significant

contributions:

14

1) We study the restrictions that are placed on the FSTR–TPG when it is applied to a

BIST design platform. We propose an upgraded FSTR–TPG architecture that is suited for

applications that are based on BIST in order to address the deficiencies. Tunability has

not before been reported to have been included into a completely digital TPG, and to the

best of our knowledge, this study is the first to do so.

2) We do a mathematical and experimental analysis on the revised design of the

suggested architecture.

3) The findings of our experimental work provide substantial credence to the

mathematical model that was suggested. The proposed TPG has a minimal hardware

overhead, and the random bitstreams that are created from the proposed TPG pass all of

the tests that are included in the NIST statistical test suite.

15

CHAPTER 2

LITERATURE REVIEW

According to the comprehensive analysis of previous work in the same field and the

published literature, it has been determined that a number of different researchers have

developed methods for the production of random numbers. Researchers have engaged in

a variety of approaches, procedures, or phenomena with respect to the creation and

analysis of RNG content, and they have sought to discover the unknown parameters. A

trump card generator (TPG) is a kind of method that is used to generate a series of

numbers that has qualities that are similar to those of random numbers. These sequences

are not generated in a completely random fashion. Pseudorandom numbers are important

in practice for simulations (for example, of physical systems using the Monte Carlo

method), and they are important in the practice of cryptography. Although sequences that

are closer to truly random can be generated using hardware TPGs, pseudorandom

numbers are important in practice for simulations. An automated technique for

developing hardware-based TPG designs for arbitrary distributions with the inverse

cumulative distribution function was reported by Ray C. C. Cheung, Dong-U Lee, and

John D. Villasenor [1]. (ICDF). The ICDF is evaluated using a piecewise polynomial

approximation in conjunction with a hierarchical segmentation scheme. This scheme

includes segments with sizes that vary by powers of two and segments that are uniform in

size. Both of these types of segments are able to adapt to nonlinearities in the local

function. At order to ensure precision down to one unit in the very last spot, analytical

error analysis is used (ulp). It is possible to build random number generators that are both

space-efficient and capable of reaching arbitrary multiples of the standard deviation. For

example, a Gaussian RNG constructed using our method and implemented on a Xilinx

Virtex-4 XC4VLX100-12 field programmable gate array generates 16-bit random

samples with a maximum value of 8.2 delta. It uses up a total of 487 slices, as well as two

block RAMs and two DSP blocks. The design is able to function at a frequency of 371

MHz and produces one sample for each tick of the clock. If the ICDFs are known, the

designs are able to produce random numbers from any arbitrary distribution, but only if

16

the distributions themselves are known. GU The paper "Uniform TPG Using Leap-Ahead

LFSR Architecture" was presented by Xiao-chen and ZHANG Min-xuan [2.] Introducing

a new sort of URNG that uses Leap-Ahead LFSR Architecture. This kind of URNG is

capable of generating an mbits random number each cycle while just employing a single

LFSR.

one characteristic feature filter coefficients would just be capable of delivering even one

pseudorandom number one per rotation. some one multi-lfsrs layout seems to be

conducted to generate of one urng although it is important to utilize numerous pieces so

that you can randomly select total count there in most of after all implementations. this

means that even a 64 bit outcome urng requires a complete like 32 distinguishes route to

operate suitably. however the leap-ahead create could well bypass the said issue but

rather start creating it only arbitrary arithmetic of myriad portions ever other vicious

circle while just attempting to make do with a tune linear feedback shift register. or less

11 percent of such strips of bacon that are being used but by multi-lfsr architect are being

used time to say goodbye by a leap-ahead architectural style. a few of the motivations

with this is that the multi-lfsr create had also eighteen, whilst the leap-ahead architects

have only somebody filter coefficients there in urng physical components. that whole

prime reason for this would be but whenever it and switch does seem to be relaunched,

apiece login inside this urng even has itself and its ioctl surgery performed through it,

which is really a complex process.

the multi-lfsr job requirements as much strips of bacon for such businesses that engage

play a role than leap-ahead layout can because it has 16 years of age through it fifteen

control register, while leap-ahead architectural style had only 2008 counters. now since

implementation and execution it and leap-ahead linear feedback shift architectural style

and indeed the multi-lfsr architects of both of the gf(28 what kind and also the recursive

try typing to also vhdl quaternion three ist es, humans concluded that perhaps the leap-

ahead linear feedback shift architects absorbs sole 10% of such strips of bacon that such

multilfsr architectural style really does terms of generating digits of the same timespan.

the above decision was reached even if that whole leap-ahead filter coefficients design

insights even if only a this same leap-ahead filter coefficients configuration offers highly

awesome expanse time delivery or methods to address, as well as the morals of

17

two.eighteen such and such eight five slices-sec for each slightly but also eighteen.105

squared $ operations per second, in both, when put next here to effectiveness of these

other urngs. utilizing finite element, stephen u r. kee, joaquin 37 °. client will be able, biff

s t. torres, or wright h. k. trowel [3] introduced the one new architecture and design

theory. its been realized and it deterministic (ca) were being capable of generating rising

pseudo-true-pair diesel generator (prngs), and that these ca-based activation functions are

so well suited to use with the field programmable tuples (bists). 2 different augmentations

were crafted toward the basic structure of both the suffi cient that allows you to enhance

the quality of random variables that seem to be created. to start, this is comprehended not

whether a super-rule should always be incorporated to every suffi cient mobile phone. it

and summaries of a configuration anyway shift register sign up (lfsrs) but instead state

machine (ca), followed by the discussion of comparable study that seem to have hired

interleaving but also possible such as producing random variables. ergo, evaluated a

efficiency yeah ca-based cryptographic primitives fitted to provision through bists. the

outcomes of both the polymerization executed on vhdl minimalist section iii zu sein

providing steady acknowledgement of the fact of both the friend resources needed one

per setup.

mixed signal rollout anyway erratic sort of semi tad power stations had been a

demonstration that it was awarded through it pawel dabal as well as ryszard pelka [4].

policy that protects vs unauthorised users out modern telecommunications network is a

network, especially on mobile processes, prescribes it and parenthood of much more

sophisticated methods of information storage and processing. from the said, a

manufacturing sure steps that also have relevant analysis comes equipped are among the

most key challenges going to face style cryptographic algorithms. cryptologists have

really been charging a kind increased number yeah attention in the field of between

modern computers that seem to be entirely predicated forward game theory. it and

exchange of information by use of turbulent impulses. from such a purely pragmatic point

of view, a idea of someone using a variational disorganised system dynamic there in

building projects of such a encryption keys protected pseudorandom as well as small

piece power station (prng as well as prbg) does seem to be attractive. cruz andres gayoso,

3 °. hernández, s t. friends, t s. rabini, joão castiñeira sattar, [5] provided ―tpg entirely

18

predicated here on residual oil decimal numbers as well as its mixed signal deployment,

designers had been willing to formulate an especially quick cycle such a performs in such

a fundamentally different way compared to earlier turbines. this had been made feasible

by a particulate counting system (rns) as well as its zu sein rollout.

the reliability of a random elements of something like the tried to suggest limited does

seem to be assessed but use a power supply after all conventional assessments, including

all the die - hard quiz, this same data point nuance assess, and indeed the collins octet

check. those same includes testing will be used to provides one quantify of something

like the random elements of something like the suggested limited. a keynote captioned

"that whole lut-sr kinship after all homogeneous peg such as ist es architectures" had

been specified besides harrison f r. william but instead danny kees [6]. the one version of

ist es ray tracing called some one lut-sr predictive control, the said device helps to make

utilisation binary arithmetic opcode procedures and indeed the processing capabilities

anyway beginning to turn general search columns (luts) in to other transition records of

various duration. the above gives a useful resource–quality harmony comparison to prior

bist-optimized generating units, in between earlier high-resource high-period lut-fifo

sound but rather lowresource limited lutopt musical, of performance corresponding to

that of right software generators.

It does this by bridging the gap between lowresource low-quality LUTOPT RNGs and

highresource high-period LUT-FIFO RNGs. The LUT-SR generators can also be

expressed using a simple C++ algorithm that is included in this paper. This allows for the

incorporation of sixty fully specified LUT-SR RNGs with varying characteristics within

this paper. Additionally, this paper is supported by an online set of very high-speed

integrated circuit hardware description language (VHDL) generators and test benches.

Ravi Saini, Sanjay Singh, Anil K Saini, A S Mandal, Chandra Shekhar [7] presented

Development of a Hardware That Is Both Quick and Efficient to Use Implementation of a

TPG in BIST demonstrates a quick and effective hardware implementation of a pseudo-

TPG based on the Lehmer linear congruential approach. This implementation is presented

as part of BIST. In this work, it is shown how the incorporation of application

specialization into the architectural design may result in enormous performance gains in

terms of both space and speed. The design has been detailed in VHDL, and it was built

19

using the Xilinx BIST device XC5VFX130T-3ff1738. Additionally, the design only uses

23 slice LUTS. In 2014, Purushottam Y. Chawle and R.V. Kshirsagar [8] proposed a

straightforward approach that uses Linear Feedback Shift register to create a pseudo-

random number (LFSR). The created pseudo sequence is mostly put to use for

communication processes like cryptography encoding and decoding, as well as encoder

and decoder application work in coded formats. The exclusive-or function describes the

linear action of a single bit in LFSR operation (X-OR). For the purpose of researching

their performance and unpredictability, an 8-bit and 16-bit LFSR were both created using

the verilog HDL programming language. The LFSR is a kind of shift register with a

random output that is determined by the feedback polynomial.

2.1 SINGLE PHASE FSTR-TPG MODEL

Fig. 2.1: Architecture of single-phase FSTR–TPG [3].

The FSTR-TPG circuit [3] is a completely digital TPG that was first built as a 65-nm

CMOS ASIC. It operates by relying on the FSTR method to remove jitter from the data

stream. The following is a synopsis of the construction and operation of the (single

phase) FSTR-TPG, which should be read in connection with Fig. 2.1:

1) The circuit is made up of two almost identical ring oscillators, which we'll refer to as

ROSCA and ROSCB, and each of them have a similar structure and arrangement. One of

the oscillators (let's say ROSCA) oscillates significantly quicker than the other oscillator

as a result of the intrinsic physical randomness that is caused by the process variation

effects that are connected with deep sub-micron CMOS manufacture (ROSCB). In

addition, the authors [3] suggested use trimming capacitors as a means of further fine-

tuning the oscillator output frequencies.

20

2) A D flip-flop is used to sample the output of the other RO by utilizing the output of

one of the ROs as a reference (DFF). Let's suppose, without introducing any unnecessary

specifics, that the output of ROSCA is linked to the D-input of the DFF, while the output

of ROSCB is connected to the clock input of the DFF.

3) At certain time intervals, which are dictated by the frequency difference between the

two ROCs, the signal from the faster oscillator passes, catches up to, and then overtakes

the signal from the slower oscillator in phase. These capture occurrences, which are

referred to as "Beat Frequency Intervals," take place at random intervals because random

jitter causes them. As a consequence of this, the output of the DFF will be a logic-1 at

various and unpredictable times.

4) An increment is added to the value of a counter that is controlled by the DFF. This

counter's value is then reset once the DFF's logic-1 output is activated. The free running

counter output, which is subject to random jitter, will ramp up to a different peak value in

each of the count-up periods before it is reset.

5) Before the counter's output reaches its maximum value, it is read by a sampling clock

in order to collect data.

6) After the sampled answer has been serialized, the random bitstream will have been

created.

2.2 One of the Limitations of the FSTR-TPG

The prior FSTR-TPG circuit has a number of flaws, one of which is that the statistical

unpredictability of the circuit is reliant on the design quality of the ring oscillators. Any

kind of design bias in the ring oscillators might potentially have a negative impact on the

statistical unpredictability of the bitstream that is produced by the TPG. Designs that have

the same amount of Figure 2.1 illustrates the architecture of a single phase FSTR–TPG

[3]. inverters, but varied positions led to different counter maxima being produced. In

addition, the identical ring-oscillator-based FSTRTPG that is implemented on various

BISTs that are part of the same family has multiple counter maxima. The ring oscillators

are free-running, which means that it is impossible to exert any kind of control over them

in order to remove any design bias. The issue is made more worse in BISTs, where it is

often challenging to manage design bias due to the absence of fine-grained designer

control over routing in the BIST design fabric. This makes the problem much more

21

difficult to solve. Enabling dynamic reconfiguration on Xilinx BISTs through the use of

the Dynamic Reconfiguration Ports is a method that makes tuning clock generator

hardware primitives on Xilinx BISTs relatively simple. This is true in particular for the

Phase Locked Loop (PLL) or the Digital Clock Manager (DCM), both of which were

utilized in this work (DRPs). After they have been activated, the clock generators may be

tweaked to produce clock signals with a variety of frequencies by altering values at the

DRPs [1] on the fly. This can be done without having to take the device offline

beforehand. A field-programmable gate array, also known as a BIST, is a kind of

integrated circuit that is designed to allow for post-production customization by the end

user, thus the term "field-programmable."

In most cases, the BIST configuration is established by using a hardware description

language (HDL), which is comparable to the language that is used for an application-

specific integrated circuit (ASIC) (circuit diagrams were previously used to specify the

configuration, as they were for ASICs, but this is increasingly rare). BISTs may be used

to accomplish any logical function that is capable of being carried out by an ASIC. The

flexibility to upgrade the functionality after it has been shipped, the partial re-

configuration of the component of the design, and the inexpensive one-time engineering

expenses in comparison to an ASIC design are all benefits that may be used in many

different kinds of applications. BISTs are built with programmable logic components that

are referred to as "logic blocks," and they also have a hierarchy of reconfigurable

interconnects that enables the blocks to be "connected together" in a manner that is

comparable to that of a programmable breadboard that is contained on a single chip.

Simple logic operations like AND and NAND may be performed by logic blocks, or they

can be designed to carry out more complicated combinational tasks. Memory components

are often included inside the logic blocks of BISTs. These memory elements may be as

basic as flip-flops or as complex as whole blocks of memory.

Figure 2.2: 8-bit LFSR

22

Feedback is sent to the register by the XOR gate, which then moves bits from the left to

the right. The maximum sequence includes all potential states other than the one

represented by the notation "00000000." A shift register in computing is referred to as a

linear-feedback shift register (LFSR) if the input bit of the register is a linear function of

the state it was in before. The exclusive-or function is the single-bit linear operation that

is utilized most often (XOR). Therefore, a low-frequency shift register, or LFSR, is most

often a shift register with its input bit driven by the XOR of certain bits of the value

stored in the shift register as a whole.

Several researchers use various entropy sources to generate true random numbers. For

example, RAND Corporation [16] generate numbers using a random pulse generator. In

[17] authors used the image data from a camera which is pointed at a couple of ring

oscillators is used as excellent entropy source to generate true random numbers. TRN-

TPG uses radioactive decay as the entropy source to generate random number sequences.

In a simple case, a variable environment of a fish tank is used as an entropy source of

randomness. Up To date only few organizations offer true random numbers commercially

using these kinds of techniques. In [18] authors used a method of generating random

numbers using Celestial oscillator sources and the generated sequence is tested with

NIST Statistical Test Suite for random data. They found that the resulting data sets pass

all tests in the NIST with a mean of 98.9% of the 512 total bit streams as well as further

testing in R. In [19] authors performed Entropy estimation is a vital part in building a

TRN-TPG because being able to give an accurate estimation of the amount of entropy

contained in the entropy pool is required to reach a certain level of security. If the

accuracy of the entropy estimation of a TRN-TPG is high, it can give better security

guarantees about the unpredictability of its entropy pool. This makes it less likely for an

attacker to compromise the randomness of the TRN-TPG system.

In [20] authors proved that the complexity of estimating the min-entropy of a distribution

is SBP-complete, which stands for “small bounded-error probability” which is a custom

class of complexity that is believed to be equal to NP-complete complexity. So, the

problem of proving an entropy pool to be truly random is computationally hard, so

instead estimation has to be made using indirect measures. In [21] authors stated a

problem by the TRNG is an interesting issue, but it assumes a theoretical scenario that

23

might not be realistic in a practical usage scenario. Especially for the usage scenario of

this thesis (i.e., IC devices) the scenario described will be unlikely to cause serious

problems. In [22] authors stated that, solutions should be found to provide additional

entropy on the IC devices so that the internal state is much less likely to be compromised

because of low-entropy events in the first place. The PRNG should continuously provide

the user with strong random seeds for use in cryptographic protocols on the device, while

still remaining as efficient as possible using the limited resources that are offered by the

device. In [23] authors proposed, the PSPG generates an entropy pool from a number of

sources on the hardware level such as inter-keyboard timings and inter-interrupt timings.

These sources of entropy are assumed to be non-deterministic and hard for an outside

observer to measure. In [24] authors proposed, the Linux kernel also provides a second

PUF-TRNG. It is identical to LFSR in its functionality, the only difference is that LFSR

is non-blocking and has no limit to the number of requests for bytes of randomness it can

take. In [25] authors proposed, the RO-TRNG is widely used by most applications and

generally considered secure. However, LFSR has been criticized by a number of papers

which claim that it has vulnerabilities. Even the source code of LFSR states a weakness

with regards to predictability on system start-up.

24

Chapter 3

RNG Basics

3.1. INTRODUCTION

The generation of secret keys in symmetric key cryptography systems, as well as the

generation of private and public keys in public key cryptography systems, as well as

digital signatures and authentication protocols, require the use of random numbers. These

random numbers are used for a variety of purposes in information security systems. The

term "true random number generators" (TRNGs) and "pseudo-random number

generators" (PRNGs) are used interchangeably when referring to random number

generators (TPGs). PRNGs have a high throughput, but since they are based on

deterministic algorithms, they do not fit the criteria for random numbers in terms of their

unpredictability. TPGs create random numbers by drawing on the unpredictability

provided by physical noise sources such radiation, thermal noise, jitter, and ring

oscillators. In most cases, a TPG will be made up of the following three blocks: an

entropy source, an entropy extraction circuit, and a post processing circuit. The

unpredictability that occurs in physical processes is the entropy source, and it is

responsible for producing new entropy. Several methods, such as ring oscillators, phase-

locked loops (PLL), cellular automata, and crosstalk, may be used as entropy sources,

and each of these methods has been described. It is important for the entropy extraction

circuit to be constructed such that it can acquire the maximum amount of entropy feasible

from the entropy source. Post-processing circuits are used for a variety of purposes,

including concealing faults in entropy sources and entropy extraction circuits, providing

tolerances in the presence of environmental changes and modulation, and more. The Von

Neumann correction, the linear feedback shift register (LFSR), and the XOR reduction

are all examples of postprocessing circuits [1].

25

Figure 3.1. General structure of self-timed ring

3.2. SELF-TIMED RING

A. Ring construction with built-in timing

The fundamental architecture of a self-timed ring (STR) is shown in Figure 3.1. This

architecture is based on a micro-pipeline and a two-phase handshake protocol [2. In a

STR, the Muller gate and inverter make up the ring stage. If all of the inputs have the

same value, then the output will be the same as it was before. When the values of the two

inputs, and, are not the same, the value of input is sent to the output, and the value of

input is imported into the output, Input is the output of the ring stage that came before it,

and input is the output of the ring stage that comes after it. The output of the current ring

stage is created by combining the outputs of the stage before it and the stage after it in the

ring.

B. Token and Bubble [3]

Information that reveals the association between the current ring stage and the next ring

stage is referred to as tokens and bubbles in this context. According to equation (1), a

token is present in the currently active ring stage if the output of the currently active ring

stage and the output of the next active ring stage are different from one another. If the

two outputs and have the same value as in equation (2), then the currently-processing ring

stage has a bubble. In addition, tokens and bubbles have an effect on the conditions that

determine how the STR oscillates, namely the following requirements:

26

Figure 3.2. (a) A state transition graph of a three-stage ring containing two tokens (b)

Schematic representation of a three-stage ring with two tokens

The correlation between tokens and bubbles is what determines the route that data takes

when it is sent from one node to another. If the next ring stage includes a bubble and the

previous ring stage included a token, then "becomes" and the token and the bubble are

traded with each other. The data transmission route of a three-stage STR with two tokens

is shown in Figure 3.2-a below. The fluctuating behavior of the output of each step is

seen in Figure 3.2-b. The oscillation mode of the self-timed ring is indicated by the letter

C. The Charlie effect may be shown to have a role in both the burst mode and the evenly-

space mode that are used by the STR in its oscillation modes. Figure 3.3 illustrates how

the STR behaves in each mode by depicting its behavior in that mode. The Charlie effect

is a phenomenon that describes a situation in which the amount of time that elapses

between two inputs has an influence on the delay that the Muller gate produces. The time

difference between the two locations will determine the length of the propagation delay.

When the two inputs are inputted at a short time interval, the delay on the ring stage

pushes the outputs of the ring stage out of each other, which causes the STR to work in

an evenly-space mode. This occurs because the outputs of the ring stage are spaced

equally apart. The design parameters determine the oscillation mode and operating point

of the STR. The criteria for operating in evenly space mode are indicated in equation (3),

where he denotes static forward delay and static reverse delay, respectively.

Figure 3.3. Evenly-spaced and burst propagation modes in self-time

27

Figure 3.4. Architecture of the FSTR-TPG

3.3. TPG BASED ON STR WITH FEEDBACK STRUCTURE

The construction of the TPG that is based on STR and incorporates feedback is shown in

figure 3.4, and it is as follows: A micro-pipeline structure was included into the

architecture of the STR that was employed as an entropy source. A look-up table, often

known as a LUT, was used in place of a logic gate in the implementation of each 4-input

ring stage. The entropy extraction circuit may have a significant impact on both the

number of ring stages and the / ratio. Both of these factors are governed by the device

environment. With reference to [4,] we were able to calculate the values for our design

parameters like the / ratio and the oscillation mode. As can be seen in Figure 3.5, the

entropy extraction circuit is made up of a serial-input parallel-output (SIPO) shift

register, multiplexers, D-type flip-flops, and XOR gates. The flip-flops of the D-type are

responsible for sampling the outputs of the ring stages. At the jitter boundary of the STR

output transition is where the sampling is carried out. In order to set the output of the

multiplexers to the starting values of the ring stages, the initial value of the SIPO shift

register is determined to be 2 minus 1, and this value will be used. The output of the

FSTR-TPG is connected to the input of the SIPO shift register once the process is

completed. If this number contains some element of randomness, then the values of the

final output throughout each cycle of the -clock will be random. The enable signals for

the multiplexers are taken from the shift register outputs produced by the SIPO shift

register. They are XORed with the output of the ring stage before being used as inputs to

the multiplexer. The final output value is produced by using the outputs of the

multiplexers as inputs to the XOR gate, which in turn produces the final output value. It

28

was decided that the FSTR-TPG would have a number of ring stages that was a multiple

of eleven, and the device was programmed to function in an evenly-spaced fashion.

Figure 3.5. Proposed entropy extractor with feedback structure

29

CHAPTER 4

EXISTING SYSTEM

4.1 INTRODUCTION

During the period of the technological revolution, very large-scale integration (VLSI)

played an essential role. On the one hand, as the complexity of designs and the prices of

chip designs continue to rise, the majority of design businesses will encourage third

parties to engage in the manufacturing process in order to lower the costs of assembly [5].

For these complicated devices to be assembled, more advanced manufacturing

technology is required. The significant cost of establishing and maintaining such a

fabrication facility (the cost of claiming a foundry is around $5 billion) is the primary

barrier that prevents smaller design firms from having their own own foundry on the

premises. Whatever the case may be, globalization in the Integrated Circuit industry has

pushed IC designers to re-appropriate the construction of their designs to seaward

foundries [1]. This is because globalization has made it easier for IC designers to work

with overseas foundries. This pattern does a good job of cutting costs, but at the same

time, it has provided a backdoor for a number of vulnerabilities in terms of safety, such as

theft of intellectual property (IP), reverse engineering, counterfeiting, the introduction of

Trojans, and overbuilding. The intellectual property of a plan was revealed as a result of

the outside foundry workers having access to the design file [2]. A dishonest customer

working at the foundry may potentially reverse-engineer the design and take full credit

for the intellectual property. One such strategy that may be used to take control of a

design is to produce an excessive number of integrated circuits and then sell the surplus.

These kinds of design thefts result in a yearly loss of several billion dollars in revenue for

the semiconductor industry. Design-for-Security, often known as DFS, is now an integral

component of integrated circuit design [7] in order to protect against the many threats to

data security. The use of logic encryption as a preventative measure against intellectual

property theft and illegal overproduction by foundries is becoming more common. A

designer may insert several repeating key-gates into a circuit to mask the functionality of

the circuit from an outside foundry by using logic encryption [13]. [Circuit] is short for

"integrated circuit." The correct application of an encrypted integrated circuit is

30

dependent on the application of the correct keys to the key gates. The application of the

mysterious keys causes the created IC to take effect. These mysterious keys are stored

away in a memory that was painstakingly created inside of the chip [16]. 8 An

unauthorized customer is prevented from figuring out the design document and claiming

ownership for the design when the appropriate keys are not easily accessible. Illicitly

overproduced integrated circuits (ICs) cannot be sold on the market because, unless they

are activated with the appropriate keys, they do not demonstrate the capability for which

they were designed [3]. The purpose of this project is to modify the functioning of ICs

such that they will not provide output that is not intended unless they are first triggered in

the proper manner using the relevant keys. In addition, there must be some difficulty

involved for an unauthorized user in regaining access to the key. In order to protect

against the dangers that are present, efforts were made to strengthen the security of the

hardware. 1. Combinational logic obfuscation: hides the functionality by adding extra

gates (xor, xnor) to the original design and referring to these newly added gates as key

gates [9]. 2. IC camouflaging is a layout method that disturbs attackers from reverse

engineering by inserting fake contacts or look-alike structure cells used to create logic

gates [14]. This is accomplished by introducing a technique known as "IC camouflaging."

4.2. PROPOSED IMPLEMENTATION FLOW

The implementation cycle described above offers a comprehensive picture of the job,

which includes the development of TPGs and their modification in accordance with the

level of security that must be maintained. To begin, DUS, which stands for "design under

security," must be created in order to ensure security. The DUS is putting pattern

generators that are counters and linear feedback shift registers (LFSR) of different bit

counts through their paces in the course of this study. When it comes to built-in self-test

(BIST) circuits, protecting the TPGs is often essential in order to prevent them against

scan-based assaults. Attacks against TPGs that exploit their susceptibility to observability

and controllability may be carried out utilizing scan chains. Consequently, the provision

of security to TPGs plays an important part in the process of developing the chips. The

development of TPGs constitutes the first stage of the work's implementation process

flow. Verilog is used as the HDL language to describe the design of the circuit used in

model-based simulation. Following the completion of the design, they are simulated and

31

have their functioning checked using a variety of inputs. When it comes to securing these

TPGs, these designs have been modified in such a way that the circuit only generates the

test patterns when a precise key is provided, which is 001 in this work; otherwise, it

remains in the preset state, which is an all 1's state in the case of LFSR and a reset state,

which is an all 0's state if it is a counter. If the wrong key is provided, the circuit does not

generate the test patterns. But why are they limited to only these two states? Because of

this, the process of securing TPGs is distinct from the process of securing the general

circuit. If DUS provides random outputs when the erroneous key is provided, then those

outputs may also be used as test patterns to test a specific circuit, which will result in the

circuit being susceptible to observability and controllability attacks. The output is thus

restricted to the reset and preset stages so that the production of random test patterns may

be stopped when the incorrect key is input. The key generation circuit, also known as the

3-bit counter, is responsible for producing a variety of keys at certain intervals of time

(ns). TPGs are responsible for producing the necessary test patterns for the testing circuit

whenever the 001 state is produced by the key generation circuit. All of the other states of

the key generator output of DUS are still in either their reset or preset stages. This

previously described procedure is carried out in the model.

32

Fig. 4.1. Implementation Flow

After adding security to the design, the design itself has to be able to be synthesized. This

is necessary in order for the added security to be power-optimized, meet scheduling

restrictions, and not add any additional area overhead. The following describes the

procedure of examining the given security: First and foremost, the Vivado program calls

for the inclusion of design information in the form of v files. This is then followed by

RTL analysis, synthesis, and implementation. After the design entry has been simulated

and confirmed, the RTL (Register Transfer Level) analysis creates a high-level

representation of the design by providing schematics of the entry design. These

schematics consist of a flow of data between various logic components and its

33

interconnects. Run synthesis of the validated design generates a usage report. This report

details the percentage of the possible number of LUTs (Look Up Tables), FF (Flip Flops),

and IO (Inputs Outputs) that have been used. The conclusion of synthesis is whether an

excessive amount of logical components were utilised or not. Its primary function is the

optimization of logical processes. The Run Implementation stage is the last step in the

security analysis process. This stage provides power reports and temporal limitations

such as WHS (Worst Hold Slack) and WNS (Worst Negative Slack). This stage in

Vivado provides a conclusion about the utilization of power, specifically regarding static

power and dynamic power, as well as a conclusion regarding time restrictions, which in

turn provides a conclusion regarding delay in the circuit.

34

CHAPTER 5

PROPOSED SYSTEM

5.1. Introduction

In our modern era almost, every digital equipment owns a BIST and for most people this

piece of technology has become an essential part of their life. According to an estimation

[1] there are currently around 1.9 billion BIST users around the world, which is over 25%

of the world’s population. This number is expected to keep increasing rapidly in the

coming years. For a device with so many users worldwide it is important that it is

properly secured [2]. Many BIST users will keep personal data on their memories, so a

security leak across a large platform like IC would have a heavy impact on society [3].

However, a BIST does bring possible security vulnerabilities. A malicious party could

intercept or alter BIST communication. This would have a serious impact on the security

and privacy of the BIST user. For example, a malicious party could listen in on the

communication between a BIST user and the bank. This would cause secure bank

information to be compromised [4]. The hackers are actively targeting financial BIST

modules and significant number of financial modules have been hacked and malicious

versions of the modules have been uploaded [5]. Unsuspecting users who use these

malicious apps risk their confidential credentials being captured, or their BISTs being

exposed to adware.

In order to prevent these scenarios, we need to create a simple way for an IC device to

encrypt data and engage in secure encrypted communication [6]. This would be a

relatively simple system to build on a larger desktop system because it has practically

unlimited resources to work with in terms of computational power and data storage space.

However, for a similar system to work on an IC device it will need to take into account

the limited number of resources the device has in terms of battery, computational power

and data storage space compared to a desktop system [7]. If the encryption process takes

up too much resources, it will interfere with the device user’s normal TRN-TPG

activities. A crucial step for encrypted communication to take place is the generation of a

strong random seed as input for the encryption scheme. Ideally the generation of this

random seed would take place on the device using a limited number of computations,

battery power and storage space [8]. Thus, TRN-TPG present a strong lightweight

35

randomness generator prototype in the IC user space. On boot-up of the IC-TRN-TPG the

prototype generates an entropy pool from noise in the TRN-TPG data. Once the prototype

has generated a sufficiently strong entropy pool, other processes on the TRN-TPG are

able to request the prototype for any size of random output. Before presenting the

prototype [9], TRN-TPG analyze the sensor data and estimate the required time to run the

data generation process on device boot-up before the entropy pool can be considered

sufficiently strong. For this purpose, TRN-TPGs [10] have built an oscillator module,

which generates a large amount of data from different device sensors. The goal of the

randomness generation prototype is to provide a source of strong randomness which can

be used in addition to randomness from existing sources like LFSR. This combination

will create a stronger and more secure random seed for encryption processes on the

device. The broad objective of the present study is to examine the degree and quality of

randomness of various generators [15]. In tune with this, the following four specific

objectives have been framed for the study.

 Implementation of TRN-TPG with for generating the unpredictable

random numbers.

 Design of DCMs to achieve the tuneability of phase, frequency of random

numbers.

 The beat frequency detection operation is achieved by D-FFs, post

processing units, and counters.

5.2. PROPOSED METHOD

This section gives the detailed analysis of proposed DCM-TRN-TPG implementation.

The detailed designs are shown in Figure 5.1. Here, the ring oscillators in the

conventional methods were replaced by DCM, which implements the tuneability of

phase, frequency of random numbers. Further, the beat frequency detection operation is

achieved by D-FFs, post processing units, and counters.

36

Figure 5.1: Proposed DCM-TRN-TPG block diagram

The DCM-TRN-TPG method's detailed process is as follows:

Step 1: Initially, address generation module generates the different address based on user

requirements. The addresses are changed based on application introduced in BIST

environment.

Step 2: The block random access memory (BRAM) stores the data in parallel manner,

which gives lower synchronization problems as compared to SRAM.

Step 3: DCM-DRP controller: Here, the dynamic reconfigurable controller is

introduced for controlling the frequencies of DCM modules. The DCM-DRP controllers

functions using first in first out (FIFO) operation.

37

Figure 5.2. operation diagram of FCM-DRP controller.

An array of memory called a FIFO or Queue is often used in electronics to transport data

between two circuits with various clock rates. The dual port memory that FIFO employs

has two pointers that point to the read and write locations. Figure 5.2 is a generalized

block diagram of FIFO. Rotating pointers are often used to create FIFO modules. A

FIFO's write and read pointers might be referred to as the head and tail of the data region.

The FIFO's initial read and write pointers will both point to the same place. After writing

data to the "n"th position in a FIFO with n locations, the write pointer refers to the 0th

location. The write pointer and read pointer are located at the same positions in this 8-bit

FIFO, respectively. The diagram's shaded region is filled with information. Both

synchronous and asynchronous FIFOs are possible. The asynchronous FIFO has no

clock. Since some FIFOs have separate clocks for read and write, synchronous FIFO may

have 1 or 2 clocks. Because synchronous FIFOs provide better interface time,

asynchronous FIFOs are less often utilized nowadays. Empty or full flags are set if the

FIFO counter reaches zero or BUF LENGTH. If a write occurs and the buffer is not full,

the FIO counter is increased. If a read occurs and the buffer is not empty, the FIO counter

is decremented. If both reading and writing occur, the counter will not change. Read and

write pointers are rd ptr and wr ptr, respectively. The bits in these registers were chosen

to match the address width of the buffer, so when the buffer overflows, the values will

also overflow and become 0. Finally, DCM-DRP controller generates the control signals

such as DCM-A-DRP and DCM-B-DRP.

Step 3: DCM-A performs the frequency division by 2 of clock upon enable of DCM-A-

DRP.

38

Figure 5.3. DCM-A operation.

The frequency waveforms in Figure 5.3 demonstrate that when the output from Q is "fed

back" to the input terminal D, the output pulses at Q have a frequency that is precisely

one half (2) that of the input clock frequency. In other words, the circuit now divides the

input frequency by a factor of two, producing frequency division (an octave). As a result,

a "ripple counter" is created. In ripple counters, the clock pulse activates the first flip-

flop, whose output triggers the second flip-flop, which in turn triggers the third flip-flop,

and so on along the chain, creating a rippling effect that gives the timing signal its name.

Step 4: DCM-B performs the frequency division by 3 of clock upon enable of DCM-B-

DRP. Figure 5.4 illustrates the 1/3 frequency divider circuit, which consists of two JK

flip-flops, an OR gate, and a NOT gate. The previous output state of each flip-flop (QA

and QB, respectively) must be used to determine the input of the first JK flip-flop and the

inputs for the remaining flip-flops in the circuit. Each Flip-input Flop's should perform

the same function in order to maintain the cycle of its combinational output. Karnaugh

map is used to get the input equation for each JK Flip-Flop while designing a sequential

circuit. To simplify the design process, the J terminal and K terminal of a Flip-Flop might

be linked. The transition Table indicates that two Flip-Flops are required to get at the

final outcomes. For JK flip Flop inputs, the standard count sequence is J=0, K=0, J= 0,

39

K=1, J= 1, K=0. The rows of the columns Next JA, Next KA, Next JB, and Next KB are

filled by the 1/3 frequency divider circuit. When analyzing a frequency cycle of QA and

QB, QA's cycle is 0 1 0 0 1 0' and it includes the unit "X 0 0 X." As a result, the KA

terminal may be directly linked to the HIGH signal. In the same circumstance, the KB

terminal may be directly linked to signal logic "1" when the frequency cycle of QB does

not include "X 1 1 X".

Figure 5.4. DCM-B operation.

Step 5: DCM-A frequency is applied as data input to DFF and DCM-B frequency is

applied as clock input to DFF, which estimates the difference in frequencies. The DFF

output becomes high during high frequency change, and the DFF output becomes low

during low frequency change.

Step 6: DFF output is applied as reset input to counter. If the reset=1, then counter

initialized to zero, else reset=0, counter starts initializing the random sequences.

Step 7: Finally, post processing unit contains the zigzag random connections of XOR,

which generates the non-repeated random numbers.

.

40

Chapter 6

XILINX-ISE

Step 1: CLICK ON NEW PROJECT

Step 2: GIVE THE PROJECT NAME and SELECT

LOCATION (WRITABLE)

41

42

Step 3: CLICK ON NEXT and NEXT

43

Step 4: CLICK ON FINISH

44

Step 5: CLICK ON CHIP (XC…) then MOUSE RIGHT

CLICK then CLICK ON ADD SOURCE

Step 6: SELECT THE CODE LOCATION GIVEN BY

DEVELOPER AND ADD CODE

(Note ALL FILES) AND CLICK OPEN

45

Step 7: SELECT THE SIMULATION and select files to RUN

46

Step 8: SELECT ISIM SIMULATOR and SIMULATE

BEHAVIORAL MODEL

If no errors isim window will open

47

Step 9: ISIM WINDOW

 select zoom to full view

48

CHAPTER 7

SIMULATION RESULTS

Xilinx ISE software was used to create all of the DCM-TRN-TPG designs. This software

programmed gives two types of outputs: simulation and synthesis. The simulation results

provide a thorough examination of the DCM-TRN-TPG architecture in terms of input and

output byte level combinations. Decoding procedure approximated simply by applying

numerous combinations of inputs and monitoring various outputs through simulated

study of encoding correctness. The use of area in relation to the transistor count will be

accomplished as a result of the synthesis findings. In addition, a time summary will be

obtained with regard to various path delays, and a power summary will be prepared

utilizing the static and dynamic power consumption.

Figure 7.1. RTL schematic

49

Figure 7.2. Design summary.

Figure 7.2 shows the design (area) summary of proposed method. Here, the proposed

method utilizes the low area in terms of slice LUTs i.e., 16 out of available 17600.

Further, the proposed method utilizes the slice registers as 16, out of available 35200.

Further, the proposed method utilizes fully used LUT-FF as 16, out of available 16.

Figure 7.3. Time summary

Figure 7.3 shows the time summary of proposed method. Here, the proposed method

consumed total 0.316ns of time delay, which is entirely route delay.

Figure 7.4. Simulation outcome.

Figure 7.4 presents the simulation outcome of proposed system. Here, clock (clk), enable,

load, and seed are the input data pins. Further, out is the output pin. Initially, a logic high

enable causes the system will function and a logic high load resulted in loading of seed

value. So, 8 bit seed value (example 1010) is loaded into TRNG and resulted out as 1010.

Further, the random numbers are generated for each clock cycle.

50

Figure 7.5. Power summary.

Figure 7.5 shows the power consumption report of proposed DCM-TRN-TPG. Here, the

proposed DCM-TRN-TPG consumed power as 32.83 milli watts. Table 7.1 compares the

performance evaluation of various TRNG controllers. Here, the proposed DCM-TRN-

TPG resulted in superior (reduced) performance in terms of LUTs, slice registers, LUT-

FFs, time-delay, and power consumption as compared to conventional approaches such

as PRNG [22], PUF-TRNG [24], and RO-TRNG [25]. Further, the graphical

representation of performance comparison is presented in Figure 7.6.

Table 7.1. Performance evaluation.

Metric PRNG

[22]

PUF-TRNG

[24]

RO-TRNG

[25]

Proposed DCM-

TRN-TPG

Slice Registers 56 45 32 16

LUTs 67 55 42 16

LUT-FFs 74 52 39 16

Time delay (ns) 0.927 0.837 0.735 0.540

Power consumption

(mw)

82.61 73.41 58.26 32.83

51

Figure 7.6. Graphical representation of performance evaluation.

52

CONCLUSION

The introduction of TRN-TPG frameworks to address this issue is the main goal of this

effort. Furthermore, DCM, which enables the tuneability of phase and frequency of

random numbers, took the role of the ring oscillators in the traditional approaches.

Furthermore, D-FFs, post processing units, and counters are used to carry out the beat

frequency detecting operation. The simulations showed that the suggested technique

outperformed existing methods in terms of area, latency, and power. The work may be

expanded to build real-time safe protocols including public key cryptography, RSA,

ECC, and HECC cryptography methods using the DCM-TRN-TPG outputs as both

public and private keys.

53

FUTURE SCOPE

Within the context of this project, we are now working with the numeric OTP system that

consists of four digits. Therefore, in order to make the system more secure, we need to

create an OTP system that uses alphanumeric symbols as its foundation.

54

REFERENCES

[1]. Tseng, Po-Hao, et al. "ReRAM-Based Pseudo-True Random Number

Generator With High Throughput and Unpredictability Characteristics." IEEE

Transactions on Electron Devices 68.4 (2021): 1593-1597.

[2]. Talukdar, Jonti, et al. "A BIST-based Dynamic Obfuscation Scheme for

Resilience against Removal and Oracle-guided Attacks." 2021 IEEE International

Test Conference (ITC). IEEE, 2021.

[3]. Saha, R., Geetha, G., Kumar, G., Buchanan, W. J., & Kim, T. H. (2021).

A Secure Random Number Generator with Immunity and Propagation

Characteristics for Cryptography Functions. Applied Sciences, 11(17), 8073.

[4]. Singh, Vikram, and Kishor P. Sarawadekar. "FPGA Implementation of

Chaos based Pseudo Random Number Generator." 2021 IEEE 8th Uttar Pradesh

Section International Conference on Electrical, Electronics and Computer

Engineering (UPCON). IEEE, 2021.

[5]. Liu, B., Chang, Y. F., Li, J., Liu, X., Wang, L. A., Verma, D., ... & Lai, C.

S. (2022). Bi2O2Se-Based True Random Number Generator for Security

Applications. ACS nano, 16(4), 6847-6857.

[6]. Bostancı, F. N., Olgun, A., Orosa, L., Yağlıkçı, A. G., Kim, J. S., Hassan,

H., ... & Mutlu, O. (2022, April). DR-STRaNGe: End-to-End System Design for

DRAM-based True Random Number Generators. In 2022 IEEE International

Symposium on High-Performance Computer Architecture (HPCA) (pp. 1141-

1155). IEEE.

[7]. Garipcan, Ali Murat, and Ebubekir Erdem. "DESSB-TRNG: A novel true

random number generator using data encryption standard substitution box as post-

processing." Digital Signal Processing 123 (2022): 103455.

[8]. Liu, Jing, et al. "Min-entropy estimation for semiconductor superlattice

true random number generators." Scientific Reports 12.1 (2022): 1-9.

[9]. Lu, Yi‐Fan, et al. "A High‐Performance Ag/TiN/HfOx/HfOy/HfOx/Pt

Diffusive Memristor for Calibration‐Free True Random Number

Generator." Advanced Electronic Materials (2022): 2200202.

55

[10]. Zhou, Xue, et al. "Impact of relaxation on the performance of GeSe true

random number generator based on Ovonic threshold switching." IEEE Electron

Device Letters (2022).

[11]. Liao, Teh-Lu, Pei-Yen Wan, and Jun-Juh Yan. "Design and

synchronization of chaos-based true random number generators and its FPGA

implementation." IEEE Access 10 (2022): 8279-8286.

[12]. GALLI, DAVIDE. "On the effectiveness of FPGA implemented True

Random Number Generators." (2022).

[13]. Addabbo, Tommaso, et al. "Low-Level Advanced Design of True Random

Number Generators Based on Truly Chaotic Digital Nonlinear Oscillators in

FPGAs." International Conference on Applications in Electronics Pervading

Industry, Environment and Society. Springer, Cham, 2022.

[14]. Xu, Mingtao, et al. "Voltage and temperature dependence of Random

Telegraph Noise and their impacts on random number

generator." Microelectronics Journal 125 (2022): 105450.

[15]. Gomez, Ana I., Markus Kiderlen, and Florian Pausinger. "Improved

entropy bounds for parity filtered self-timed ring based random number

generators." Information Processing Letters 174 (2022): 106212.

[16]. Lv, Yang, Brandon R. Zink, and Jian-Ping Wang. "Bipolar Random Spike

and Bipolar Random Number Generation by Two Magnetic Tunnel

Junctions." IEEE Transactions on Electron Devices 69.3 (2022): 1582-1587.

[17]. Shafi, K. M., Chawla, P., Hegde, A. S., Gayatri, R. S., Padhye, A., &

Chandrashekar, C. M. (2022). Multi-bit quantum random number generator from

path-entangled single photons. arXiv preprint arXiv:2202.10933.

[18]. Cirauqui, David, et al. "Quantum Random Number Generators:

Benchmarking and Challenges." arXiv preprint arXiv:2206.05328 (2022).

[19]. Zia, Unsub, et al. "A novel pseudo-random number generator for IoT

based on a coupled map lattice system using the generalised symmetric map." SN

Applied Sciences 4.2 (2022): 1-17.

56

[20]. Kong, Dexuan, et al. "Methodology for Random Number Generation

Based on FPGA." Proceedings of Sixth International Congress on Information

and Communication Technology. Springer, Singapore, 2022.

[21]. Bezuidenhout, Riaan, Wynand Nel, and Jacques M. Maritz. "Embedding

tamper-resistant, publicly verifiable random number seeds in permissionless

blockchain systems." IEEE Access 10 (2022): 39912-39925.

[22]. Gupta, Mangal Deep, and Rajeev K. Chauhan. "Hardware Efficient

Pseudo-Random Number Generator Using Chen Chaotic System on

FPGA." Journal of Circuits, Systems and Computers 31.03 (2022): 2250043.

[23]. Ryan, C., Kshirsagar, M., Vaidya, G., Cunningham, A., & Sivaraman, R.

(2022). Design of a cryptographically secure pseudo random number generator

with grammatical evolution. Scientific reports, 12(1), 1-10.

[24]. Gao, B., Lin, B., Li, X., Tang, J., Qian, H., & Wu, H. (2022). A unified

PUF and TRNG design based on 40-nm RRAM with high entropy and robustness

for IoT security. IEEE Transactions on Electron Devices, 69(2), 536-542.

[25]. Chu, Wei-Yu, et al. "Security Study of RO-TRNG under Fault

Disturbance Scenarios." 2022 IEEE 6th Information Technology and

Mechatronics Engineering Conference (ITOEC). Vol. 6. IEEE, 2022.

