Code No: 133AG

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, May/June - 2019 DATA STRUCTURES THROUGH C++

DATA STRUCTURES THROUGH C												
8R	Time: 3 Hours	8Ki	Common to CSE,	3 K	Max. Mai	·ks: 75						
	Note: This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.											
8R	88	88	PART- A	8R.		Marks) \						
	b) Describe	eritance and poly mega and theta n	otations.			[3]						
	c) Write the	motivation of spar	se matrices.			[2] [3]						
	d) Explain th	e ADT of stack. binary tree?				[2]						
88	f) Explain al	bout the ADT of pout time complex		. 8R	8R	[3] [2] [3]						
	h) Explain al	binary search tree	e?	•		[2]						
	j) Give an e	xample of DFS.				[3]						
			PART-B		(50	Marks)						
8R	2.a) Explain c b) Write abo	onstructors and de out linear data stru	estructors with ex ctures with exam OR	amples.		[5+5]						
	3.a) Explain a b) What is re	bout throwing an ecursion? Explain	exception. about data abstra	action.		[5+5]						
8R	b) Describe	rray representatio circular lists and l	neader nodes. OR	SH	OH.	[5+5]						
	5.a) Discuss i b) Briefly ex	n detail about AD xplain about appli	T of queue. cations of stack.			[5+5]						
	6.a) Explain a b) What are	bout Insertion and properties of bina	d deletion operation trees? Explair	ons in max heap.		[5+5]						
8H	7.a) Discuss a b) What is a	about the ADT Bit threaded binary t	naryTree. ree? Explain.	QM		[5+5]						
	b) Give con	+ program for he nparison of search	ing methods. OR			[5+5]						
8R	9.a) Write C ⁺ b) Analyze	+ program for ins the time complex	sertion sort techn ity of quick sort t	ique. echnique.	ÓΚ	[5+5]						

8R	8R	80	80	SP	20	30	
		ne following: ations of graphs ack tress.	OR		[:	5+5]	
8R	a) Adjacer	e following: ncy matrix n into an AVL s	search tree.	21.	[:	5+5]	
			00000				
8R	8 R	88	88	88	SR.	88	
8,2	8R	85		and the second s		31	
8R	8 P	8R	8R	80	2 2 1	88	
87		8 R	3.0	30		8 8 8	
8R	88	.8R	8R	8R	817	88	
8R	8R	8R	8R	SR		ŠR	