Code No.: AI702PC

R20 H.T.No.

	8	R						
--	---	---	--	--	--	--	--	--

CMR ENGINEERING COLLEGE: : HYDERABAD UGC AUTONOMOUS

IV-B.TECH-I-Semester End Examinations (Regular) - November- 2023 DEEP LEARNING (CSM)

[Time: 3 Hours]

[Max. Marks: 70]

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 20 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

	PART-A	(20 Marks)
1. a) b) c) d) e) f) g) h) i)	Differentiate between AI and DL. What is Neural Networking? Draw the Architecture of Discrete Hopfield Network. How do Kohonen Self-Organizing Map works? What is a Loss function and give the classification of loss functions What is a Saddle Point? What is Random Weight initialization? What is Regularization? What are the challenges in Neural Network Optimization? What is Natural language processing?	[2M] [2M] [2M] [2M] [2M] [2M] [2M] [2M]
2.	What is Back Propagation? Explain Back Propagation Neural Networks Train Algorithm. OR	(50 Marks) ning [10M]
3.a) b)	What is BAM? Explain briefly. if $x=(0,0,1)$ is applied at x layer, what is the associated y in this BAM.	[6M] [4M]
4.	Discuss about Fixed Weight Competitive Nets with a neat diagram. OR	[10M]
5.	Explain the types of Counter Propagation Networks with example.	[10M]
6.a) b)	Justify the importance of Rectified linear units in Hidden units. Describe about learning conditional statistics in Gradient Based Learning. OR	[5M] [5M]
7.	Explain output units of Feed Forward Networks.	[10M]
8.	Develop a data set and demonstrate Noise Robustness. OR	[10M]
9.a) b)	Explain L1 Regularization along with its weight update. Discuss about Drop Out Regularization technique.	[5M] [5M]
10. a) b)	Explain the following deep learning applications: Speech recognition. Computer vision.	[6M] [4M]
11.	OR Discuss how learning differs from Pure Optimization. ***********************************	[10M]