Code No.: AP202BS

R20

H.T.No.

8 R

CMR ENGINEERING COLLEGE: : HYDERABAD UGC AUTONOMOUS

I-B.TECH-II-Semester End Examinations (Supply) - March- 2023 APPLIED PHYSICS

(Common for CSM, ECE, MECH, AI&DS)

[Time: 3 Hours]
Note: This question paper contains two parts A and B.

[Max. Marks: 70]

Part A is compulsory which carries 20 marks. Answer all questions in Part A.
Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

	PART-A	(20 Marks)
1. a)	What are the matter waves? Explain their properties.	[2M]
b) c)	Explain the origin of energy band formation in solids.	[2M]
d)	Distinguish between direct and indirect band gap of a semiconductors. What is a Photodiode? Give its principle.	[2M]
e)	Define dielectric constant. Give its importance.	[2M]
f)	What is Bohr magneton? How is it related to magnetic moment of electron?	[2M]
g)	How population inversion related to laser radiation?	[2M]
h)	Draw the structure of optical fiber? Give its principle.	[2M]
i)	Explain surface to volume ratio.	[2M]
j)	State the principle of Transmission electron microscope (TEM).	[2M]
	(12.11).	[2M]
2.	Part-B	(50 Marks
2.	Describe Davisson and Germer's experiment to verify the wave nature of matter.	[10M]
2	Explain with suitable diagrams the conduction band, valence band and forbidden being solids and hones cyclein the bank.	
3.	in solids and hence explain the behavior of conductors, semiconductors and insulat	pand [10M]
4.	Derive an expression for the carrier concentration in n-type extrinsic semiconducto	r. [10M]
5.	OR	
٥.	Explain the principle, construction and working of Light emitting diode (LED).	[10M]
6.	Describe the phenomenon of electronic polarization and obtain an expression	for HONG
	electronic polarizability.	[10M]
7.	Explain the classification of magnetic materials.	
	Explain the classification of magnetic materials.	[10M]
8.	Explain with a neat diagrams (i) absorption (ii) spontaneous emission and (:::\
0.	stimulated emission of radiation.	[10M]
	OR	
9.	Define acceptance angle and numerical aperture. Obtain an expression for numerical aperture of an optical fiber.	cal [10M]
	an option moon.	[10111]
10.	What are nanomaterials? Why do nanomaterials exhibit different properties explain detail?	in [10M]
	OR	[10101]
11.	Describe the principle, construction and working of Scanning electron microsco	ano.
11.	(SEM) and give its limitations.	[10M]
