Code No.: MA101BS

H.T.No. R20

R 8

CMR ENGINEERING COLLEGE: : HYDERABAD **UGC AUTONOMOUS**

I-B.TECH-I-Semester End Examinations (Supply) - March- 2023 LINEAR ALGEBRA AND CALCULUS

(Common for all)

[Time: 3 Hours]

[Max. Marks: 70]

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 20 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

		PART-A	(20 Marks)	
		- 1 0 M - 1 0	[2M]	
1.	a)	Define Rank of a Matrix?	[2M]	
	b)	Find the rank of the Matrix $\begin{bmatrix} 1 & 2 & 3 \\ 1 & 4 & 2 \\ 2 & 6 & 5 \end{bmatrix}$		
	2)	Explain Diagonalization of a matrix?	[2M]	
	c)d)	Write any two Eigen Value Properties?	[2M]	
		Explain Comparison test?	[2M]	
	e) f)	State Raabe's test?	[2M]	
		State Rolle's theorem?	[2M]	
	g) h)	Explain improper integrals.	[2M]	
	i)	Obtain the total derivative of $z = \tan^{-1} \left(\frac{x}{y}\right)$	[2M]	
	j)	Explain Maxima and Minima functions of two variables.	[2M]	
		PART-B	(50 Marks) [10M]	
	2.	For what values of 'k' the equations	[10]	
		$x + y + z = 1$, $x + 4y + 10z = k^2$, $x + 2y + 4z = k$ have a solution and solve		
		them in each case.		
		OR	[10M]	
	3.	P.T the following equations are Consistent and solve them $3x + 3y + 2z = 1, x + 2y = 4,10y + 3z = -2,2x - 3y - z = 5$	()	
			[10M]	
	4.	Verify Cayley Hamilton theorem for matrix		
		$\begin{bmatrix} 3 & 1 & 1 \\ & & 1 \end{bmatrix}$		
		$A = \begin{bmatrix} 3 & 1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 5 \end{bmatrix} $ and hence find A^{-1} .		

5. Reduce the quadratic form $3x^2 + 5y^2 + 3z^2 - 2yz + 2zx - 2xy$ into canonical form using orthogonal transformation and find the nature of quadratic form.

- 6. Test whether the following series is Absolutly convergent / Conditionally convergent [10M] $\frac{1}{5\sqrt{2}} \frac{1}{5\sqrt{3}} + \frac{1}{5\sqrt{4}} \dots + (-1^n) \frac{1}{5\sqrt{n}} + \dots$
- 7. Test for convergence of [10M]
 - i. $\sum \frac{1}{(\log n)^n}$ ii. $\sum (\frac{n+2}{n+3})^n x^n$
- 8. State Lagrange's mean value theorem and Show that for 0<a
b<1, [10M]

$$\frac{1}{1+a^2} > \frac{\tan^{-1}b - \tan^{-1}a}{b-a} > \frac{1}{1+b^2}$$

OR

- 9. Find the relation between Beta and Gamma functions. [10M]
- 10. If $u = log(x^3 + y^3 + z^3 3xyz)$. Show that $\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}\right)^2 u = \frac{-9}{(x+y+z)^2}$. [10M]