Code No.: EC302PC

R20

H.T.No.

8 R

CMR ENGINEERING COLLEGE: : HYDERABAD UGC AUTONOMOUS

II-B.TECH-I-Semester End Examinations (Supply)- June- 2022 DIGITAL SYSTEM DESIGN (ECE)

[Time	e: 3 l	Hours] [Max. Marks	: 70]
Note:		Answer any <u>FIVE</u> questions. Each question carries 14 marks. All questions carry equal marks.	
	3. 1	Illustrate your answers with NEAT sketches wherever necessary.	
		5X	14=70
1	a)	i. Convert (657) ₈ into Decimal. ii. Convert (2348) ₁₀ into Hexadecimal.	[7M]
	b)	Implement the given boolean expression using AND, OR, and NOT Gates $F = x y + x' y' + y' z$.	[7M]
2.	a)	Minimize the following expression using K-Map $f = \Sigma$ m $(1,3,5,8,9,11,15) + d(2,13)$.	[7M]
	b)	Develop a 4:16 Decoder using 3:8 Decoders with its Structural Diagram.	[7M]
3.	a)	Draw and explain the Logic Diagram of Positive Edge Triggered J-K Flip-Flop using NOR Gates with its Truth Table.	[7M]
	b)	Explain the operation of 4-Bit Johnson Counter using D-Flip Flops with the help of bit pattern.	[7M]
4.	a) b)	Design a 3-Bit Up/Down Counter which counts up when the control signal M=1. Explain the differences between Asynchronous and Synchronous Counters.	[7M] [7M]
5.	a) b)	Draw and explain CMOS 2-Input NAND Gate. Compare CMOS, TTL and ECL with reference to Logic Levels, DC Noise Margin, and Propagation Delay and Fan-Out.	[7M] [7M]
6.	a)	Convert (110001.1010010) ₂ into Hexadecimal. Convert (423.25) ₁₀ into Hexadecimal.	[7M]
	b)	Classify the Weighted Codes and Non-Weighted Codes.	[7M]
7.	a) b)	Design Full Adder using Half Adder and OR Gate. Minimize $F(c,b,a) = \sum m(0,1,6,7)$ using NOR Gate.	[7M] [7M]
8.	a) b)	Convert T Flip Flop to D Flip Flop. Explain Twisted Ring Counter in brief with neat sketch.	[7M] [7M]
