Code No.: EE204ES

R20

H.T.No.

8 R

CMR ENGINEERING COLLEGE: : HYDERABAD UGC AUTONOMOUS

I-B.TECH-II-Semester End Examinations (Supply) - January- 2022 BASIC ELECTRICAL ENGINEERING (Common to CSM, ECE)

[Time: 3 Hours]

[Max. Marks: 70]

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 20 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART-A	(20 Marks)

. a)	Define Capacitance and write the expression for voltage across a capacitor.	[2M]
1.	State Thevenin's Theorem.	[2M]
b)	Define the terms Impedance and Reactance.	[2M]
c)	Define the terms impedance and reactance.	[2M]
d)	Draw the phasor diagram of a series RC circuit. Also define power factor.	[2M]
e)	List the various losses in a Transformer.	[2M]
f)	Mention the properties of an ideal Transformer.	
g)	What is the significance of back EMF in DC motor?	[2M]
h)	List the classification of various DC generators.	[2M]
i)	Mention different starting methods used in three-phase induction motor.	[2M]
j)	Write the significance of rotating magnetic field in the operation of three-phase Induction Motor.	[2M]

PART-B (50 Marks)

2. A Series RC circuit is supplied by DC voltage. Determine the expression for i(t) when the switch is [10M] closed at t=0.

OR

3. Determine the current through 2Ω resistor connected between the terminals AB using Norton's [10M] theorem. Also draw its equivalent circuit.

4. Derive the expressions for RMS value and Average value of a sinusoidal quantity. Also show that form [10M] factor of sinusoidal alternating current wave is 1.11.

OR

- a) A 20-Ω resistor, 20-mH inductor and 20-μF capacitor are connected in series with a 20-kHz voltage source. The RMS current through the circuit is 0.30 A. Find the RMS voltage drop across each of the elements.
 - b) Derive the voltage and current relationships in a Three-phase balanced delta connected network.

[5M]

6. Describe various three phase transformer connections and their significance?

[10M]

OR

7.	a) Draw the equivalent circuit of a single-phase Transformer and explain each part in it.b) Derive the condition for maximum efficiency in a Transformer.	[6M] [4M]
8.	 a) A shunt wound DC generator delivers 10 A at 220 V to a load. The resistance of the shunt field coil is 100Ω and that of the armature winding 0.02Ω. Calculate the EMF induced in the armature. b) Derive the EMF equation of a DC Generator. 	[5M]
	OR	
9.	Draw and explain the performance characteristics of a DC Shunt and Series Motors.	[10M]
10.	Describe the construction and working of Synchronous Generator. OR	[10M]
11.	Derive the expression for torque in a three-phase Induction Motor. Also explain Torque-Slip characteristics.	[10M]