Code No.: EC403PC

R20

H.T.No.

8 R

CMR ENGINEERING COLLEGE: : HYDERABAD UGC AUTONOMOUS

II-B.TECH-II-Semester End Examinations (Regular) - August- 2023 LINEAR IC APPLICATIONS

(ECE)

[Time: 3 Hours]

[Max. Marks: 70]

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 20 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

	$\underline{PART-A} \tag{20}$	Marks)
1. a) b) c) d) e) f) g) h) i)	List the AC characteristics of op-amp. What are the features of op-amp? Define Log amplifier. What are the applications of V-I converter? Compare active and passive filters. What is the significance of VCO in PLL? Give the formulas to evaluate LTP and UTP in a Schmitt trigger. List the application of astable multivibrator. What are the applications of ADC? What are the specifications of a DAC?	[2M] [2M] [2M] [2M] [2M] [2M] [2M] [2M]
2.	Explain the working of closed loop inverting and Non-Inverting amplifier and derive the equation of its Gain.	Marks) [10M]
	OR	
3.	Draw and explain the operation of op-amp as an integrator.	[10M]
4.a) b)	Explain the working of a Schmitt trigger with neat circuit diagram. If $R_2 = 150 K\Omega$, $R_1 = 100 K\Omega$, $V_{in} = 500 mV$ Sine wave, saturation voltage is $\pm 15 V$, for an op-amp based Schmitt trigger. Find Threshold Voltage V_{UTP} , V_{LTP} and hysteresis voltage.	[5M]
	OR	[5M]
5.	Draw and explain the instrumentational amplifier using op-amp and mention its applications.	[10M]
6.	Explain the working of wein bridge oscillator and find its frequency of oscillation. OR	[10M]
7.	For all pass filters, the values of R and C are $7.95K\Omega$ and $0.02\mu F$ respectively. If the input frequency is $1.5KHz$, calculate the phase shift.	[10M]
8.a)	Draw and explain the functional block diagram of PLL(IC565) and explain its working.	[7M]
b)	What are the applications of PLL?	[3M]
9.a) b)	OR Explain the working of an Astable multivibrator using IC-555 with circuit diagram. If R_1 =1K Ω , R_2 =1K Ω , C=1 μ F, find the output frequency of IC-555 as Astable multivibrator.	[6M] [4M]

10.a) Compare R - 2R and weight resistor types of DACs.

b) Write short notes on A/D converters.

OR

11. Explain the working of R-2R ladder DAC with neat circuit diagram and write its. [10.04]

 Explain the working of R-2R ladder DAC with neat circuit diagram and write its [10M] limitations.
