Code No.: EC405PC

R20

H.T.No.

8 R

CMR ENGINEERING COLLEGE: : HYDERABAD UGC AUTONOMOUS

II-B.TECH-II-Semester End Examinations (Supply) - February- 2023 CONTROL SYSTEMS

(ECE)

[Time: 3 Hours]

[Max. Marks: 70]

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 20 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

	PART-A	(20 Marks)
1. a)	Define Block diagram?	[2M]
b)	Give two examples for open loop System?	[2M]
c)	What is damping ratio?	[2M]
d)	What is break away and break in points?	[2M]
e)	Define Gain Margin?	[2M]
f)	Define frequency response?	[2M]
g)	Write pole zero plot of Lead compensator?	[2M]
h)	What is Compensation?	[2M]
i)	Define controllability?	[2M]
i)	What are the properties of state transition matrix?	[2M]

PART-B

(50 Marks)

Use Mason's gain formula to find the transfer function C(s)/R(s) for the signal flow
[10M]
graph shown below.

OR

3. Obtain the transfer funtion Y(s)/R(s) for the following block diagram

[10M]

4.a) Determine the RH stability of given characteristic equation, $S^4 + 8S^3 + 18S^2 + 16S + 5 = 0$ [7M] Write the equations for time domain specifications of a standard second order system [3M] b) with unit step input. The open loop transfer function of a unity feedback system is given by $G(S) = \frac{K}{S(1+ST)}$ [10M] 5. where K and T are constants having positive values. By what factor the gain K be reduced so that the peak overshoot of unit step response is reduced from 80% to 20%. Sketch the bode plot for a system with unity feedback having the transfer function and [10M] 6. find Gain and Phase Margin. $G(S)H(S) = \frac{75}{s(s^2+16s+100)}$ [3M] Define gain margin and phase margin. 7.a) [7M] Explain relation between time and frequency response analysis. b) Derive the realization of electrical network of Lag Compensator? [10M] 8. 9. What is compensation? What are the different types of compensators? Explain in brief [10M] Obtain the state transition matrix for the matrix $A = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}$ [10M] 10. Obtain the state space representation of the following differential equation, where y is [10M] 11. the output and u is the input. $\ddot{y} + 3 \ddot{y} + 12 \dot{y} + y = u$.