R20

H.T.No.

8 R

CMR ENGINEERING COLLEGE: : HYDERABAD UGC AUTONOMOUS

II-B.TECH-I-Semester End Examinations (Supply) - August - 2023 DISCRETE MATHEMATICS

(Common to CSE, IT & CSM)

[Time: 3 Hours]

[Max. Marks: 70]

Note: This question paper contains two parts A and B.

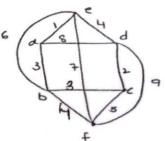
Part A is compulsory which carries 20 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

C	arties to marks and may have a, e, e as sae queeness.	
	PART-A	(20 Marks)
1. a) b)	Define the Rules of Inference and give one example. Show that $(p \land q) \rightarrow (p \lor q)$ is a tautology.	[2M] [2M]
c)	Determine for which constant a, b, c and d it is true that $f \circ g = g \circ f$, if $f(x)=ax+b$	and [2M]
15	g(x) = cx + d, where a, b, c and d are constants.	[2M]
d)	If A and B be sets. Show that $(A \cap B) \subseteq A$. Describe the characteristics of the algorithm.	[2M]
e) f)	Give an overview of recursive Algorithms?	[2M]
g)	State Baye's Theorem.	[2M]
h)	State principle of inclusion – exclusion.	[2M]
i)	Briefly write about tree Properties.	[2M] [2M]
j)	If G is a simple graph with 15 edges and G has 13 edges,	[2141]
	How many vertices does G have?	
	PART-B	(50 Marks)
2.a)	Prove that, all integers are rational numbers. Some integers are powers of	of 2. [5M]
	Therefore, some rational numbers are powers of 2.	[5M]
b)	Find DNF of $p \to [(p \to q) \land \sim (\sim q \lor \sim p)]$	
	OR	[10M]
3.	Test the validity of the following argument	[TOWI]
	$p \wedge r \rightarrow \neg q, \neg q \rightarrow r :: p \wedge r \rightarrow r$	
4.	Show that the sequence {an} is a solution of the recurrence relation	[10M]
	$a_n = a_{n-1} + 2a_{n-2} + 2n - 9$ if $a_n = 7 \cdot 2^n - n + 2$.	
	OR	[10M]
5.	Draw the HASSE diagram for $A = \{1,2,3,4,5,6,7,8\}$ by divisibility.	[TOWI]
6.	Prove that $G(n) = 2n - 4$ for $n \ge 4$.	
7	OR Prove that $7^{n+2}+8^{2n+1}$ is divisible by 57 for every non negative integer n, U	Jsing [10M]
7.	mathematical induction.	5 []
8.	Solve recurrence relation $a_n = 3$ $a_{n-1} - 2a_{n-2}$, for $n \ge 2$ using generating functions?	[10M]
	OR	
9.	In a certain town 40% have brown hair, 25% have brown eyes and 15% have brown hair & brown eyes. A person is selected random from the town i. If he has brown hair, what is the probability that he has brown eyes?	both [10M]

ii. How many people in town have neither brown hair nor brown eyes?

10 a). Prove that, Every Hamiltonian graph is 2 – connected.


b). Prove that in a graph the no. of odd degree vertices must be even.

OR

[5M]

11.a) Find the minimal spanning tree for the graph using Kruskal's algorithm

[5M]

b) Show that every planar graph G can be colored using five or fewer colors.

[5M]