Code No.: DS305ES

R20

H.T.No.

8 R

CMR ENGINEERING COLLEGE: : HYDERABAD UGC AUTONOMOUS

II-B.TECH-I-Semester End Examinations (Regular) - February - 2023 DIGITAL LOGIC DESIGN

(CSD)

[Time: 3 Hours]

[Max. Marks: 70]

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 20 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

 b) Simply the Boolean function to minimum number of literals f(a,b,c)=ab'+bc'+a'c. c) Reduce the Boolean expression f(x,y,z)=∑m(0, 2, 3, 5) using K-map. d) Draw the logic diagram of EX-OR using NAND gate. 	[2M] [2M] [2M] [2M] [2M] [2M] [2M] [2M]
 b) Simply the Boolean function to minimum number of literals f(a,b,c)=ab'+bc'+a'c. c) Reduce the Boolean expression f(x,y,z)=∑m(0, 2, 3, 5) using K-map. d) Draw the logic diagram of EX-OR using NAND gate. 	[2M] [2M] [2M] [2M] [2M] [2M]
 c) Reduce the Boolean expression f(x,y,z)=∑m(0, 2, 3, 5) using K-map. d) Draw the logic diagram of EX-OR using NAND gate. 	[2M] [2M] [2M] [2M] [2M]
d) Draw the logic diagram of EX-OR using NAND gate.	[2M] [2M] [2M] [2M]
	[2M] [2M] [2M]
e) Design 4X1 WoX.	[2M] [2M]
1) List out the Application of Electricity	[2M]
g) What is race around condition.	-
ii) Compare synchronous and asynchronous counters.	1 Z IVI I
1) Write about random-access memory.	[2M]
j) Write about programmable array logic.	[211]
$\underline{PART-B} \tag{50 M}$	
2. 1. Convert the (540)8 octal number to decimal and also entary	10M]
ii. Subtract (6E) ₁₆ from (C5) ₁₆ using twos complements method.	
OR	
3. Convert SOP to POS for $F(X,Y,Z)=XY'+ZY'+X'+X$.	[10M]
4. De loca the following function	10M]
4. Reduce the following function	
ii. $F(A, B, C, D) = \sum m(2, 4, 6, 8, 9, 11, 13, 15)$ using K Map. iii. $F(A, B, C, D) = \sum m(1, 5, 9, 11, 13) + d(3, 6, 8)$ using K Map.	
OR	
5. Reduce the Boolean expression using K-map and implement expression in NAND gate	[10M]
$F(A,B,C,D)=\pi M(1, 2, 3, 4, 5, 9, 11)+d(2, 4, 8).$	
	[10M]
6. Design Half adder and implement using NOR Gates. OR	LOWIJ
	[10M]
Explain the JK flip flop with characteristic table and excitation table.	[10M]
OR	[10]
9. Design 5 of synchronous up counter using negative sage to age	[10M]
OR 10. Explain about memory decoding in detail.	[10M]
OR	
11. Explain about Programmable Logic Array in detail.	[10M]