Code No.: EC302PC

1.

R20

H.T.No.

8 R

CMR ENGINEERING COLLEGE: : HYDERABAD UGC AUTONOMOUS

II-B.TECH-I-Semester End Examinations (Regular) - February- 2023 DIGITAL SYSTEM DESIGN

(ECE)

[Time: 3 Hours] [Max. Marks: 70]

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 20 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

	PART-A	(20 Marks)	
1. a) b)	Convert the binary number 101101 in to Gray code. Explain about Canonical SOP and POS forms.	[2M] [2M]	
c)	What is K-Map? How it is used to simplify Boolean expressions?	[2M]	
d)	Design 2 bit magnitude comparator.	[2M]	
e)	What are the important applications of counters?	[2M]	
f)	Draw the PIPO shift register.	[2M]	
g)	Realize $F(x,y,z) = \Sigma m(1,2,5,7)$ using PLA.	[2M]	
h)	Find the number of address lines to access 4KB ROM.	[2M]	
i)	Draw the DTL OR gate.	[2M]	
j)	Define noise margin.	[2M]	
	PART-B	(50 Marks)	
2.	Why modern computers use 2's complement scheme for subtractions? Explain in detail by giving suitable examples.	[10M]	
	OR		
3.	For the given logic equation, implement with three NOR –gates Y=(A+B) . (C+D).	[10M]	
4.	Simplify the Boolean function using k-map in SOP and POS forms	[10M]	
	$F = \sum_{n=0}^{\infty} m(0,1,2,4,7,8,12,14,15,16,17,18,20,24,28,30,31).$		
_	OR	[10]47	
5.	Implementing a 4-input function with a multiplexer	[10M]	
	$F(A, B, C, D) = \Sigma(1, 3, 4, 11, 12, 13, 14, 15).$		
6.	Define the following terms with relation to flip flop (i) Setup time (ii) Hold time	[10M]	
	(iii) Propagation delay time (iv) Preset state (v) Clear state.		
	OR		
7.	Draw the functional diagram of a 3 bit synchronous up down counter using JK flip flops.	[10M]	
8.	Design binary sequence detector which recognizes four consecutive 1's. Draw the state	[10M]	
0.	diagram, state table and design a circuit.		
	OR		
9.	Design BCD to XS3 code converter using a (i) PROM (ii) PLA and (iii) PAL.	[10M]	
10.	What is meant by Tristate logic? Draw the circuit of Tristate TTL logic and explain the functions.	[10M]	
	OR		
11.	Implement NOT, NAND and NOR logic operation using CMOS logic family.	[10M]	
