Code No.: EC404PC

R20

H.T.No.

8 R

CMR ENGINEERING COLLEGE: : HYDERABAD UGC AUTONOMOUS

II-B.TECH-II-Semester End Examinations (Regular) - August- 2023 ELECTRONIC CIRCUIT ANALYSIS

(ECE)

[Time: 3 Hours]

[Max. Marks: 70]

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 20 marks. Answer all questions in 1

Part A is compulsory which carries 20 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

	$\underline{PART-A} \tag{26}$	Marks)
1. a)	Draw the circuit diagram of Darlington pair.	[2M]
b)	Prove that $h_{fe} = g_m \cdot r_{b'e}$	[2M]
c)	Draw the voltage shunt feedback amplifier, express its gain.	[2M]
d)	Show that bandwidth increases with negative feedback.	[2M]
e)	State the condition for Barkhausen criteria for sustainable oscillations.	[2M]
f)	Compare RC type Oscillators with LC type.	[2M]
g)	Define crossover distortion.	[2M]
h)	What is Q-factor and write the expression for Q factor.	[2M]
i)	Write the applications of monostable multivibrators.	[2M]
j)	State the Miller's Theorem.	[2M]
-		[21/1]
	$\underline{PART-B} \qquad (50)$	Marks)
2.a)	Define f_{β} and $f_{\Gamma_{i}}$ and derive the relation between them.	[5M]
b)	Derive the expression for gain-bandwidth product for voltage.	[5M]
	OR	[]
3.	Derive the expression for short circuit current gain in common emitter amplifier.	[10M]
4.	If the gain of an amplifier reduces to 1% of its open loop gain of 120 with negative feedback, compute the feedback factor and loop gain.	[10M]
5.	OR	
٦.	Briefly explain the current shunt feedback, also find the gain, input impedance and output impedance.	[10M]
6.	Briefly explain about RC Phase shift oscillator with neat diagram.	[10M]
	OR	[10lVI]
7.	Explain the Wien bridge oscillator circuit with neat diagram.	[10M]
8.	Compare push pull and complementary symmetry configuration for class-B power amplifiers.	[10M]
	OR	
9.	In a tuned amplifier circuit C=500pF, L=20 μ H, R _L = 1.5k Ω and the transistor has h _{fe} =50 and input resistance of 200 Ω . The coil used has Q factor=30. Calculate i) resonant frequency of the tuned circuit, ii) impedance of the tuned circuit, iii)voltage gain of the stage.	[10M]
10.	Draw the circuit diagram of Astable multivibrator and explain its working. OR	[10M]
11.	Draw the circuit diagram of Mono multivibrator and explain its working.	[10M]