Code No.: AP102BS

R20

H.T.No.

8 R

CMR ENGINEERING COLLEGE: : HYDERABAD UGC AUTONOMOUS

I–B.TECH–I–Semester End Examinations (Supply) - January- 2022 APPLIED PHYSICS

(Common to CSC, CSD, CSE, IT)

[Time: 3 Hours]

[Max. Marks: 70]

Note:	This question paper contains two parts A and B. Part A is compulsory which carries 20 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each que	stion
	carries 10 marks and may have a, b, c as sub questions.	(20 Marks)
1. a)	What is the Born's interpretation of the wave function?	[2M]
b)	Define effective mass of an electron.	[2M]
c)	Differentiate the n-type and p-type semiconductors with their Fermi level diagram.	[2M]
d)	Sketch typical illumination characteristics for a photodiode.	[2M] [2M]
e)	Mention the types of polarization mechanism occurred in dielectric materials.	[2M]
f)	Define magnetic moment and intensity of magnetization. Explain the need of population inversion in the production of lasers.	[2M]
g) h)	Explain the basic principle of light propagation in optical fiber.	[2M]
i)	Explain 0D, 1D, 2D and 3D nanomaterials.	[2M]
j)	Explain the phenomenon of Quantum Confinement in nanomaterials.	[2M]
	PART-B	(50 Marks)
2.	a) Derive the Schrödinger's time independent wave equation for a free particle.	[6M]
	b) What is the physical significance of wave function and explain Heisenberg Uncertainty prin	nciple. [4M]
	OR	[6M]
3.		[6M]
	b) Mention the drawbacks of classical free electron theory.	[4M]
4.	b) Explain Hall Effect and its importance.	[6M] [4M]
	OR	[6M]
5.	a) Explain the construction, working principle and applications of Solar Cell.b) Draw I-V characteristic curve of a PN junction diode and explain.	[4M]
6.	a) What is meant by local field? How it is calculated for a cubic structure?	[6M]
	b) Deduce Clausius-Mossotti equation.	[4M]
	OR	1010
7.	a) Compare the properties of dia, para and ferromagnetic materials.	[6M]
	b) Distinguish between soft and hard magnetic materials.	[4M]
8.	a) Explain the Construction and working principle of He-Ne laser.	[6M]
0.	b) Mention the applications of LASERs in medical field.	[4 M]
	OR	
9.	 a) Derive an expression for Numerical Aperture and acceptance angle of optical fiber in term refractive indices. 	s of [6M]
	b) Discuss the various types of optical fibers.	[4M]
10.	a) Explain in detail size, surface and morphological analysis of nanostructures using SEM.b) Why nanomaterials exhibit different properties? Explain.	[6M] [4M]
OR		
11.	b) Mention the applications of nanomaterials in different fields.	[6M] [4M]
