

8	Į.		No: 133BC JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech II Year I Semester Examinations, May/June - 2019 MATTHEMATICAL FOUNDATIONS OF COMPUTED SCIENCE	3R	
MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE (Common to CSE, IT)					
	T	ime:	:: 3 Hours Max. Marks: 75		
8		lote:	This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.	3 R	
PART- A					
, parties,	,	`	(25 Mar)	ks)	
		.a) b)	Find the negative of $p \rightarrow q$. [2] Test the validity of the following argument $p \land r \rightarrow \neg q$, $\neg q \rightarrow r \not \land p \land r \rightarrow r$	3 H	
		c)	$p \wedge r \to \neg q, \ \neg q \to r \not x p \wedge r \to r$ If $f(x) = x^2 - 6 = y$, then find $f^{-1}(y)$. [2]		
		d)	If $f: G_1 \to G_2$ is a homorphism and $a \in G$ then prove that $[f(a)]^{-1} = f(a^{-1})$. [3]		
		e)	How many 5 digit numbers are possible, which are greater than 40000 with the digit	gits	
8	R	f) g)	Find the number of positive integer solutions of $x + y + z = 12$. [2] Solve the recurrence relation $u_{n+2} - u_{n+1} - 6u_n = 0$. [2]	JR.	
		h)	Find the generating function of the sequence 1, 3, 3^2 , 3^3		
8	R	i)	If the adjacency matrix of the Graph is $\begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{bmatrix}$, then draw the graph. [2]	3 R	
		j)	If G is a k regular graph with 18 edges and the order of the graph is 9. Find the value o	fk.	
[3]					
PART – B					
8	2	.a)	Test the validity of the following argument. If I study, I will not fail in the examination. If I do not watch TV in the evenings, I will study. I failed in the examination.		
		b)	Therefore I must watch TV in the evenings. Prove that the following argument is valid. $\neg \exists x (p(x) \land q(x))$		
8			$\mathbb{P}_{q(a)}$ SR SR SR SR [5+5]		
OR					

8R 8R 8R 8R 8R 8R

