Code No.: DS305ES

R20

H.T.No.

8 R

CMR ENGINEERING COLLEGE: : HYDERABAD UGC AUTONOMOUS

II-B.TECH-I-Semester End Examinations (Supply) - June- 2022 DIGITAL LOGIC DESIGN (CSD)

[Time: 3 Hours]

[Max. Marks: 70]

[7M]

[7M]

No	2	 Answer any <u>FIVE</u> questions. Each question carries 14 marks. All questions carry equal marks. Illustrate your answers with NEAT sketches wherever necessary. 	
1	a) b)	Convert following i. (111010) ₂ to () ₁₆ ii. (11001) ₂ to EX-3 code. iii. (33.125) ₁₀ to binary. iv. (111010) ₂ to 2'S complements. i. What is canonical standard form of Sum of Product (SOP) for	5X14=70 [2M] [2M] [2M] [1M] [4M]
		f(x, y, z)=x'y'+z and convert into POS form. ii. Explain and draw the logic symbol of Exclusive-OR and OR gate.	[3M]
2	a)	Simplify function using K-Map method for $f(A, B, C, D) = \sum (0, 1, 3, 5, 7, 8, 9, 11, 13, 15)$ and draw a logic diagram.	[7M]
	b)	Simplify function using K-Map method for $f(A, B, C, D) = \sum (1, 4, 5, 9, 11, 13, 15)$ and draw a logic diagram.	[7M]
3	a) b)	Design full adder. Design a two-bit Magnitude Comparator.	[7M] [7M]
4	a)	i. Compare Latch and Flip-Flop.ii. Compare combinational and sequential circuits.	[7M]
	b)	How many used states and unused state of 4-bit ring counter and draw logic diagram of ring counter.	[7M]
5	a) b)	Explain the programmable Logic Array. Explain the random-access memory and discuss with details.	[7M] [7M]
6	a)	Design 8X1 MUX.	[7M]
	b)	Design Mod 5 Synchronous counter.	[7M]
7	a)	Simplify function using K-Map method for $f(A, B, C) = \sum (0,5,7) + d(1,3)$ and Draw logic diagram using NAND gates.	[7M]
	b)	Design a Half Adder using OR gates.	[7M]

Draw a Exclusive-OR gate using NAND gate.

Draw the logic diagram of 3 to 8 Decoder.

8 a)