Code No.: IT602PC

R20

H.T.No.

8 R

## CMR ENGINEERING COLLEGE: : HYDERABAD UGC AUTONOMOUS

## III-B.TECH-II-Semester End Examinations (Regular) - May- 2023 INTRODUCTION TO MACHINE LEARNING

(IT)

[Time: 3 Hours] [Max. Marks: 70]

**Note:** This question paper contains two parts A and B.

Part A is compulsory which carries 20 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

|       | PART-A                                                                          | (20 Marks) |
|-------|---------------------------------------------------------------------------------|------------|
| 1. a) | How overfitting is avoided in decision trees?                                   | [2M]       |
| b)    | What are the limitations of the Find-S algorithm?                               | [2M]       |
| c)    | Define Variance and Standard Deviation.                                         | [2M]       |
| d)    | What are local minima and global minima.                                        | [2M]       |
| e)    | Define 1. Prior Probability 2. Posterior Probability.                           | [2M]       |
| f)    | Define 1. Regression 2. Kernel Function                                         | [2M]       |
| g)    | What is a Horn Clause?                                                          | [2M]       |
| h)    | Define Relative Frequency.                                                      | [2M]       |
| i)    | What is Instance Space (X) and Hypothesis Space (H) in Analytical Learning.     | [2M]       |
| j)    | Mention two main differences between analytical and inductive learning methods? | [2M]       |
|       | PART-B                                                                          | (50 Marks) |
| 2.    | What are the basic design issues and approaches to machine learning?            | [10M]      |
|       | OR                                                                              |            |
| 3.    | Develop a decision tree to "Play Tennis or Not" from the given data.            | [10M]      |

| Day | Outlook  | Temperature | Humidity | Wind   | PlayTennis |
|-----|----------|-------------|----------|--------|------------|
| D1  | Sunny    | Hot         | High     | Weak   | No         |
| D2  | Sunny    | Hot         | High     | Strong | No         |
| D3  | Overcast | Hot         | High     | Weak   | Yes        |
| D4  | Rain     | Mild        | High     | Weak   | Yes        |
| D5  | Rain     | Cool        | Normal   | Weak   | Yes        |
| D6  | Rain     | Cool        | Normal   | Strong | No         |
| D7  | Overcast | Cool        | Normal   | Strong | Yes        |
| D8  | Sunny    | Mild        | High     | Weak   | No         |
| D9  | Sunny    | Cool        | Normal   | Weak   | Yes        |
| D10 | Rain     | Mild        | Normal   | Weak   | Yes        |
| D11 | Sunny    | Mild        | Normal   | Strong | Yes        |
| D12 | Overcast | Mild        | High     | Strong | Yes        |
| D13 | Overcast | Hot         | Normal   | Weak   | Yes        |
| D14 | Rain     | Mild        | High     | Strong | No         |

4. Write the algorithm for Back propagation.

OR

5. Explain about Accuracy of Hypothesis space (H).

[10M]

6. Explain the concept of EM Algorithm.

OR

7. Discuss the major drawbacks of K-nearest Neighbour learning Algorithm and how it [10M] can be corrected.

8. Explain Q learning algorithm assuming deterministic rewards and actions? [10M]

OR

9. Demonstrate the process of 'Learning Sets of Rules' with a Sequential Learning [10M] Algorithm using the "Play Tennis" example.

10. What are the key properties of PROLOG-EBG? Discuss its limitations and [10M] capabilities.

OR

11. Explain in detail the KBANN (Knowledge Based Artificial Neural Networks) [10M] algorithm.

\*\*\*\*\*\*\*