Code No.: MA201BS

R20

H.T.No.

R 8

[2M]

CMR ENGINEERING COLLEGE: : HYDERABAD UGC AUTONOMOUS

I-B.TECH-II-Semester End Examinations (Supply) - January- 2022 DIFFERENTIAL EQUATIONS AND VECTOR CALCULUS (Common to CSC, CSD, CSE, CSM, ECE, IT, MECH)

[Max. Marks: 70] [Time: 3 Hours]

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 20 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

> (20 Marks) PART-A

The number N of bacteria in a culture grew at a rate proportional to N. The value of N was initially 100 and increased to 332 in one hour. What was the value of N after $1\frac{1}{2}hrs$

[2M] Write the statement of newton's law of cooling. [2M]

Solve $(D^2 - 3D + 4) y = 0$ [2M] Find the Particular Integral of (D²+5D+6)y=e^x d)

Evaluate $\int_{0}^{5} \int_{0}^{x^2} x(x^2 + y^2) dx dy$ e) [2M]

Evaluate $\int_0^{1/2} r \sin\theta d\theta dr$ [2M]

Find a unit normal vector to the given surface $x^2y+2xz=4$ at the point (2,-2,3). [2M]

If $\bar{f} = (x+3y)\bar{i} + (y-2z)\bar{j} + (x+pz)\bar{k}$ is solenoidal, find p. [2M]

[2M]

i) If $F = (x^2-27)i - 6yz + 8xz^2 k$, evaluate $\int F \cdot dr$ from the point (0,0,0) to the point (1,1,1)along the Straight line from (0,0,0) to (1,0,0), (1,0,0) to (1,1,0) and (1,1,0) to (1,1,1).

j) If $\overline{F} = axi + byj + czk$ where a, b, c are constants then evaluate $\iint \overline{F} \cdot \overline{n} dS$ where S is the [2M] surface of the unit sphere is $x^2+y^2+z^2=1$

(50 Marks) PART-B

[5M] 2. a) Solve $v = 2px + v^2p^3$ [5M]

b) Solve (1+xy) y dx + (1-xy) x dy =0

OR [5M] 3. a) Solve $x \frac{dy}{dx} + y = \log x$

b) A body kept in air with temperature 25°C cools from 140°C to 80°C in 20 min's. Find [5M] when the body cools down to 35°C.

4. a) Apply the method of variation of parameters to solve
$$\frac{d^2 y}{d x^2} + y = \csc x$$

b) Find the PI of $(D^2+9)y = \cos 3x$ [3M]

5. Solve
$$(D^2 - 4D + 4)y = x^2 \sin x + e^{2x} + \cos x$$
 [10M]

Change the order of Integration and evaluate $\int_{x=0}^{4a} \int_{y=x^2/4a}^{2\sqrt{ax}} dy dx$ [10M]

7. Find the volume common to the cylinders
$$x^2 + y^2 = a^2$$
 and $x^2 + z^2 = a^2$ [10M]

a) Find the directional derivative of $\phi(x, y, z) = x^2yz + 4xz^2$ at the point(1,-2,1) in the [5M] direction of the normal to the surface $f(x, y, z) = x \log z - y^2$ at (-1,2,1)

b) Find curl \bar{f} where $\bar{f} = \text{grad}(x^3+y^3+z^3-3xyz)$ [5M]

9. a) Prove that div.(grad
$$r^m$$
)= $m(m+1)r^{m-2}$ [7M]
b) Find curl \bar{f} where $\bar{f} = \operatorname{grad}(x^3+y^3+z^3-3xyz)$

Verify Gauss Divergence theorem for $\overline{F} = (x^3 - yz)\overline{\imath} - 2x^2y\overline{\jmath} + z\overline{k}$ taken over the [10M] surface of the cube bounded by the planes x = y = z = a and coordinate planes.

Verify Green's theorem for $\int_c [(3x^2 - 8y^2)dx + (4y - 6xy)dy]$ where c is the region [10M] bounded by x=0, y=0 and x+y=1 *****