Code No.: AI405PC

**R20** 

H.T.No.

8 F

R

## CMR ENGINEERING COLLEGE: : HYDERABAD UGC AUTONOMOUS

## II-B.TECH-II-Semester End Examinations (Regular) - August- 2023 DESIGN ANALYSIS OF ALGORITHMS (CSM)

[Time: 3 Hours]

[Max. Marks: 70]

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 20 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

|       | $\underline{PART-A} \tag{20}$                                                      | Marks) |
|-------|------------------------------------------------------------------------------------|--------|
| 1. a) | Define Space complexity of an Algorithm?                                           | [2M]   |
| b)    | Write the concept of divide and conquer?                                           | [2M]   |
| c)    | What is an algorithm write its characteristics?                                    | [2M]   |
| d)    | What is a graph coloring problem?                                                  | [2M]   |
| e)    | List the advantages of dynamic programming.                                        | [2M]   |
| f)    | State the travelling salesman problem.                                             | [2M]   |
| g)    | Define spanning tree and minimum spanning tree.                                    | [2M]   |
| h)    | Write an algorithm of Greedy Knapsack problem?                                     | [2M]   |
| i)    | Write the concept of LC branch and bound.                                          | [2M]   |
| j)    | Mention different types of applications for Branch and Bound.                      | [2M]   |
|       |                                                                                    | [2]    |
|       | PART-B (50)                                                                        | Marks) |
| 2.    | Explain the performance analysis of an algorithm in terms of time and space        | [10M]  |
|       | complexity by a suitable example.                                                  | []     |
| OR    |                                                                                    |        |
| 3.a)  | Explain. Binary Search Algorithm using divide and conquer.                         | [5M]   |
| b)    | Apply Binary Search on a list of elements to find the key element using divide and | []     |
|       | conquer.                                                                           | [5M]   |
|       |                                                                                    | []     |
| 4.a)  | Let m=31, w={7,11,13,24} draw a portion of space tree using algorithm sum of       | [7M]   |
|       | subset.                                                                            | []     |
| b)    | Write short notes on Graphing coloring problem.                                    | [3M]   |
|       | OR                                                                                 | []     |
| 5.a)  | Explain n queen problem where n=4.                                                 | [5M]   |
| b)    | Discuss about Union and Find algorithms.                                           | [5M]   |
| ,     | and I ma digorithms.                                                               | [5M]   |

- 6.a) a). Solve the following instance of 0/1 Knapsack problem using Dynamic programming n=3, (W1, W2, W3)=(2, 3, 4), (P1, P2, P3) = (1, 2, 5), and m=6.
- b) Explain the concept of reliability design. [3M]

OR

7. Solve the following instance of Travelling Sales person problem using Dynamic [10M] Programing.



8. Write Dijkstra's procedure to solve SSSP(Single source shortest paths problem) and solve SSSP problem for following graph (starting at S):



OR

- 9. a) Explain single source shortest path problem with example?
  What is job sequencing with deadlines problem? Let n=5, p1,p2,p3,p4,p5)=(1,3,6,9,5)
  and (d1,d2,d3,d4,d5)=(3,1,1,2,2).
  - Find the optimal solution using greedy algorithm.

[5M]

10. Explain the computational classes of P, NP, NP-Complete, NP-Hard. Draw the [10M] relation among them.

OR

11. Draw the portion of the state space tree generated by FIFOBB for the knapsack instance: n=5, (P1, P2,..., P5) = (12,10,5,9,3), (w1, w2,...,w5)=(3, 5, 2, 5, 3) and M = 12.

\*\*\*\*\*\*