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ABSTRACT 

Built-In Self-Test (BIST) are the major building blocks in every integrated circuit, which 

corrects the memory faults, stuck-at faults automatically by applying the random patterns. 

The performance of BIST modules purely depends on randomization of patterns. 

However, conventional liner feedback shift registers (LFSR) are failed to provide the 

higher randomization with lower hardware resource utilization. Therefore, this work is 

focused on implementation of True Random Number Test Pattern Generator (TRN-TPG) 

frameworks to solve this problem.  Further, the ring oscillators in the conventional 

methods were replaced by Digital Clock Managers (DCM), which implements the 

tuneability of phase, frequency of random numbers. Further, the beat frequency detection 

operation is achieved by D-flip flop (D-FFs), post processing units, and counters. The 

simulations revealed that the proposed method resulted in better area, delay, power 

performance as compared to conventional approaches. 
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CHAPTER-1 

INTRODUCTION 

1.1 OVERVIEW 

TPGs have evolved into an essential part of a wide variety of cryptographic systems, 

including the production of PINs and passwords, authentication protocols, key 

generation, random padding, and nonce generation. A non-deterministic random process, 

which in TPG circuits takes the form of electrical noise most of the time, serves as the 

primary source of randomization. Other essential components of the TPG include, in 

addition to the noise source itself, a noise harvesting device that can isolate the noise, and 

a post-processing step that can provide a statistical distribution that is consistent 

throughout. Our primary objective is to develop an upgraded BIST-based TPG that is 

comprised entirely of digital parts. The designs of TPGs created using digital building 

blocks have the benefit of being relatively straightforward and well-suited to the BIST 

design flow. This is because the designs are able to make optimal use of the CAD 

software tools that are accessible for BIST design. However, digital circuits display a 

very small number of sources of random noise. These include the metastability of the 

circuit parts, the frequency of the free-running oscillators, and the jitters (random phase 

changes) in the clock signals. As one would expect, the suggested TPG circuit of our 

group makes use of oscillator jitter in addition to the frequency difference between the 

two oscillators as a source of randomization. 

Devices that can be reconfigured have become an essential component of a wide variety 

of embedded digital systems, and it is anticipated that in the not-too-distant future, 

reconfigurable platforms will be the platform of choice for general computing. After 

having been used primarily for prototyping, reconfigurable systems such as BISTs are 

now finding widespread use in cryptographic applications. This is due to the fact that 

these systems are able to provide an acceptable to high processing rate at a significantly 

lower cost and a much faster design cycle time. As a result, several embedded systems 

that fall under the category of security call for a component that is capable of high-quality 

TPG implementation on BIST. We offer a TPG for applications based on Xilinx BISTs 
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that has a configurable jitter control capability. This capability is based on the DPR 

capabilities that are accessible on Xilinx BISTs. The construction of an architecture that 

enables on-the-fly tunability of the statistical features of a TPG via the use of the DPR 

capabilities of contemporary BISTs for the purpose of modifying the parameters of the 

DCM modeling is the primary contribution that this study makes. Tunability was 

previously unheard of in TPGs until our study, which we believe to be the first to report 

doing so, was published. 

This strategy can only be used with Xilinx BISTs because of its programmable clock 

generating mechanism and DPR capabilities. 

DPR is a relatively recent development in BIST technology that makes it possible to 

make alterations to specific areas of the BIST logic fabric on the fly, without disrupting 

the usual operation of the BIST. This is an improvement on an already impressive piece 

of technology. Xilinx Clock Management Tiles (CMTs) have Dynamic Reconfiguration 

Ports (DRP), which make it possible for DPR operations to be carried out using far less 

complicated methods [1]. By modifying the appropriate DCM parameters in conjunction 

with DPR, it is possible to alter the clock frequencies that are produced on the fly. DPR 

through DRP is an extra benefit in BISTs since it gives the user the ability to control the 

clock frequency according to the requirements of the application. There are design 

strategies that may avoid any harmful manipulations through DPR, which, among other 

things, might have a negative impact on the system's overall security [2]. 

Mersenne Twister (MT) is a fast TPG (PRNG) that was created by Matsumoto [8]. It has 

found widespread use. Since more CPU time is needed for startup than for generation in 

MT, Panneton [9] came up with the idea of introducing WELL generators in addition to 

Mersenne Twisters. Later on, central processing units (CPUs) for personal computers 

began to include additional capabilities such as SIMD operations (also known as 128-bit 

operations) and multi-stage pipelines. There was a suggestion made for a 128-bit PRNG, 

and it was given the moniker SIMD-oriented Fast Mersenne Twister (SFMT), 

This is similar to MT and uses SIMD operations like what was suggested by Saito[7]. 

Tsoi[10] observed that if the function call is avoided, WELL may be slower than MT for 

certain CPUs. This is true only if the function call is avoided. The SFMT TPG is a highly 

quick generator that has a high-dimensional equidistribution feature that is to a 
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satisfactory degree. After that, TPGs were developed that were based on linear 

recurrences modulo 2. TPGs, or linear feedback shift registers, are also known as 

Tausworthe generators. These generators operate on linear recurrences modulo 2, and 

they shift registers. Trinomial-based generators have significant statistical flaws, but 

when combined, these generators may produce others that are reasonably quick and 

resilient. These sorts of combinations have been suggested by Matsumoto and Wang [11, 

12], who have also conducted research on them. The generators that are provided here are 

suitable for use on 32-bit machines. These days, 64-bit computers are becoming more and 

more widespread; thus, it is essential to have reliable generators that are developed to 

make full advantage of the 64-bit words that were provided by P. L'Ecuyer [6]. Following 

that, huge-period generators were considered, although they were not nearly the best 

solution. It was necessary to develop new generators that have improved equidistribution 

and bit-mixing features. 

In contrast to the Mersenne twister, the state of these generators tends to become more 

chaotic with time. In specific portions of the period of the Mersenne twister, which was 

described by Saito [7], it is possible to see a lessening of the influence caused by 

persistent dependencies among subsequent output values. This may be seen in action. A 

generator with a period of may be built consisting of k flip-flops and k look-up tables 

(LUTs), and it can produce k bits of random output on each cycle of operation. In spite of 

these benefits, BIST-optimized generators are not generally utilized in practice. This is 

due to the fact that the process of developing a generator for a given parameterization is 

time demanding, both in terms of the number of developer man hours required and the 

amount of CPU time required. It is conceivable to create all potential generators ahead of 

time; however, the set of cores that would be produced as a consequence would need 

several gigabytes, and it would be impossible to incorporate them into tools and design 

processes that are already in place. When faced with these unappealing options, engineers 

who are pressed for time naturally choose for alternatives that are less efficient, such as 

coupled Tausworthe generators [3] or parallel linear feedback shift registers (LFSRs). 

using low-cost bit-wise shift-registers to provide high-quality results over extended 

periods of time without the need for costly resources. The quantity of bits produced 
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throughout each cycle is often decided upon with the intention of catering to the 

requirements of the application. 

The XOR gates receive a permutation of the outputs that arise from the operation. The 

outputs of the XOR gates are then sent to the PIPO SRs, which cause the outputs of the 

XOR gates to be shifted, ensuring that the production of random numbers goes off 

without a hitch. The generation of random numbers is carried out in accordance with the 

approach. Verilog is used to write the programming, and Model Sim 6.4a, which is a tool, 

is used to run the simulations. The synthesized code is tested on the Spartan 3E kit, and 

the Xilinx Plan Ahead Virtex5 kit is used to execute the synthesis. 

The following table outlines the design overview that can be acquired using Xilinx 8.1i as 

well as the results that can be received from the tools. As feedback is required, the first 

seed will be issued. The seed undergoes a transformation. 

The outcomes of the 8-bit RNG are detailed further down the page. The similar method is 

used for the 64-bit random number generator. The output of the bits that have been 

permuted is then supplied to the XOR gates. The number of XOR gates in an 8-bit RNG 

is equal to eight (t=8). The idea of permutation is used in order to enhance the 

randomness of the bits and, as a result, to implement unpredictability.  

1.2 PROBLEM STATEMENT 

The first and the last digits have been switched around. The various bit RNGs all employ 

the same basic idea of permutation in their algorithms. The outputs of the permutation are 

then sent into the XOR gates, and the round basis is utilized for the remaining inputs to 

the XOR gates. Therefore, the bits of the XOR gate output that were acquired are fed into 

the PIPO SR in a parallel fashion. The random number cycle is produced by the results of 

the computation. The cycle is introduced into the SISO SR [FIFO] in a format that allows 

for variable lengths (length = k). The length shouldn't be any longer than r. The value of 

each bit will be set to zero as it passes through the flip-flop. Therefore, the production of 

random numbers takes occur. The random numbers that are produced as a result are 

created in such a way that their period is 2r -1. In the event when the number of bits is 16, 

the period is equal to 216-1. The number of instances of the all zero state is decreased due 

to the fact that the all zero state results in an idle situation. Random number generators 

and random bit generators, abbreviated as RNGs and RBGs, respectively, are essential 
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pieces of equipment in a wide variety of fields. Stochastic simulation and cryptography 

are the two primary areas of use for this technology. Random number generators (RNGs) 

are put to use in stochastic simulation so that the behavior of a random variable with a 

specified probability distribution may be simulated. These generators are used in the field 

of cryptography to create secret keys, encrypt communications, or conceal the contents of 

specific protocols by mixing the contents with a random sequence. A further use for 

cryptographically secure random numbers can be found in the rapidly expanding field of 

online gambling. This is due to the fact that online gambling games should very closely 

imitate the distribution properties of their real-world equivalents, and they also must be 

immune to being predicted or influenced by any adversary. 

A TPG is an algorithm that generates a series of integers or bits based on an initial seed 

or by means of continuous input. This sequence may be based on any input method. We 

insist that any spectator should have the impression that this sequence is "random." This 

brings up the issue, "What really constitutes randomness?" The vast majority of 

individuals will claim that they are familiar with the concept of randomness; 

nevertheless, if you press them for a precise description, they will struggle to provide 

one. When attempting to define the essential qualities of random numbers, it is common 

practice to include phrases such as unexpected or evenly distributed in the majority of 

instances. Nevertheless, under what circumstances can a certain number or output string 

be described as being either unexpected or evenly distributed? In this first part of our 

discussion, we will examine three distinct ways to describe randomness or other similar 

concepts. 

The concepts of "genuine" random numbers and TPGs (Turning Point Generators) 

emerge rather often in the context of random number generation and RNGs. TPGs are 

generators that output the result of a physical experiment that is considered to be random, 

such as radioactive decay or the noise of a semiconductor diode. Real random numbers 

are the independent realizations of a uniformly distributed random variable. Real random 

numbers are different from true random numbers, which are the results of a physical 

experiment that is considered to be random. RNGs make use of TPGs in conjunction with 

an extra algorithm in order to generate a sequence that, under certain conditions, has 

characteristics that are very similar to those of genuine random numbers. But why would 
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we choose to employ RNGs when we could use TPGs? TPGs are often biased, which 

means, for instance, that on average their output could include more ones than zeros and, 

as a result, does not correspond to a uniformly distributed random variable. This is only 

one example of how TPGs can be skewed. This impact may be mitigated by a variety of 

techniques, but doing so will result in a decrease in the total number of bits that are of 

any use and will also lower the generator's overall efficiency. 

One other issue is that some TPGs might be prohibitively costly or need the use of an 

additional piece of hardware. In addition, the speed of these generators is often 

inadequate for the purposes for which they were designed. The output of a standard 

random number generator does not need any extra hardware, is far quicker than that of a 

TPG, and satisfies the essential characteristics, such as unbiasedness, that are anticipated 

from random numbers. These requirements are necessary for producing high-quality 

RNGs; nevertheless, it is not possible to generalize them to the large variety of generators 

that are currently accessible. TPGs still have a role to play in the arsenal, notwithstanding 

the considerations presented above. They are put to use in RNGs to either create the seed 

for the system or the continuous input. The author of [Ell95] provides a list of several 

hardware sources that may be used for the achievement of such a goal. Certain 

requirements need to be met by a random number generator (RNG) in order for it to be 

suitable for usage in cryptographic contexts or stochastic simulations. First and foremost, 

the output should mimic the realization of a series of independent random variables that 

are distributed equally over the whole sequence. See [Dev96] for some examples, or 

[HL00], which provides a program library that allows the production of non-uniform 

random numbers from uniform RNGs. Random variables that are not uniformly 

distributed can be simulated by applying specific transformations on the output of 

uniformly distributed generators. In this study, we restrict our discussion to generators 

that replicate variables that are distributed equally throughout the population. In a binary 

sequence that was generated by independent and identically (i.i.d) uniform random 

variables, the ones and zeros, in addition to all binary n-tuples for n less than 1, are 

distributed in a manner that is uniform over all n dimensions of the space. 

Additionally, there is no association between the individual bits or n-tuples, whichever 

comes first. We anticipate the same phenomenon to result from the operation of a RNG 
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of sufficiently good quality. In the case of certain generators, those requirements may be 

verified by theoretical study; nevertheless, in the case of the vast majority of RNGs, they 

are verified through empirical experiments. A decent random number generator (RNG) 

should also operate effectively, which implies that it should be able to generate a 

substantial quantity of random numbers in a relatively little length of time. Massive 

volumes of random numbers are needed for applications such as stochastic simulation, 

stream ciphers, the masking of protocols, and online gambling; hence, fast RNGs are 

required for these applications. In addition to the criteria listed above, random number 

generators (RNGs) used in cryptographic applications need to be resistant to assaults. 

This is a situation that does not apply to stochastic simulation. This indicates that an 

adversary should not be able to guess any current, future, or previous output of the 

generator, even if the adversary has some information about the input, the inner state of 

the RNG, or the current or previous output of the RNG. This is the case even if the 

adversary has some information about the future output of the RNG. 

Mathematicians and engineers are equally interested in the issue of cryptographic random 

number generators (RNGs). Mathematicians are more concerned with the definitions of 

randomness, the theoretical analysis of deterministic RNGs, and the interpretation of 

empirical test results, while engineers are often more interested in the design of particular 

RNGs or test suites. In this thesis, we make an attempt to address both fields by providing 

a description of five real-world cryptographic RNGs as well as the essential mathematical 

background. This is done in order to demonstrate our understanding of both fields. We 

have high hopes that this thesis will be helpful in gaining a concise understanding of the 

issue of cryptographic RNGs. 

1.3 RANDOM NUMBER GENERATION: TYPES AND TECHNIQUES 

The Various Methods and Categories of Producing Random Numbers The very nature of 

reality contains a certain amount of unpredictable chance. It is not feasible to predict with 

absolute certainty what a baby's personality will be like, how the temperature will change 

over the course of the next week, or the outcome of the next throw of the dice. On a 

world where everything could be foretold, there would be little interest, and much of the 

thrill that comes with living would be taken away. Many academics have attempted to 

either harvest or recreate the influence of randomness inside the digital environment as a 
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result of the fact that randomness is so ingrained in daily life. However, in order to 

achieve this goal, it is necessary to find solutions to a great deal of significant issues. 

What exactly does it mean to behave in a random manner? How does one go about 

generating randomness, and what methods are available to them for recording the 

unpredictability they experience? How is it possible for someone to determine whether or 

not an occurrence or a numerical series is random? The responses to these questions have 

gradually become more sophisticated over the course of many generations. 

This article takes a look at the solutions that are now available and makes an effort to 

categorize the several ways that chaos may be created. Defining Random It is difficult to 

have any kind of appreciation for a TPG until one has a fundamental comprehension of 

what it is to be random. A comprehensive understanding of randomness may be attained 

by analyzing a random phenomenon, such as the roll of a dice, and determining what 

characteristics contribute to the phenomenon's random nature. First, let's pretend that a 

die is included in a game you play with your family so that things are more exciting. Five 

is what comes up on the dice during the first turn. A roll of five dice, taken by itself, has 

no discernible pattern or trend. However, as the game progresses, the sequence of rolls is 

five, five, five, and five. This continues until the end of the game. The members of the 

family who are participating in the game will quickly discover that the die they were 

given is most likely not random. 

As can be seen from this picture, the emphasis of the presentation of randomness need to 

be a series of random numbers rather than the individual numbers on their own. This is 

because randomness refers to a pattern that repeats itself (Kenny, 2005). They roll the die 

two hundred times to ensure that the next die they purchase will have a random outcome. 

This time, the dice did not always fall on the same face, but one was selected as the 

winning number on fifty percent of the rolls. Because it favors one particular number to a 

disproportionate degree compared to the others, this die cannot be deemed to be random 

either. For the roll to be considered random, the die must have an equal chance of landing 

on each of the potential values. A third possibility involves the dice maker providing a 

guarantee that all of its products now fall equally often on each of the numbers. This new 

die will be rolled 200 times to ensure it is cautious, a family role. The family noticed that 

during the whole experiment, the numbers always followed the same pattern, which went 
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like this: five, six, one, two, etc. Despite the fact that the numbers were struck 

consistently, the pattern remained the same. The roll of the die's randomness would be 

called into doubt once again. In order for the die to be considered really random, it must 

lack any discernible patterns when seen in the context of a series of dice rolls. 

The roll of the dice cannot be considered completely random if it is possible to anticipate 

what will happen next or anyplace else in the future. The outcomes of these dice 

simulations may be used to develop a more precise definition of randomness. The 

following is a simple and commonly recognized definition of a random number sequence: 

a random number series contains numbers that are evenly dispersed throughout the whole 

range of potential values, and each number in the sequence is independent of the numbers 

that came before it (Marsaglia,2005). Any algorithm that generates random sequences in 

the same manner as the one that was just described may be considered a TPG. 

Regrettably, the passage of time has shown that the expectations for a TPG may shift 

drastically depending on the setting in which it is used. 

When a TPG is used in cryptography, it is very necessary that the previous sequences be 

unable to be uncovered or duplicated. If this is not the case, then cybercriminals will be 

able to breach security measures (Kenny, 2005). In simulations, on the other hand, using 

a generator has the opposite effect. Given the circumstances, it is not only acceptable but 

also desirable to get the same random sequence on several occasions. The ability to 

conduct tests based on variations in individual values is made possible as a result of this. 

A new and significant demand that is characteristic of simulations, in particular Monte 

Carlo simulations, is that large quantities of random numbers need to be created as 

rapidly as possible since these numbers are used up so quickly (Chan, 2009). For the 

purpose of determining whether or not a soldier in a war simulator is successful in hitting 

his target, for instance, a whole new random number may be required each time the 

soldier shoots his weapon. It is not a simple task to devise a random number generator 

that can keep up with a conflict that involves hundreds or thousands of warriors. 

Numerous computer games, along with statistical sampling, make frequent use of random 

number generators. In the last two categories, the only condition for the random numbers 

is that they behave in a random manner. Other than that, there are very little restrictions 



11 

placed on them. It is possible that, within each of these settings, additional needs on top 

of those mentioned below might be present, depending on the application in question. 

There is a broad concept that can be used to describe a TPG; however, this definition has 

to be adapted for every circumstance in which a generator is used. Different kinds of 

TPGs Now that we have a definition of randomness, we can turn our attention to TPGs 

themselves and the way in which they are put together. The output of a TPG is often 

presented in binary format if the TPG itself is the topic of discussion. There are 

generators out there that create outputs that are not binary, but everything that is 

generated can be turned into binary after the fact. TPGs may be divided into two primary 

categories. The first sort of sequencer makes an effort to recreate random occurrences in 

the actual world when it generates its patterns. Because it is difficult for anybody to 

correctly guess the next number in the series under normal conditions, it is known as a 

Turing-complete generator (TPG). The second school of thought maintains that the 

criteria for randomness may be adequately satisfied by using algorithms that produce 

unexpected results (presuming that no one is aware of the beginning circumstances). The 

generators that are created via the use of algorithmic approaches are referred to as 

pseudo-random generators. This is due to the fact that in actuality, each value is chosen 

based off of the state of the system, and is not really random. In order to acquire an 

awareness of how these generators operate, particular instances hailing from either of the 

two groups will be investigated. 

Instead of creating their own entropy sources, a TPG makes use of those that already 

exist in the world. Entropy is a measure of the degree of unpredictability associated with 

a result. Encounters in the real world, such as flipping a coin, have a high degree of 

entropy since it is difficult, if not impossible, to properly forecast what the outcome will 

be. The unexpected behavior of a TPG may be traced back to the entropy source. Entropy 

may be created for a generator in a variety of different ways, such as by rolling dice or 

flipping coins; but, the pace at which random numbers could be generated using these 

methods would be limited. The majority of TPGs suffer from the issue of having a low 

production rate (Foley, 2001). The fact that these generators need some kind of gear is 

still another significant drawback associated with using them. Because they employ 

actual occurrences in the real world, they require a physical apparatus that is capable of 
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capturing the event. This may make the implementation of real random generators quite a 

bit more costly, particularly in the case when the requisite equipment is not widely used. 

This also implies that the generators are susceptible to physical assaults, which may cause 

the number sequences to be biased. Last but not least, even when there are no adversaries 

around, physical devices are often susceptible to wear and tear over time as well as 

mistakes in their design, both of which might inherently bias the sequences that are 

generated (Sunar, Martin, & Stinson, 2006). 

The majority of TPGs are equipped with some kind of post-processing algorithm that can 

adjust for bias in order to eliminate it. In spite of these drawbacks, there are a great many 

situations in which the importance of having number sequences that are neither 

manufactured intentionally nor repeatable is high enough to warrant putting up with the 

problems. When it comes to security, having the knowledge that no mathematician can 

crack a code that does not even exist might provide a sense of relief to those who work in 

the field. There are four primary types of real random generators that will be discussed in 

the following sections: random.org, hot bits, lasers, and oscillators. Random.org. 

Random.org, a website that sees a lot of traffic, is the home of a popular TPG. The 

random sequences that Random.org creates are made available for free distribution, 

which has resulted in a diverse user base (Haahr, 2011). These numbers have been put to 

use in a wide variety of contexts, from an online backgammon server to a business that 

utilizes them for random drug testing (Kenny, 2005). Because the numbers are retrieved 

through the internet, it would be imprudent to utilize them for reasons of security or in 

circumstances when the sequence must remain completely confidential. There is never a 

moment when the broadcast won't be subject to the possibility of being hacked. The 

entropy that the TPG gets from this location comes from the background noise in the 

atmosphere. 

Radio equipment are able to pick up on the background noise and transmit it to a 

postprocessor, which then transforms it into a stream of binary ones and zeroes. 

Researchers have shown that the principles that regulate atmospheric noise are really 

predictable, which means that the sequences created by this generator are not entirely 

arbitrary (Random.org, 2012). It is the belief of those who support this argument that 

only quantum phenomena may be said to be inherently nondeterministic. Random.org has 
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provided a rebuttal to this argument by pointing out that the number of variables that 

would be required to predict the values of atmospheric noise are impossible for humans 

to obtain. This assertion was made in response to the claim that it is impossible for 

humans to obtain these variables. To precisely predict the next quantity that will be 

created, it will be necessary to carefully record every broadcasting device and 

atmospheric change in the region, maybe even down to the level of individual molecules. 

It has been verified by a number of independent auditors that the number sequences on 

this website are capable of passing the industry-standard test suites. As a result, the site is 

now available as a cost-free and practical alternative for consumers of random numbers. 

Hot Bits. Hot Bits is the name of the other well-known and widely used free TPG that is 

based on the Internet. The random number sequences on this website are generated using 

radioactive decay as the underlying principle. Since this is a process that occurs on the 

quantum level, the question of whether or not the number sequences are genuinely non-

deterministic can no longer be asked. On the other hand, because of the technique that is 

required to harvest this phenomena, Hot Bits can only produce numbers at a pace of 800 

bits (100 bytes) per second (Hot Bits, 2012). In spite of the fact that the Hot Bits server 

maintains a backlog of random numbers, the pace at which random sequences may be 

derived from it is still restricted in contrast to that of other available choices. Because the 

random numbers generated by this generator are also transmitted via the internet, much as 

the random numbers generated by Random.org, there is always the chance that an 

unauthorized third party is aware of the sequence. Because of this, it is not suited for 

applications that are focused on security, although Hot bits may be beneficial when it is 

vital to have data that is indisputably random. Lasers. TPGs that solve the challenge of 

sluggish manufacturing are made possible with the use of lasers. Entropy may be 

produced in laser-based generators via a variety of various channels and methods. Having 

two photons compete to reach the same location is one way to. 

1.4 OBJECTIVE 

The purpose of this study is to develop, analyze, and implement a simple, improved, low-

overhead, and configurable TPG for the BIST platform. This aim will be accomplished 

during the course of this research work. The following is a list of our most significant 

contributions: 
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1) We study the restrictions that are placed on the FSTR–TPG when it is applied to a 

BIST design platform. We propose an upgraded FSTR–TPG architecture that is suited for 

applications that are based on BIST in order to address the deficiencies. Tunability has 

not before been reported to have been included into a completely digital TPG, and to the 

best of our knowledge, this study is the first to do so. 

2) We do a mathematical and experimental analysis on the revised design of the 

suggested architecture. 

3) The findings of our experimental work provide substantial credence to the 

mathematical model that was suggested. The proposed TPG has a minimal hardware 

overhead, and the random bitstreams that are created from the proposed TPG pass all of 

the tests that are included in the NIST statistical test suite. 
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CHAPTER 2 

LITERATURE REVIEW 

 

According to the comprehensive analysis of previous work in the same field and the 

published literature, it has been determined that a number of different researchers have 

developed methods for the production of random numbers. Researchers have engaged in 

a variety of approaches, procedures, or phenomena with respect to the creation and 

analysis of RNG content, and they have sought to discover the unknown parameters. A 

trump card generator (TPG) is a kind of method that is used to generate a series of 

numbers that has qualities that are similar to those of random numbers. These sequences 

are not generated in a completely random fashion. Pseudorandom numbers are important 

in practice for simulations (for example, of physical systems using the Monte Carlo 

method), and they are important in the practice of cryptography. Although sequences that 

are closer to truly random can be generated using hardware TPGs, pseudorandom 

numbers are important in practice for simulations. An automated technique for 

developing hardware-based TPG designs for arbitrary distributions with the inverse 

cumulative distribution function was reported by Ray C. C. Cheung, Dong-U Lee, and 

John D. Villasenor [1]. (ICDF). The ICDF is evaluated using a piecewise polynomial 

approximation in conjunction with a hierarchical segmentation scheme. This scheme 

includes segments with sizes that vary by powers of two and segments that are uniform in 

size. Both of these types of segments are able to adapt to nonlinearities in the local 

function. At order to ensure precision down to one unit in the very last spot, analytical 

error analysis is used (ulp). It is possible to build random number generators that are both 

space-efficient and capable of reaching arbitrary multiples of the standard deviation. For 

example, a Gaussian RNG constructed using our method and implemented on a Xilinx 

Virtex-4 XC4VLX100-12 field programmable gate array generates 16-bit random 

samples with a maximum value of 8.2 delta. It uses up a total of 487 slices, as well as two 

block RAMs and two DSP blocks. The design is able to function at a frequency of 371 

MHz and produces one sample for each tick of the clock. If the ICDFs are known, the 

designs are able to produce random numbers from any arbitrary distribution, but only if 
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the distributions themselves are known. GU The paper "Uniform TPG Using Leap-Ahead 

LFSR Architecture" was presented by Xiao-chen and ZHANG Min-xuan [2.] Introducing 

a new sort of URNG that uses Leap-Ahead LFSR Architecture. This kind of URNG is 

capable of generating an mbits random number each cycle while just employing a single 

LFSR. 

one characteristic feature filter coefficients would just be capable of delivering even one 

pseudorandom number one per rotation. some one multi-lfsrs layout seems to be 

conducted to generate of one urng although it is important to utilize numerous pieces so 

that you can randomly select total count there in most of after all implementations. this 

means that even a 64 bit outcome urng requires a complete like 32 distinguishes route to 

operate suitably. however the leap-ahead create could well bypass the said issue but 

rather start creating it only arbitrary arithmetic of myriad portions ever other vicious 

circle while just attempting to make do with a tune linear feedback shift register. or less 

11 percent of such strips of bacon that are being used but by multi-lfsr architect are being 

used time to say goodbye by a leap-ahead architectural style. a few of the motivations 

with this is that the multi-lfsr create had also eighteen, whilst the leap-ahead architects 

have only somebody filter coefficients there in urng physical components. that whole 

prime reason for this would be but whenever it and switch does seem to be relaunched, 

apiece login inside this urng even has itself and its ioctl surgery performed through it, 

which is really a complex process. 

the multi-lfsr job requirements as much strips of bacon for such businesses that engage 

play a role than leap-ahead layout can because it has 16 years of age through it fifteen 

control register, while leap-ahead architectural style had only 2008 counters. now since 

implementation and execution it and leap-ahead linear feedback shift architectural style 

and indeed the multi-lfsr architects of both of the gf(28 what kind and also the recursive 

try typing to also vhdl quaternion three ist es, humans concluded that perhaps the leap-

ahead linear feedback shift architects absorbs sole 10% of such strips of bacon that such 

multilfsr architectural style really does terms of generating digits of the same timespan. 

the above decision was reached even if that whole leap-ahead filter coefficients design 

insights even if only a this same leap-ahead filter coefficients configuration offers highly 

awesome expanse time delivery or methods to address, as well as the morals of 
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two.eighteen such and such eight five slices-sec for each slightly but also eighteen.105 

squared $ operations per second, in both, when put next here to effectiveness of these 

other urngs. utilizing finite element, stephen u r. kee, joaquin 37 °. client will be able, biff 

s t. torres, or wright h. k. trowel [3] introduced the one new architecture and design 

theory. its been realized and it deterministic (ca) were being capable of generating rising 

pseudo-true-pair diesel generator (prngs), and that these ca-based activation functions are 

so well suited to use with the field programmable tuples (bists). 2 different augmentations 

were crafted toward the basic structure of both the suffi cient that allows you to enhance 

the quality of random variables that seem to be created. to start, this is comprehended not 

whether a super-rule should always be incorporated to every suffi cient mobile phone. it 

and summaries of a configuration anyway shift register sign up (lfsrs) but instead state 

machine (ca), followed by the discussion of comparable study that seem to have hired 

interleaving but also possible such as producing random variables. ergo, evaluated a 

efficiency yeah ca-based cryptographic primitives fitted to provision through bists. the 

outcomes of both the polymerization executed on vhdl minimalist section iii zu sein 

providing steady acknowledgement of the fact of both the friend resources needed one 

per setup. 

mixed signal rollout anyway erratic sort of semi tad power stations had been a 

demonstration that it was awarded through it pawel dabal as well as ryszard pelka [4]. 

policy that protects vs unauthorised users out modern telecommunications network is a 

network, especially on mobile processes, prescribes it and parenthood of much more 

sophisticated methods of information storage and processing. from the said, a 

manufacturing sure steps that also have relevant analysis comes equipped are among the 

most key challenges going to face style cryptographic algorithms. cryptologists have 

really been charging a kind increased number yeah attention in the field of between 

modern computers that seem to be entirely predicated forward game theory. it and 

exchange of information by use of turbulent impulses. from such a purely pragmatic point 

of view, a idea of someone using a variational disorganised system dynamic there in 

building projects of such a encryption keys protected pseudorandom as well as small 

piece power station (prng as well as prbg) does seem to be attractive. cruz andres gayoso, 

3 °. hernández, s t. friends, t s. rabini, joão castiñeira sattar, [5] provided ―tpg entirely 
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predicated here on residual oil decimal numbers as well as its mixed signal deployment, 

designers had been willing to formulate an especially quick cycle such a performs in such 

a fundamentally different way compared to earlier turbines. this had been made feasible 

by a particulate counting system (rns) as well as its zu sein rollout. 

the reliability of a random elements of something like the tried to suggest limited does 

seem to be assessed but use a power supply after all conventional assessments, including 

all the die - hard quiz, this same data point nuance assess, and indeed the collins octet 

check. those same includes testing will be used to provides one quantify of something 

like the random elements of something like the suggested limited. a keynote captioned 

"that whole lut-sr kinship after all homogeneous peg such as ist es architectures" had 

been specified besides harrison f r. william but instead danny kees [6]. the one version of 

ist es ray tracing called some one lut-sr predictive control, the said device helps to make 

utilisation binary arithmetic opcode procedures and indeed the processing capabilities 

anyway beginning to turn general search columns (luts) in to other transition records of 

various duration. the above gives a useful resource–quality harmony comparison to prior 

bist-optimized generating units, in between earlier high-resource high-period lut-fifo 

sound but rather lowresource limited lutopt musical, of performance corresponding to 

that of right software generators.  

It does this by bridging the gap between lowresource low-quality LUTOPT RNGs and 

highresource high-period LUT-FIFO RNGs. The LUT-SR generators can also be 

expressed using a simple C++ algorithm that is included in this paper. This allows for the 

incorporation of sixty fully specified LUT-SR RNGs with varying characteristics within 

this paper. Additionally, this paper is supported by an online set of very high-speed 

integrated circuit hardware description language (VHDL) generators and test benches. 

Ravi Saini, Sanjay Singh, Anil K Saini, A S Mandal, Chandra Shekhar [7] presented 

Development of a Hardware That Is Both Quick and Efficient to Use Implementation of a 

TPG in BIST demonstrates a quick and effective hardware implementation of a pseudo-

TPG based on the Lehmer linear congruential approach. This implementation is presented 

as part of BIST. In this work, it is shown how the incorporation of application 

specialization into the architectural design may result in enormous performance gains in 

terms of both space and speed. The design has been detailed in VHDL, and it was built 
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using the Xilinx BIST device XC5VFX130T-3ff1738. Additionally, the design only uses 

23 slice LUTS. In 2014, Purushottam Y. Chawle and R.V. Kshirsagar [8] proposed a 

straightforward approach that uses Linear Feedback Shift register to create a pseudo-

random number (LFSR). The created pseudo sequence is mostly put to use for 

communication processes like cryptography encoding and decoding, as well as encoder 

and decoder application work in coded formats. The exclusive-or function describes the 

linear action of a single bit in LFSR operation (X-OR). For the purpose of researching 

their performance and unpredictability, an 8-bit and 16-bit LFSR were both created using 

the verilog HDL programming language. The LFSR is a kind of shift register with a 

random output that is determined by the feedback polynomial. 

2.1 SINGLE PHASE FSTR-TPG MODEL 

 

Fig. 2.1: Architecture of single-phase FSTR–TPG [3]. 

The FSTR-TPG circuit [3] is a completely digital TPG that was first built as a 65-nm 

CMOS ASIC. It operates by relying on the FSTR method to remove jitter from the data 

stream. The following is a synopsis of the construction and operation of the (single 

phase) FSTR-TPG, which should be read in connection with Fig. 2.1: 

1) The circuit is made up of two almost identical ring oscillators, which we'll refer to as 

ROSCA and ROSCB, and each of them have a similar structure and arrangement. One of 

the oscillators (let's say ROSCA) oscillates significantly quicker than the other oscillator 

as a result of the intrinsic physical randomness that is caused by the process variation 

effects that are connected with deep sub-micron CMOS manufacture (ROSCB). In 

addition, the authors [3] suggested use trimming capacitors as a means of further fine-

tuning the oscillator output frequencies. 
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2) A D flip-flop is used to sample the output of the other RO by utilizing the output of 

one of the ROs as a reference (DFF). Let's suppose, without introducing any unnecessary 

specifics, that the output of ROSCA is linked to the D-input of the DFF, while the output 

of ROSCB is connected to the clock input of the DFF. 

3) At certain time intervals, which are dictated by the frequency difference between the 

two ROCs, the signal from the faster oscillator passes, catches up to, and then overtakes 

the signal from the slower oscillator in phase. These capture occurrences, which are 

referred to as "Beat Frequency Intervals," take place at random intervals because random 

jitter causes them. As a consequence of this, the output of the DFF will be a logic-1 at 

various and unpredictable times. 

4) An increment is added to the value of a counter that is controlled by the DFF. This 

counter's value is then reset once the DFF's logic-1 output is activated. The free running 

counter output, which is subject to random jitter, will ramp up to a different peak value in 

each of the count-up periods before it is reset. 

5) Before the counter's output reaches its maximum value, it is read by a sampling clock 

in order to collect data. 

6) After the sampled answer has been serialized, the random bitstream will have been 

created. 

2.2 One of the Limitations of the FSTR-TPG 

The prior FSTR-TPG circuit has a number of flaws, one of which is that the statistical 

unpredictability of the circuit is reliant on the design quality of the ring oscillators. Any 

kind of design bias in the ring oscillators might potentially have a negative impact on the 

statistical unpredictability of the bitstream that is produced by the TPG. Designs that have 

the same amount of Figure 2.1 illustrates the architecture of a single phase FSTR–TPG 

[3]. inverters, but varied positions led to different counter maxima being produced. In 

addition, the identical ring-oscillator-based FSTRTPG that is implemented on various 

BISTs that are part of the same family has multiple counter maxima. The ring oscillators 

are free-running, which means that it is impossible to exert any kind of control over them 

in order to remove any design bias. The issue is made more worse in BISTs, where it is 

often challenging to manage design bias due to the absence of fine-grained designer 

control over routing in the BIST design fabric. This makes the problem much more 
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difficult to solve. Enabling dynamic reconfiguration on Xilinx BISTs through the use of 

the Dynamic Reconfiguration Ports is a method that makes tuning clock generator 

hardware primitives on Xilinx BISTs relatively simple. This is true in particular for the 

Phase Locked Loop (PLL) or the Digital Clock Manager (DCM), both of which were 

utilized in this work (DRPs). After they have been activated, the clock generators may be 

tweaked to produce clock signals with a variety of frequencies by altering values at the 

DRPs [1] on the fly. This can be done without having to take the device offline 

beforehand. A field-programmable gate array, also known as a BIST, is a kind of 

integrated circuit that is designed to allow for post-production customization by the end 

user, thus the term "field-programmable." 

In most cases, the BIST configuration is established by using a hardware description 

language (HDL), which is comparable to the language that is used for an application-

specific integrated circuit (ASIC) (circuit diagrams were previously used to specify the 

configuration, as they were for ASICs, but this is increasingly rare). BISTs may be used 

to accomplish any logical function that is capable of being carried out by an ASIC. The 

flexibility to upgrade the functionality after it has been shipped, the partial re-

configuration of the component of the design, and the inexpensive one-time engineering 

expenses in comparison to an ASIC design are all benefits that may be used in many 

different kinds of applications. BISTs are built with programmable logic components that 

are referred to as "logic blocks," and they also have a hierarchy of reconfigurable 

interconnects that enables the blocks to be "connected together" in a manner that is 

comparable to that of a programmable breadboard that is contained on a single chip. 

Simple logic operations like AND and NAND may be performed by logic blocks, or they 

can be designed to carry out more complicated combinational tasks. Memory components 

are often included inside the logic blocks of BISTs. These memory elements may be as 

basic as flip-flops or as complex as whole blocks of memory. 

 

Figure 2.2: 8-bit LFSR 
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Feedback is sent to the register by the XOR gate, which then moves bits from the left to 

the right. The maximum sequence includes all potential states other than the one 

represented by the notation "00000000." A shift register in computing is referred to as a 

linear-feedback shift register (LFSR) if the input bit of the register is a linear function of 

the state it was in before. The exclusive-or function is the single-bit linear operation that 

is utilized most often (XOR). Therefore, a low-frequency shift register, or LFSR, is most 

often a shift register with its input bit driven by the XOR of certain bits of the value 

stored in the shift register as a whole. 

Several researchers use various entropy sources to generate true random numbers. For 

example, RAND Corporation [16] generate numbers using a random pulse generator. In 

[17] authors used the image data from a camera which is pointed at a couple of ring 

oscillators is used as excellent entropy source to generate true random numbers. TRN-

TPG uses radioactive decay as the entropy source to generate random number sequences. 

In a simple case, a variable environment of a fish tank is used as an entropy source of 

randomness. Up To date only few organizations offer true random numbers commercially 

using these kinds of techniques. In [18] authors used a method of generating random 

numbers using Celestial oscillator sources and the generated sequence is tested with 

NIST Statistical Test Suite for random data. They found that the resulting data sets pass 

all tests in the NIST with a mean of 98.9% of the 512 total bit streams as well as further 

testing in R.  In [19] authors performed Entropy estimation is a vital part in building a 

TRN-TPG because being able to give an accurate estimation of the amount of entropy 

contained in the entropy pool is required to reach a certain level of security. If the 

accuracy of the entropy estimation of a TRN-TPG is high, it can give better security 

guarantees about the unpredictability of its entropy pool. This makes it less likely for an 

attacker to compromise the randomness of the TRN-TPG system.  

In [20] authors proved that the complexity of estimating the min-entropy of a distribution 

is SBP-complete, which stands for “small bounded-error probability” which is a custom 

class of complexity that is believed to be equal to NP-complete complexity. So, the 

problem of proving an entropy pool to be truly random is computationally hard, so 

instead estimation has to be made using indirect measures. In [21] authors stated a 

problem by the TRNG is an interesting issue, but it assumes a theoretical scenario that 
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might not be realistic in a practical usage scenario. Especially for the usage scenario of 

this thesis (i.e., IC devices) the scenario described will be unlikely to cause serious 

problems. In [22] authors stated that, solutions should be found to provide additional 

entropy on the IC devices so that the internal state is much less likely to be compromised 

because of low-entropy events in the first place. The PRNG should continuously provide 

the user with strong random seeds for use in cryptographic protocols on the device, while 

still remaining as efficient as possible using the limited resources that are offered by the 

device. In [23] authors proposed, the PSPG generates an entropy pool from a number of 

sources on the hardware level such as inter-keyboard timings and inter-interrupt timings. 

These sources of entropy are assumed to be non-deterministic and hard for an outside 

observer to measure. In [24] authors proposed, the Linux kernel also provides a second 

PUF-TRNG. It is identical to LFSR in its functionality, the only difference is that LFSR 

is non-blocking and has no limit to the number of requests for bytes of randomness it can 

take. In [25] authors proposed, the RO-TRNG is widely used by most applications and 

generally considered secure. However, LFSR has been criticized by a number of papers 

which claim that it has vulnerabilities. Even the source code of LFSR states a weakness 

with regards to predictability on system start-up.  

 

 

 

 

 

 

 

 

 

 

 



24 

 

Chapter 3 

RNG Basics 

3.1. INTRODUCTION  

The generation of secret keys in symmetric key cryptography systems, as well as the 

generation of private and public keys in public key cryptography systems, as well as 

digital signatures and authentication protocols, require the use of random numbers. These 

random numbers are used for a variety of purposes in information security systems. The 

term "true random number generators" (TRNGs) and "pseudo-random number 

generators" (PRNGs) are used interchangeably when referring to random number 

generators (TPGs). PRNGs have a high throughput, but since they are based on 

deterministic algorithms, they do not fit the criteria for random numbers in terms of their 

unpredictability. TPGs create random numbers by drawing on the unpredictability 

provided by physical noise sources such radiation, thermal noise, jitter, and ring 

oscillators. In most cases, a TPG will be made up of the following three blocks: an 

entropy source, an entropy extraction circuit, and a post processing circuit. The 

unpredictability that occurs in physical processes is the entropy source, and it is 

responsible for producing new entropy. Several methods, such as ring oscillators, phase-

locked loops (PLL), cellular automata, and crosstalk, may be used as entropy sources, 

and each of these methods has been described. It is important for the entropy extraction 

circuit to be constructed such that it can acquire the maximum amount of entropy feasible 

from the entropy source. Post-processing circuits are used for a variety of purposes, 

including concealing faults in entropy sources and entropy extraction circuits, providing 

tolerances in the presence of environmental changes and modulation, and more. The Von 

Neumann correction, the linear feedback shift register (LFSR), and the XOR reduction 

are all examples of postprocessing circuits [1]. 
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Figure 3.1. General structure of self-timed ring 

3.2. SELF-TIMED RING  

A. Ring construction with built-in timing 

The fundamental architecture of a self-timed ring (STR) is shown in Figure 3.1. This 

architecture is based on a micro-pipeline and a two-phase handshake protocol [2. In a 

STR, the Muller gate and inverter make up the ring stage. If all of the inputs have the 

same value, then the output will be the same as it was before. When the values of the two 

inputs, and, are not the same, the value of input is sent to the output, and the value of 

input is imported into the output, Input is the output of the ring stage that came before it, 

and input is the output of the ring stage that comes after it. The output of the current ring 

stage is created by combining the outputs of the stage before it and the stage after it in the 

ring. 

B. Token and Bubble [3] 

Information that reveals the association between the current ring stage and the next ring 

stage is referred to as tokens and bubbles in this context. According to equation (1), a 

token is present in the currently active ring stage if the output of the currently active ring 

stage and the output of the next active ring stage are different from one another. If the 

two outputs and have the same value as in equation (2), then the currently-processing ring 

stage has a bubble. In addition, tokens and bubbles have an effect on the conditions that 

determine how the STR oscillates, namely the following requirements:  
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Figure 3.2. (a) A state transition graph of a three-stage ring containing two tokens (b) 

Schematic representation of a three-stage ring with two tokens 

 

The correlation between tokens and bubbles is what determines the route that data takes 

when it is sent from one node to another. If the next ring stage includes a bubble and the 

previous ring stage included a token, then "becomes" and the token and the bubble are 

traded with each other. The data transmission route of a three-stage STR with two tokens 

is shown in Figure 3.2-a below. The fluctuating behavior of the output of each step is 

seen in Figure 3.2-b. The oscillation mode of the self-timed ring is indicated by the letter 

C. The Charlie effect may be shown to have a role in both the burst mode and the evenly-

space mode that are used by the STR in its oscillation modes. Figure 3.3 illustrates how 

the STR behaves in each mode by depicting its behavior in that mode. The Charlie effect 

is a phenomenon that describes a situation in which the amount of time that elapses 

between two inputs has an influence on the delay that the Muller gate produces. The time 

difference between the two locations will determine the length of the propagation delay. 

When the two inputs are inputted at a short time interval, the delay on the ring stage 

pushes the outputs of the ring stage out of each other, which causes the STR to work in 

an evenly-space mode. This occurs because the outputs of the ring stage are spaced 

equally apart. The design parameters determine the oscillation mode and operating point 

of the STR. The criteria for operating in evenly space mode are indicated in equation (3), 

where he denotes static forward delay and static reverse delay, respectively. 

 

Figure 3.3. Evenly-spaced and burst propagation modes in self-time  
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Figure 3.4. Architecture of the FSTR-TPG 

3.3. TPG BASED ON STR WITH FEEDBACK STRUCTURE  

The construction of the TPG that is based on STR and incorporates feedback is shown in 

figure 3.4, and it is as follows: A micro-pipeline structure was included into the 

architecture of the STR that was employed as an entropy source. A look-up table, often 

known as a LUT, was used in place of a logic gate in the implementation of each 4-input 

ring stage. The entropy extraction circuit may have a significant impact on both the 

number of ring stages and the / ratio. Both of these factors are governed by the device 

environment. With reference to [4,] we were able to calculate the values for our design 

parameters like the / ratio and the oscillation mode. As can be seen in Figure 3.5, the 

entropy extraction circuit is made up of a serial-input parallel-output (SIPO) shift 

register, multiplexers, D-type flip-flops, and XOR gates. The flip-flops of the D-type are 

responsible for sampling the outputs of the ring stages. At the jitter boundary of the STR 

output transition is where the sampling is carried out. In order to set the output of the 

multiplexers to the starting values of the ring stages, the initial value of the SIPO shift 

register is determined to be 2 minus 1, and this value will be used. The output of the 

FSTR-TPG is connected to the input of the SIPO shift register once the process is 

completed. If this number contains some element of randomness, then the values of the 

final output throughout each cycle of the -clock will be random. The enable signals for 

the multiplexers are taken from the shift register outputs produced by the SIPO shift 

register. They are XORed with the output of the ring stage before being used as inputs to 

the multiplexer. The final output value is produced by using the outputs of the 

multiplexers as inputs to the XOR gate, which in turn produces the final output value. It 
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was decided that the FSTR-TPG would have a number of ring stages that was a multiple 

of eleven, and the device was programmed to function in an evenly-spaced fashion. 

 

Figure 3.5. Proposed entropy extractor with feedback structure 
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CHAPTER 4 

EXISTING SYSTEM 

 

4.1 INTRODUCTION  

During the period of the technological revolution, very large-scale integration (VLSI) 

played an essential role. On the one hand, as the complexity of designs and the prices of 

chip designs continue to rise, the majority of design businesses will encourage third 

parties to engage in the manufacturing process in order to lower the costs of assembly [5]. 

For these complicated devices to be assembled, more advanced manufacturing 

technology is required. The significant cost of establishing and maintaining such a 

fabrication facility (the cost of claiming a foundry is around $5 billion) is the primary 

barrier that prevents smaller design firms from having their own own foundry on the 

premises. Whatever the case may be, globalization in the Integrated Circuit industry has 

pushed IC designers to re-appropriate the construction of their designs to seaward 

foundries [1]. This is because globalization has made it easier for IC designers to work 

with overseas foundries. This pattern does a good job of cutting costs, but at the same 

time, it has provided a backdoor for a number of vulnerabilities in terms of safety, such as 

theft of intellectual property (IP), reverse engineering, counterfeiting, the introduction of 

Trojans, and overbuilding. The intellectual property of a plan was revealed as a result of 

the outside foundry workers having access to the design file [2]. A dishonest customer 

working at the foundry may potentially reverse-engineer the design and take full credit 

for the intellectual property. One such strategy that may be used to take control of a 

design is to produce an excessive number of integrated circuits and then sell the surplus. 

These kinds of design thefts result in a yearly loss of several billion dollars in revenue for 

the semiconductor industry. Design-for-Security, often known as DFS, is now an integral 

component of integrated circuit design [7] in order to protect against the many threats to 

data security. The use of logic encryption as a preventative measure against intellectual 

property theft and illegal overproduction by foundries is becoming more common. A 

designer may insert several repeating key-gates into a circuit to mask the functionality of 

the circuit from an outside foundry by using logic encryption [13]. [Circuit] is short for 

"integrated circuit." The correct application of an encrypted integrated circuit is 
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dependent on the application of the correct keys to the key gates. The application of the 

mysterious keys causes the created IC to take effect. These mysterious keys are stored 

away in a memory that was painstakingly created inside of the chip [16]. 8 An 

unauthorized customer is prevented from figuring out the design document and claiming 

ownership for the design when the appropriate keys are not easily accessible. Illicitly 

overproduced integrated circuits (ICs) cannot be sold on the market because, unless they 

are activated with the appropriate keys, they do not demonstrate the capability for which 

they were designed [3]. The purpose of this project is to modify the functioning of ICs 

such that they will not provide output that is not intended unless they are first triggered in 

the proper manner using the relevant keys. In addition, there must be some difficulty 

involved for an unauthorized user in regaining access to the key. In order to protect 

against the dangers that are present, efforts were made to strengthen the security of the 

hardware. 1. Combinational logic obfuscation: hides the functionality by adding extra 

gates (xor, xnor) to the original design and referring to these newly added gates as key 

gates [9]. 2. IC camouflaging is a layout method that disturbs attackers from reverse 

engineering by inserting fake contacts or look-alike structure cells used to create logic 

gates [14]. This is accomplished by introducing a technique known as "IC camouflaging." 

4.2. PROPOSED IMPLEMENTATION FLOW 

The implementation cycle described above offers a comprehensive picture of the job, 

which includes the development of TPGs and their modification in accordance with the 

level of security that must be maintained. To begin, DUS, which stands for "design under 

security," must be created in order to ensure security. The DUS is putting pattern 

generators that are counters and linear feedback shift registers (LFSR) of different bit 

counts through their paces in the course of this study. When it comes to built-in self-test 

(BIST) circuits, protecting the TPGs is often essential in order to prevent them against 

scan-based assaults. Attacks against TPGs that exploit their susceptibility to observability 

and controllability may be carried out utilizing scan chains. Consequently, the provision 

of security to TPGs plays an important part in the process of developing the chips. The 

development of TPGs constitutes the first stage of the work's implementation process 

flow. Verilog is used as the HDL language to describe the design of the circuit used in 

model-based simulation. Following the completion of the design, they are simulated and 
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have their functioning checked using a variety of inputs. When it comes to securing these 

TPGs, these designs have been modified in such a way that the circuit only generates the 

test patterns when a precise key is provided, which is 001 in this work; otherwise, it 

remains in the preset state, which is an all 1's state in the case of LFSR and a reset state, 

which is an all 0's state if it is a counter. If the wrong key is provided, the circuit does not 

generate the test patterns. But why are they limited to only these two states? Because of 

this, the process of securing TPGs is distinct from the process of securing the general 

circuit. If DUS provides random outputs when the erroneous key is provided, then those 

outputs may also be used as test patterns to test a specific circuit, which will result in the 

circuit being susceptible to observability and controllability attacks. The output is thus 

restricted to the reset and preset stages so that the production of random test patterns may 

be stopped when the incorrect key is input. The key generation circuit, also known as the 

3-bit counter, is responsible for producing a variety of keys at certain intervals of time 

(ns). TPGs are responsible for producing the necessary test patterns for the testing circuit 

whenever the 001 state is produced by the key generation circuit. All of the other states of 

the key generator output of DUS are still in either their reset or preset stages. This 

previously described procedure is carried out in the model. 
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Fig. 4.1. Implementation Flow 

After adding security to the design, the design itself has to be able to be synthesized. This 

is necessary in order for the added security to be power-optimized, meet scheduling 

restrictions, and not add any additional area overhead. The following describes the 

procedure of examining the given security: First and foremost, the Vivado program calls 

for the inclusion of design information in the form of v files. This is then followed by 

RTL analysis, synthesis, and implementation. After the design entry has been simulated 

and confirmed, the RTL (Register Transfer Level) analysis creates a high-level 

representation of the design by providing schematics of the entry design. These 

schematics consist of a flow of data between various logic components and its 
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interconnects. Run synthesis of the validated design generates a usage report. This report 

details the percentage of the possible number of LUTs (Look Up Tables), FF (Flip Flops), 

and IO (Inputs Outputs) that have been used. The conclusion of synthesis is whether an 

excessive amount of logical components were utilised or not. Its primary function is the 

optimization of logical processes. The Run Implementation stage is the last step in the 

security analysis process. This stage provides power reports and temporal limitations 

such as WHS (Worst Hold Slack) and WNS (Worst Negative Slack). This stage in 

Vivado provides a conclusion about the utilization of power, specifically regarding static 

power and dynamic power, as well as a conclusion regarding time restrictions, which in 

turn provides a conclusion regarding delay in the circuit. 
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CHAPTER 5 

PROPOSED SYSTEM 

5.1. Introduction  

In our modern era almost, every digital equipment owns a BIST and for most people this 

piece of technology has become an essential part of their life. According to an estimation 

[1] there are currently around 1.9 billion BIST users around the world, which is over 25% 

of the world’s population. This number is expected to keep increasing rapidly in the 

coming years. For a device with so many users worldwide it is important that it is 

properly secured [2]. Many BIST users will keep personal data on their memories, so a 

security leak across a large platform like IC would have a heavy impact on society [3]. 

However, a BIST does bring possible security vulnerabilities. A malicious party could 

intercept or alter BIST communication. This would have a serious impact on the security 

and privacy of the BIST user. For example, a malicious party could listen in on the 

communication between a BIST user and the bank. This would cause secure bank 

information to be compromised [4]. The hackers are actively targeting financial BIST 

modules and significant number of financial modules have been hacked and malicious 

versions of the modules have been uploaded [5]. Unsuspecting users who use these 

malicious apps risk their confidential credentials being captured, or their BISTs being 

exposed to adware. 

In order to prevent these scenarios, we need to create a simple way for an IC device to 

encrypt data and engage in secure encrypted communication [6]. This would be a 

relatively simple system to build on a larger desktop system because it has practically 

unlimited resources to work with in terms of computational power and data storage space. 

However, for a similar system to work on an IC device it will need to take into account 

the limited number of resources the device has in terms of battery, computational power 

and data storage space compared to a desktop system [7]. If the encryption process takes 

up too much resources, it will interfere with the device user’s normal TRN-TPG 

activities. A crucial step for encrypted communication to take place is the generation of a 

strong random seed as input for the encryption scheme. Ideally the generation of this 

random seed would take place on the device using a limited number of computations, 

battery power and storage space [8]. Thus, TRN-TPG present a strong lightweight 
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randomness generator prototype in the IC user space. On boot-up of the IC-TRN-TPG the 

prototype generates an entropy pool from noise in the TRN-TPG data. Once the prototype 

has generated a sufficiently strong entropy pool, other processes on the TRN-TPG are 

able to request the prototype for any size of random output. Before presenting the 

prototype [9], TRN-TPG analyze the sensor data and estimate the required time to run the 

data generation process on device boot-up before the entropy pool can be considered 

sufficiently strong. For this purpose, TRN-TPGs [10] have built an oscillator module, 

which generates a large amount of data from different device sensors. The goal of the 

randomness generation prototype is to provide a source of strong randomness which can 

be used in addition to randomness from existing sources like LFSR. This combination 

will create a stronger and more secure random seed for encryption processes on the 

device. The broad objective of the present study is to examine the degree and quality of 

randomness of various generators [15]. In tune with this, the following four specific 

objectives have been framed for the study. 

 Implementation of TRN-TPG with for generating the unpredictable 

random numbers. 

 Design of DCMs to achieve the tuneability of phase, frequency of random 

numbers.  

 The beat frequency detection operation is achieved by D-FFs, post 

processing units, and counters.  

5.2. PROPOSED METHOD 

This section gives the detailed analysis of proposed DCM-TRN-TPG implementation. 

The detailed designs are shown in Figure 5.1. Here, the ring oscillators in the 

conventional methods were replaced by DCM, which implements the tuneability of 

phase, frequency of random numbers. Further, the beat frequency detection operation is 

achieved by D-FFs, post processing units, and counters.  
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Figure 5.1: Proposed DCM-TRN-TPG block diagram 

The DCM-TRN-TPG method's detailed process is as follows: 

Step 1: Initially, address generation module generates the different address based on user 

requirements. The addresses are changed based on application introduced in BIST 

environment. 

Step 2: The block random access memory (BRAM) stores the data in parallel manner, 

which gives lower synchronization problems as compared to SRAM. 

Step 3: DCM-DRP controller: Here, the dynamic reconfigurable controller is 

introduced for controlling the frequencies of DCM modules. The DCM-DRP controllers 

functions using first in first out (FIFO) operation.  
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Figure 5.2. operation diagram of FCM-DRP controller. 

An array of memory called a FIFO or Queue is often used in electronics to transport data 

between two circuits with various clock rates. The dual port memory that FIFO employs 

has two pointers that point to the read and write locations. Figure 5.2 is a generalized 

block diagram of FIFO. Rotating pointers are often used to create FIFO modules. A 

FIFO's write and read pointers might be referred to as the head and tail of the data region. 

The FIFO's initial read and write pointers will both point to the same place. After writing 

data to the "n"th position in a FIFO with n locations, the write pointer refers to the 0th 

location. The write pointer and read pointer are located at the same positions in this 8-bit 

FIFO, respectively. The diagram's shaded region is filled with information. Both 

synchronous and asynchronous FIFOs are possible. The asynchronous FIFO has no 

clock. Since some FIFOs have separate clocks for read and write, synchronous FIFO may 

have 1 or 2 clocks. Because synchronous FIFOs provide better interface time, 

asynchronous FIFOs are less often utilized nowadays. Empty or full flags are set if the 

FIFO counter reaches zero or BUF LENGTH. If a write occurs and the buffer is not full, 

the FIO counter is increased. If a read occurs and the buffer is not empty, the FIO counter 

is decremented. If both reading and writing occur, the counter will not change. Read and 

write pointers are rd ptr and wr ptr, respectively. The bits in these registers were chosen 

to match the address width of the buffer, so when the buffer overflows, the values will 

also overflow and become 0. Finally, DCM-DRP controller generates the control signals 

such as DCM-A-DRP and DCM-B-DRP. 

Step 3: DCM-A performs the frequency division by 2 of clock upon enable of DCM-A-

DRP. 
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Figure 5.3. DCM-A operation. 

The frequency waveforms in Figure 5.3 demonstrate that when the output from Q is "fed 

back" to the input terminal D, the output pulses at Q have a frequency that is precisely 

one half ( 2) that of the input clock frequency. In other words, the circuit now divides the 

input frequency by a factor of two, producing frequency division (an octave). As a result, 

a "ripple counter" is created. In ripple counters, the clock pulse activates the first flip-

flop, whose output triggers the second flip-flop, which in turn triggers the third flip-flop, 

and so on along the chain, creating a rippling effect that gives the timing signal its name. 

Step 4: DCM-B performs the frequency division by 3 of clock upon enable of DCM-B-

DRP. Figure 5.4 illustrates the 1/3 frequency divider circuit, which consists of two JK 

flip-flops, an OR gate, and a NOT gate. The previous output state of each flip-flop (QA 

and QB, respectively) must be used to determine the input of the first JK flip-flop and the 

inputs for the remaining flip-flops in the circuit. Each Flip-input Flop's should perform 

the same function in order to maintain the cycle of its combinational output. Karnaugh 

map is used to get the input equation for each JK Flip-Flop while designing a sequential 

circuit. To simplify the design process, the J terminal and K terminal of a Flip-Flop might 

be linked. The transition Table indicates that two Flip-Flops are required to get at the 

final outcomes. For JK flip Flop inputs, the standard count sequence is J=0, K=0, J= 0, 
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K=1, J= 1, K=0. The rows of the columns Next JA, Next KA, Next JB, and Next KB are 

filled by the 1/3 frequency divider circuit. When analyzing a frequency cycle of QA and 

QB, QA's cycle is 0 1 0 0 1 0' and it includes the unit "X 0 0 X." As a result, the KA 

terminal may be directly linked to the HIGH signal. In the same circumstance, the KB 

terminal may be directly linked to signal logic "1" when the frequency cycle of QB does 

not include "X 1 1 X". 

 

Figure 5.4. DCM-B operation. 

Step 5: DCM-A frequency is applied as data input to DFF and DCM-B frequency is 

applied as clock input to DFF, which estimates the difference in frequencies. The DFF 

output becomes high during high frequency change, and the DFF output becomes low 

during low frequency change. 

Step 6: DFF output is applied as reset input to counter. If the reset=1, then counter 

initialized to zero, else reset=0, counter starts initializing the random sequences. 

Step 7: Finally, post processing unit contains the zigzag random connections of XOR, 

which generates the non-repeated random numbers.  

.  
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Chapter 6 

XILINX-ISE 

Step 1: CLICK ON NEW PROJECT 

 

Step 2: GIVE THE PROJECT NAME and SELECT 

LOCATION (WRITABLE) 
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Step 3: CLICK ON NEXT and NEXT 
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Step 4: CLICK ON FINISH 
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Step 5: CLICK ON CHIP (XC…) then MOUSE RIGHT 

CLICK then CLICK ON ADD SOURCE 

 

 

 

 

 

 

Step 6: SELECT THE CODE LOCATION GIVEN BY 

DEVELOPER AND ADD CODE 

(Note ALL FILES) AND CLICK OPEN 
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Step 7: SELECT THE SIMULATION and select files to RUN 
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Step 8: SELECT ISIM SIMULATOR and SIMULATE 

BEHAVIORAL MODEL 

If no errors isim window will open 
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Step 9: ISIM WINDOW 

   select zoom to full view  
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CHAPTER 7 

SIMULATION RESULTS 

 

Xilinx ISE software was used to create all of the DCM-TRN-TPG designs. This software 

programmed gives two types of outputs: simulation and synthesis. The simulation results 

provide a thorough examination of the DCM-TRN-TPG architecture in terms of input and 

output byte level combinations. Decoding procedure approximated simply by applying 

numerous combinations of inputs and monitoring various outputs through simulated 

study of encoding correctness. The use of area in relation to the transistor count will be 

accomplished as a result of the synthesis findings. In addition, a time summary will be 

obtained with regard to various path delays, and a power summary will be prepared 

utilizing the static and dynamic power consumption. 

 

Figure 7.1. RTL schematic 
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Figure 7.2. Design summary. 

Figure 7.2 shows the design (area) summary of proposed method. Here, the proposed 

method utilizes the low area in terms of slice LUTs i.e., 16 out of available 17600. 

Further, the proposed method utilizes the slice registers as 16, out of available 35200. 

Further, the proposed method utilizes fully used LUT-FF as 16, out of available 16. 

 

Figure 7.3. Time summary 

Figure 7.3 shows the time summary of proposed method. Here, the proposed method 

consumed total 0.316ns of time delay, which is entirely route delay. 

 

Figure 7.4. Simulation outcome. 

Figure 7.4 presents the simulation outcome of proposed system. Here, clock (clk), enable, 

load, and seed are the input data pins. Further, out is the output pin. Initially, a logic high 

enable causes the system will function and a logic high load resulted in loading of seed 

value. So, 8 bit seed value (example 1010) is loaded into TRNG and resulted out as 1010. 

Further, the random numbers are generated for each clock cycle. 
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Figure 7.5. Power summary. 

Figure 7.5 shows the power consumption report of proposed DCM-TRN-TPG. Here, the 

proposed DCM-TRN-TPG consumed power as 32.83 milli watts. Table 7.1 compares the 

performance evaluation of various TRNG controllers. Here, the proposed DCM-TRN-

TPG resulted in superior (reduced) performance in terms of LUTs, slice registers, LUT-

FFs, time-delay, and power consumption as compared to conventional approaches such 

as PRNG [22], PUF-TRNG [24], and RO-TRNG [25]. Further, the graphical 

representation of performance comparison is presented in Figure 7.6. 

Table 7.1. Performance evaluation. 

Metric PRNG 

[22] 

PUF-TRNG 

[24] 

RO-TRNG 

[25] 

Proposed DCM-

TRN-TPG 

Slice Registers 56 45 32 16 

LUTs 67 55 42 16 

LUT-FFs 74 52 39 16 

Time delay (ns) 0.927 0.837 0.735 0.540 

Power consumption 

(mw) 

82.61 73.41 58.26 32.83 
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Figure 7.6. Graphical representation of performance evaluation. 
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CONCLUSION 

The introduction of TRN-TPG frameworks to address this issue is the main goal of this 

effort. Furthermore, DCM, which enables the tuneability of phase and frequency of 

random numbers, took the role of the ring oscillators in the traditional approaches. 

Furthermore, D-FFs, post processing units, and counters are used to carry out the beat 

frequency detecting operation. The simulations showed that the suggested technique 

outperformed existing methods in terms of area, latency, and power. The work may be 

expanded to build real-time safe protocols including public key cryptography, RSA, 

ECC, and HECC cryptography methods using the DCM-TRN-TPG outputs as both 

public and private keys. 
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FUTURE SCOPE 

Within the context of this project, we are now working with the numeric OTP system that 

consists of four digits. Therefore, in order to make the system more secure, we need to 

create an OTP system that uses alphanumeric symbols as its foundation.  
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