R16

Code No: 132AA

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech I Year II Semester Examinations, May/June - 2017

ENGINEERING PHYSICS – II

(Common to EEE, ECE, CSE, EIE, IT)
Time: 3 hours

Max. Marks: 75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub-questions.

PART- A

(25 Marks)

[5+5]

1.a)	Calculate de-Broglie wavelength of 5 KeV neutron. Given	mass of	the neutron is		
	1.675×10^{-27} kg.		[2]		
b)	Explain the significance of a wave function.		[3]		
c)	Distinguish between intrinsic and extrinsic semiconductors.		[2]		
d)	Explain the energy diagram of a p-n junction diode.	NAME OF TAXABLE PARTY.	[3]		
e)	Define the terms electric displacement vector and susceptibility.		[2]		
f)	Explain the structure of BiTiO ₃ .		[3]		
g)	A paramagnetic material has magnetic field intensity 2×10^4	4/m. If th	e Susceptibility		
	of the material is 3.0×10^{-4} , calculate the flux density.		[2]		
h)	What are the applications of superconductors?		[3]		
i)	What is surface to volume ratio?		[2]		
j)	Explain the working principle of TEM.		[3]		
PART-B					
			(50 Marks)		

2.a) Derive an expression for Schrodinger's time independent wave equation.b) Explain the origin of bands formation in solids.

3.a) Explain Kronig – penny model qualitatively.

b) Describe the theory of one dimensional particle in a box. [5+5]

4.a) Calculate the carrier concentration in an n-type of semiconductor.

b) Describe the I-V characteristics of a solar cell. [5+5]

OF

5.a) Describe the Fermi level in the context of intrinsic semiconductor and derive an expression for it.

b) Explain the formation of p-n junction. [5+5]

		6.a) b)	Derive the expressions for electronic polarizability in a dielectric. Explain Piezo and Pyroelectricity in dielectrics. OR	 [5+5]	
	mes ar	7.a) b)	Derive Classius – Mosotti relation in dielectrics. Write a note on Ferroelectricity.	 [5+5]	e ^{lara}
49		8.a) b)	Distinguish between para, ferro and Ferri magnetic materials. Distinguish between soft and hard magnetic materials. OR	[5+5]	******
		9.a) b)	Describe Hysteresis curve on the basis of Domain theory. What is superconductivity? Explain Meissner effect.	[5+5]	orași _{sei}
		10.a) b)	Describe sol-gel method to synthesis nano materials. How do you characterize nanomaterials by XRD? OR	[5+5]	e en
		11.a) b)	Describe the Ball mill method to synthesize nano material. What is nanoscale? Explain the quantum confinement at nanoscale.	[5+5]	

---oOOoo---